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ABSTRACT

In an era of “moving fast and breaking things”, regulators have moved slowly to pick up the safety,
bias, and legal debris left in the wake of broken Artificial Intelligence (AI) deployment. While
there is much-warranted discussion about how to address the safety, bias, and legal woes of state-
of-the-art AI models, rigorous and realistic mathematical frameworks to regulate AI are lacking.
Our paper addresses this challenge, proposing an auction-based regulatory mechanism that provably
incentivizes devices (i) to deploy compliant models and (ii) to participate in the regulation process.
We formulate AI regulation as an all-pay auction where enterprises submit models for approval. The
regulator enforces compliance thresholds and further rewards models exhibiting higher compliance
than their peers. We derive Nash Equilibria demonstrating that rational agents will submit models
exceeding the prescribed compliance threshold. Empirical results show that our regulatory auction
boosts compliance rates by 20% and participation rates by 15% compared to baseline regulatory
mechanisms, outperforming simpler frameworks that merely impose minimum compliance standards.
Code can be found on GitHub at https://github.com/marcobornstein/AI-Regulat
ory-Auctions.

1 Introduction

Current Artificial Intelligence (AI) models have revolutionized a wide swath of industries. The recent large-scale
deployment of Large Language Models (LLMs) has simultaneously boosted human productivity while sparking concern
over safety (e.g., hallucinations, bias, and privacy). Many industry leaders, such as Google, Meta, and OpenAI, remain
embroiled in controversy surrounding bias and misinformation [Brewster, 2024, Robertson, 2024, White, 2024], safety
[Jacob, 2024, Seetharaman, 2024, White, 2023], as well as legality and ethics [Bruell, 2023, Metz et al., 2024, Moreno,
2023] in their development and deployment of LLMs. Furthermore, irresponsible deployment of LLMs risks allowing
adversaries the ability to spread misinformation or propaganda [Barman et al., 2024, Neumann et al., 2024, Sun et al.,
2024]. To date, a consistent and industry-wide solution to oversee responsible AI deployment remains elusive.

Naturally, one solution to mitigate these dangers is to increase governmental regulation over AI deployment. In the
United States, there have been some strides, on federal [House, 2023] and state levels [Information, 2024], to regulate
the safety and security of large-scale AI systems (including LLMs). While these recent executive orders and bills
highlight the necessity to develop safety standards and enact safety and security protocols, few details are offered.
This follows a consistent trend of well-deserved scrutiny towards the lack of AI regulation without the development of
rigorous and realistic mathematical frameworks to regulate.

This work sets out to mathematically design a novel regulatory framework to not only enforce strict compliance, e.g.,
safety or ethical compliance, of deployed AI models, but simultaneously to incentivize the production of more compliant
AI models. Specifically, the AI regulatory process is formulated as an all-pay auction, where agents (enterprises) submit
their models to a regulator. The regulator’s job is twofold: (a) to prohibit deployment of models that fail to meet
prescribed compliance thresholds, and (b) to incentivize compliant model production and deployment by providing
additional rewards to agents that submit more compliant models than their peers. Below, an auction-based regulatory
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Figure 1: Step-by-Step CIRCA Schematic. (Step 0) The regulator sets a compliance threshold, ϵ, having corresponding
price, pϵ, required to achieve ϵ. (Step 1) Agents evaluate their total value, Vi, from model deployment value (vdi ) and
potential regulator compensation (vpi ). Agents only participate if their total value exceeds pϵ. (Step 2) Participating
agents submit their models to the regulator, accompanied by their bid bi, which reflects the amount spent to improve
their model’s compliance level. Models with bids below pϵ are automatically rejected. (Step 3) The submitted models
are randomly paired, and the more compliant model (i.e., the higher bid) in each pair wins. In this example, agent
3 wins since b3 > b1. (Step 4) Winning models receive both a premium and deployment value (i.e., agent 3 wins
premium vp3 and deployment vd3 values), while losing models receive only the deployment value (i.e., agent 1 only wins
deployment value vd1 ).

mechanism is designed, with a novel reward-payment protocol, that emits Nash Equilibria at which agents deploy
models that are more compliant than a prescribed threshold.

Summary of Contributions:

• (AI Regulation): Propose a Compliance-Incentivized Regulatory-Centered Auction (CIRCA), offering a simple yet
practical approach to AI regulation.

• (Compliance-First): Establish, through derived Nash Equilibria, that agents are incentivized to submit models that
surpass the required compliance threshold.

• (Effective): Empirical results demonstrate that CIRCA increases model compliance by over 20% and boosts participa-
tion rates by 15% compared to baseline regulatory mechanisms.

2 Related Works

Regulation Frameworks for Artificial Intelligence. A handful of work focuses on regulation frameworks for AI
deployment [de Almeida et al., 2021, Jagadeesan et al., 2024, Rodríguez et al., 2022, Yaghini et al., 2024]. First,
de Almeida et al. [2021] details the need for AI regulation and surveys existing proposals. The proposals are
ethical frameworks that express ethical decisions to make and dilemmas to address. However, these proposals lack
a mathematical framework to incentivize provably compliant models. Rodríguez et al. [2022] utilize AI models to
detect collusive auctions. This work is related to our paper but in reverse: Rodríguez et al. [2022] applies AI to
regulate auctions and to ensure that they are not collusive. In contrast, our paper aims to use auctions to regulate AI
deployment. Jagadeesan et al. [2024] focuses on reducing barriers to entry for smaller companies that are competing
against incumbent, larger companies. A multi-objective high-dimensional regression framework is proposed to impose
“reputational damage” upon companies that deploy unsafe AI models. This work allows varying levels of safety
constraints, where newer companies face less severe constraints in order to spur their entry into the market, which is
unrealistic in many settings and only considers simple linear-regression models.
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The closest related work to ours, Yaghini et al. [2024], proposes a regulation game for ensuring privacy and fairness that
is formulated as a Stackelberg game. This game is a multi-agent optimization problem that is also multi-objective (for
fairness and privacy). An equilibrium-search algorithm is presented to ensure that agents remain on the Pareto frontier
of their objectives (although this frontier is estimated algorithmically). Notably, Yaghini et al. [2024] considers only
one model builder (agent) and multiple regulators that provide updates to the agent’s strategy. Here, a more realistic
setup is considered, where there are multiple agents and a single regulator whose goal is to incentivize compliant
model deployment. It falls out of the scope of a regulator’s job to collaborate with agents to optimize their strategy.
Furthermore, the mechanism proposed here is simple and efficient. No Pareto frontier estimation or multiple rounds of
optimization are required.

All-Pay Auctions. Compared to the dearth of literature in regulatory frameworks for AI, all-pay auctions are well-
researched [Amann and Leininger, 1996, Baye et al., 1996, Bhaskar, 2018, DiPalantino and Vojnovic, 2009, Gemp
et al., 2022, Goeree and Turner, 2000, Siegel, 2009, Tardos, 2017]. These works formulate specific all-pay auctions and
determine their equilibria. Some works consider settings where agents have complete information about their rivals’
bids [Baye et al., 1996] while others consider incomplete information, such as only knowing the distribution of agent
valuations [Amann and Leininger, 1996, Bhaskar, 2018, Tardos, 2017]. One major application of all-pay auctions are
crowd-sourcing competitions. Many agents participate to win a reward, with those losing incurring a small cost for
their time, effort, etc. DiPalantino and Vojnovic [2009] is one of the first works to model crowd-sourcing competitions
as an all-pay auction. Further research, such as Gemp et al. [2022], have leveraged AI to design all-pay auctions for
crowd-sourcing competitions. However, instead of crowd-sourcing, our paper formulates the AI regulatory process as
an asymmetric and incomplete all-pay auction. Previous analysis in this setting [Amann and Leininger, 1996, Bhaskar,
2018, Tardos, 2017] is leveraged to derive Nash Equilibria.

3 Regulatory Compliance of AI

There exists a regulator R with the compliance power to set and to enforce laws and regulations (e.g., U.S. government
regulation on lead exposure). The regulator wants to regulate AI model deployment, by ensuring that all models meet a
compliance threshold ϵ ∈ (0, 1), e.g., the National Institute for Occupational Safety and Health (NIOSH) regulates that
N95 respirators filter out at least 95% of airborne particles. If a model does not reach the compliance threshold ϵ, then
it is deemed unsafe and the regulator bars deployment. On the other side, there are n rational model-building agents.
Agents seek to maximize their own benefit, or utility.

Bidding & Evaluation. By law, each agent i must submit, or bid in auction terminology, its model wi ∈ Rd for
evaluation to the regulator before it can be approved for deployment. Let S(w;x) : Rd → R+ output a compliance
level (the larger the better) for model w given data x. In effect, each agent, given its own data xi, bids a compliance
level sAi := S(wi;xi) to the regulator. Subsequently, the regulator, using its own data xR, independently evaluates the
agent’s compliance level bid as sRi := S(wi;xR). Agent and regulator evaluation data is assumed to be independent
and identically distributed (IID) xi, xR ∼ D.

Assumption 1. Agent and regulator evaluation data comes from the same distribution xi, xR ∼ D.

This assumption is realistic, because agents and regulators typically rely on standardized data collection processes [U.S.
Food and Drug Administration, 2022] or widely accepted datasets [Rajpurkar et al., 2016, Williams et al., 2018] for
evaluation. This ensures a fair and unbiased assessment of compliance. For example, FDA guidelines detail that data
collection should assess efficacy and safety across various subgroups, e.g., demographics, while also not changing
“baseline data collection determined by the clinical trial objectives” [U.S. Food and Drug Administration, 2022]. In
areas such as Natural Language Processing, common datasets, or benchmarks, are employed to consistently evaluate
model comprehension [Rajpurkar et al., 2016, Williams et al., 2018], trustworthiness [Wang et al., 2023], and security
[Munoz et al., 2024] across various models. Therefore, it is reasonable to define agent i’s compliance level bid as
si := Ex∼D[S(wi;x)]. The scenario where evaluation data may be non-IID is addressed within Appendix E.

In regulatory settings, like the NIOSH example, a scalar compliance metric is often used. If multiple compliance
metrics must be monitored, S can be defined to aggregate and weigh the various metrics. This too is realistic in AI. For
example, LLM safety alignment literature uses a scalar-valued reward to ensure a model is safety aligned [Christiano
et al., 2017, Ouyang et al., 2022, Kaufmann et al., 2023].
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Algorithm 1 Compliance-Incentivized Regulatory-Centered Auction
Require: n agents, ϵ compliance level

1: Each agent i receives their total value Vi and partition ratio λi from “nature”
2: Agents determine their optimal bids b∗i and corresponding utility ui(b

∗
i ) {via Corollaries 1 or 2}

3: Agents decide to participate, the set of participating agents is P = {j ∈ [n]
∣∣ uj(b

∗
j ;b−i) > 0}

4: for participating agents j ∈ P do
5: Spend b∗j to build a model, with compliance level sj = M−1(b∗j ), and submit it to the regulator
6: end for
7: Regulator verifies all model compliance levels, clearing models for deployment when sj ≥ ϵ ∀j ∈ P
8: Regulator pairs up models, awarding compensation valued at vpi to agents with the more compliant model

Price of Compliance. We assume that there exists a strictly increasing function M : (0, 1) → (0, 1) that determines
the “price of compliance” (i.e., maps compliance into cost). Simply put, higher-compliant models cost more to attain.
Thus, we define the price of ϵ-compliance as pϵ := M(ϵ).

Assumption 2. ϵ > ϵ′ =⇒ M(ϵ) > M(ϵ′). A strictly increasing function M that maps compliance to cost exists.

One prominent existing example of this relationship is the cap-and-trade system that the Environmental Protection
Agency exercises to combat pollution [Stavins, 2008, Goulder and Schein, 2013]. Companies that pollute above a
set emission threshold can reach compliance by purchasing allowances, or pollution deficits, from other compliant
companies. Thus, pollution compliance is attained with greater cost. For an example within AI, models can achieve
higher safety compliance through Machine Unlearning [Liu et al., 2024] or AI Alignment [Dai et al., 2024]. However,
such methods incur greater computational and data collection costs in exchange for improved compliance. Furthermore,
it has been found empirically that larger models and longer inference attain higher levels of compliance in adversarial
training, robustness transfer, and defense [Howe et al., 2024, Zaremba et al., 2025]. However, larger models and longer
inference increase training and inference costs. We validate the compliance-cost relationship empirically in Section 6.

Agent Costs. Realistically for agents, training a compliant model comes with added cost. Consequently, each agent i
must decide how much money to bid, or spend, bi to make its model compliant. By Assumption 2, the compliance level
of an agent’s model will be si = M−1(bi).

Agent Values. (1) Model deployment value vdi . While it costs more for agents to produce compliant models, they gain
value from having their models deployed. Intuitively, this can be viewed as the expected value vdi of agent i’s model.
The valuation for model deployment varies across agents (e.g., Google may value having its model deployed more than
Apple). (2) Premium reward value vpi . Beyond value for model deployment, the regulator can also offer additional, or
premium, compensation valued as vpi by agents (e.g., tax credits for electric vehicle producers or Fast Track and Priority
Review of important drugs by the U.S. Food & Drug Administration). The regulator provides additional compensation
to agents whose models exceed the prescribed compliance threshold. However, the value of this compensation varies
across agents due to differing internal valuations. It is unrealistic for the regulator to compensate all agents meeting
the compliance threshold due to budget constraints. Therefore, additional rewards are limited to a top-performing
half of agents surpassing the threshold. This ensures targeted compensation for agents enhancing compliance while
maintaining feasibility for the regulator.

Value Distribution. The total value for each agent i is defined as Vi := vdi + vpi , which represents the sum of
the deployment value and premium compensation. Although these values may vary widely in practice, {Vi}ni=1 is
normalized for all n agents to be between 0 and 1 for analytical tractability, allowing a standardized range. Consequently,
the price to achieve the compliance threshold ϵ is also normalized to fall within the (0, 1) interval, i.e., pϵ ∈ (0, 1). The
scaling factor λi ∼ Dλ(0, 1/2) dictates the proportion of total value allocated to deployment versus compensation.
Therefore, (i) the deployment value is vdi := (1− λi)Vi, and (ii) the premium compensation value is vpi := λiVi. Both
Vi and λi are private to each agent, though the distributions DV and Dλ are known by participants. The maximum
allowable factor is set at λi = 1/2, reflecting the realistic constraint that compensation should not exceed deployment
value. Although Section 5 primarily considers λi ≤ 1/2, theoretical extensions can be made for scenarios where
λi > 1/2.

All-Pay Auction Formulation. Overall, agents face a trade-off: producing higher-compliant models garners value, via
the regulator, but incurs greater costs. Furthermore, in order to attain the rewards detailed above, agents must submit a
model with a compliance level at least as large as ϵ. This problem is formulated as an asymmetric all-pay auction with
incomplete information [Amann and Leininger, 1996, Bhaskar, 2018, Tardos, 2017]. An all-pay auction is used since
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agents incur an unrecoverable cost, training costs, when submitting their model to regulators. The auction is formulated
as asymmetric with incomplete information since valuations Vi are private and differ for each agent.

Agent Objective. The objective, for each model-building agent i, is to maximize its own utility ui. Namely, each
agent seeks to determine an optimal compliance level to bid to the regulator bi. However, given the all-pay auction
formulation, agents may need to take into account all other agents’ bids b−i in order to determine their optimal bid b∗i ,

b∗i := argmax
bi

ui(bi; b−i). (1)

A major portion of this paper is constructing an auction-based mechanism, thereby designing the utility of each agent,
such that each participating agent maximizes its utility when each bids more than “the price to obtain the minimum
compliance threshold”, i.e., b∗i > pϵ. To begin, a simple mechanism is provided, already utilized by regulators, that
does not accomplish this goal, before detailing the auction-based mechanism CIRCA that provably ensures that b∗i > pϵ
for all agents.

4 Reserve Thresholding: Base Regulation

The simplest method to ensure model compliance is for the regulators to set a reserve price, or minimum compliance
level. This mechanism is coined the multi-winner reserve thresholding auction, where the regulator awards a deployment
reward, vdi , to each agent whose model meets or exceeds the compliance threshold ϵ. Within this auction, each agent i’s
utility is mathematically formulated as,

ui(bi; b−i) =

{
−bi if bi < pϵ,

vdi − bi if bi ≥ pϵ.
(2)

However, the formulation above is ineffective at incentivizing agents to produce models above ϵ-compliance.

Theorem 1 (Reserve Thresholding Nash Equilibrium). Under Assumption 2, agents participating in Reserve
Thresholding (2) have an optimal bid and utility of,

b∗i = pϵ, ui(b
∗
i ; b−i) = vdi − pϵ, (3)

and submit models with the following compliance level,

s∗i =

{
ϵ if ui(b

∗
i ; b−i) > 0,

0 (no submission) else.
(4)

When a regulator implements reserve thresholding, as formally detailed in Theorem 1, agents exert minimal effort,
submitting models that just meet the required compliance threshold ϵ. While this approach ensures that all deployed
models satisfy minimum compliance, it fails to encourage agents to build models with compliance levels exceeding
ϵ. Additionally, agents whose deployment rewards are less than the cost of achieving compliance, i.e., vdi < pϵ, lack
incentive to participate in the regulatory process. That lack of incentive leads to reduced participation rates (Remark 1).

Remark 1 (Lack of Incentive). Each agent is only incentivized to submit a model with compliance s∗i = ϵ. Our goal
is to construct a mechanism that incentivizes agents to build models that possess compliance levels exceeding the
minimum threshold: s∗i > ϵ.

5 Compliance-Incentivized Regulation

To alleviate the lack of incentives within simple regulatory auctions, such as in Section 4, we propose a regulatory
all-pay auction that mandates an equilibrium where agents submit models with compliance levels exceeding ϵ.

Algorithm Description. The core component of the auction is that agent compliance levels are randomly compared
against one another, with the regulator rewarding those having the superior compliant model with premium compensation.
Performing the randomization process multiple times reduces the likelihood of unfair outcomes. Only agents with
models that achieve a compliance level of ϵ or higher are eligible to participate in the comparison process; models
that do not meet this threshold are automatically rejected. The detailed algorithmic block of CIRCA is depicted in
Algorithm 1.
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Figure 2: Validation of Uniform Nash Bidding Equilibrium. Agent utility is maximized when agents follow the
theoretically optimal bidding function shown in Equation (8). Across varying compliance prices, pϵ = 0.25 (left), 0.5
(middle), 0.75 (right), agents attain less utility when they deviate from the optimal bid (red line) derived in Corollary 1.

Agent Utility. The utility for each agent i is therefore defined as in Equation (5),

ui(bi; b−i) =
(
vdi + vpi · 1(bi>bj)

)
· 1(bi≥pϵ) − bi. (5)

Per regulation guidelines, the compliance criteria of an accepted model must at least be ϵ. Equation (5) dictates that
values are only realized by each agent if its model produces a bid larger than the required cost to reach ϵ-compliance,
1(bi≥pϵ). Furthermore, agents only realize additional compensation value vpi from the regulator if their compliance level
outperforms a randomly selected agent j, 1(bi>bj). Any agent that bids bi = 1 will automatically win and realize both
vpi and vwj . It is important to note that the cost that every agent incurs when building its model is sunk: if the model is
not cleared for deployment, the cost −bi is still incurred. The agent utility is rewritten in a piece-wise manner below,

ui(bi; b−i) =


−bi if bi < pϵ,

vdi − bi if bi ≥ pϵ and bi < bj random bid bj ,

vdi + vpi − bi if bi ≥ pϵ and bi > bj .

(6)

By introducing additional compensation, vpi , and, crucially, conditioning it on whether an agent’s model is more
compliant than that of another random agent, it becomes rational for agents to bid more than the price to obtain the
minimum compliance threshold (unlike Theorem 1).

Incentivizing Agents to Build Compliant Models. We establish a guarantee that agents participating in CIRCA
maximize their utility with an optimal bid b∗i that is larger than “the price required to attain ϵ compliance” (i.e.,
b∗i > pϵ) in Theorem 2 below. Furthermore, agents bid in proportion to the value for additional compensation vpi that
the regulator offers for extra-compliant models.

Theorem 2. Agents participating in CIRCA (6) will follow an optimal bidding strategy b̂∗i of,

b̂∗i := pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz > pϵ, (7)

where Fv(·) denotes the cumulative density function of the random premium reward variable corresponding to the
premium reward vpi = Viλi.

Theorem 2 applies to any distribution for Vi and λi on [0, 1] and [0, 1/2], i.e., Vi ∼ DV (0, 1) and λi ∼ Dλ(0, 1/2),
respectively. Determining specific optimal bids, utility, and model compliance levels requires given distributions for Vi

and λi. Analysis of all-pay auctions [Amann and Leininger, 1996, Bhaskar, 2018, Tardos, 2017], as well as many other
types of auctions, often assume a Uniform distribution for valuations. Therefore, our first analysis of CIRCA, below in
Corollary 1, presumes Uniform distributions for Vi and λi.
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Figure 3: Validation of Beta Nash Bidding Equilibrium. Akin to the Uniform results, agent utility is maximized
when agents follow the theoretically optimal bidding function shown in Equation (11). Across varying compliance
prices, pϵ = 0.25 (left), 0.5 (middle), 0.75 (right), agents attain less utility when they deviate from the optimal bid (red
line) derived in Corollary 2.

(Special Case 1) Uniform Vi and λi: Optimal Agent Strategy. Corollary 1 determines that a participating agent’s
optimal strategy to maximize its utility is to submit a model with compliance levels larger than ϵ when their values Vi

and λi come from a Uniform distribution.
Corollary 1 (Uniform Nash Bidding Equilibrium). Under Assumption 2, for agents having total value Vi and scaling
factor λi both stemming from a Uniform distribution, with vdi = (1 − λi)Vi, and vpi = λiVi, their optimal bid and
utility participating in CIRCA (6) are b∗i := min{b̂∗i , 1},

b̂∗i =

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 ,

(8)

ui(b
∗
i ; b−i) =

{
2(vp

i )
2 ln(pϵ)

pϵ−1 + vdi − b∗i if 0 ≤ vpi ≤ pϵ

2 ,
2(vp

i )
2(ln(2pϵ)−1)+pϵ

pϵ−1 + vdi − b∗i if pϵ

2 ≤ vpi ≤ 1
2 .

(9)

Participating agents submit models with compliance,

s∗i :=

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no submission) else.
(10)

(Special Case 2): Beta Vi and Uniform λi: Optimal Agent Strategy. In many instances, a realistic distribution for Vi

is a Beta distribution with α, β = 2. This distribution is Gaussian-like, with the bulk of the probability density placed in
the middle. As such, it is realistic when agent values do not congregate amongst one another and outliers (near 0 or 1)
are rare. The performance of CIRCA in this setting is analyzed in Corollary 2. Corollary 2 states that, under a Beta(2,2)
distribution for Vi, agent i maximizes its utility with an optimal bid b∗i larger than the price of ϵ compliance, b∗i > pϵ,
resulting in a model above the ϵ-compliance threshold. Furthermore, Corollaries 1 and 2 surpass the baseline optimal
bid b∗i = pϵ for Reserve Thresholding (Theorem 1).
Corollary 2 (Beta Nash Bidding Equilibrium). Under Assumption 2, let agents have total value Vi and scaling factor
λi stem from Beta (α = β = 2) and Uniform distributions respectively, with vdi = (1− λi)Vi and vpi = λiVi. Denote
the CDF of the Beta distribution on [0, 1] as Fβ(x) = 3x2 − 2x3. The optimal bid and utility for agents participating
in CIRCA (6) are b∗i := min{b̂∗i , 1},

b̂∗i =

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
⊖,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
⊛,

(11)

u(b∗i ; b−i) =

vdi +
6(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
− b∗i ⊖,

vdi +
vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

− b∗i ⊛.
(12)

0 ≤ vpi ≤ pϵ
2

→ ⊖,
pϵ
2

≤ vpi ≤ 1/2 → ⊛

Participating agents submit models with compliance,

s∗i =

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no submission) else.
(13)
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Remark 2 (Improved Model Compliance). As shown in Corollaries 1 and 2, participating agents will submit models
that are more compliant than the regulator’s compliance threshold, s∗i = M−1

(
b∗i
)
> ϵ.

Remark 3 (Improved Utility & Participation). Through introduction of premium compensation, agent utility is
improved, in Equations (9) and (12), versus Reserve Thresholding in Equation (3). As a result, more agents break the
zero-utility barrier of entry for participation, boosting both overall agent utility and participation rate.

The proofs of Theorems 1 and 2 as well as Corollaries 1 and 2 are found within Appendix B. Since the premium
compensation value vpi is a product of two random variables, the PDF and CDF of vpi becomes a piece-wise function
(as shown within Appendix B). As a result, the optimal bidding and subsequent utility also becomes piece-wise in both
Corollaries 1 and 2. Empirically, the correctness of the computed PDF and CDFs are verified within Appendix C.

6 Experiments

Section 5 demonstrates that the compliance-incentivized regulatory-centered auction, CIRCA, creates incentives for any
agents to submit compliant-exceeding models and to participate at rates higher than the baseline Reserve Thresholding
mechanism in Section 4. Below, we validate these theoretical results empirically.

Figure 4: Improved Compliance with Uniform &
Beta Values. When total value stems from a (top)
Uniform Vi ∼ U(0, 1) or (bottom) Beta distribution
Vi ∼ Beta(α = β = 2), agents bid more compliant
models in CIRCA than Reserve Thresholding.

Experimental Setup. A regulatory setting with n = 100, 000
agents is simulated below. Each agent i receives a random
total value Vi from either a Uniform (Corollary 1) or Beta(2,2)
(Corollary 2) distribution. Each agent also receives a scaling
factor λi that splits the total value into deployment vdi = (1−
λi)Vi and premium compensation vpi = λiVi values. Once the
private values are provided, agents calculate their bid according
to the optimal strategies in Theorem 1 and Corollaries 1 & 2.

Lack of Baseline Regulatory Mechanisms. To the best of
knowledge, there are no other comparable compliance mecha-
nisms to regulate AI. As a result, the Reserve Threshold mech-
anism that is proposed in Section 4 is used as a baseline. While
simple, the Reserve Threshold mechanism is a realistic baseline
to compare against. For example, existing regulatory bodies,
like the Environmental Protection Agency (EPA), follow similar
steps before clearing products (e.g., the EPA authorizes permits
for discharging pollutants into water sources once water quality
criteria are met).

Verifiable Nash Bidding Equilibria. The first experimental
goal is to validate that the theoretical bidding functions found in
Corollaries 1 and 2 constitute Nash Equilibria. That is, an agent
receives worse utility if it deviates from this bidding strategy
if other agents abide by it. To test this, the optimal bid for a
single agent is compared versus 100, 000 others. The single
agent’s optimal bid is varied on a range up to ±50%. Note that
comparisons only occur if the other agent’s bid is at least pϵ,
in order to accurately reflect how the auction mechanism in
Algorithm 1 functions.

In Figures 2 and 3, the average utility over all 100, 000 com-
parisons is plotted. One can see that both the Uniform and
Beta optimal-bidding functions maximize agent utility and thus
constitute Nash Equilibria. Utility decays much quicker when
reducing the bid, since agents are (i) less likely to win the premium reward and (ii) at risk of losing the value from
deployment if the bid does not reach pϵ. At a certain point, utility increases linearly once the agent continuously fails to
bid pϵ. The linear improvement stems from the agent saving the cost of its bid, −bi, shown in Equation (6).

8
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Figure 5: Improved Participation with Uniform
& Beta Values. When total value stems from a (top)
Uniform Vi ∼ U(0, 1) or (bottom) Beta distribution
Vi ∼ Beta(α = β = 2), agents participate at a higher
rate in CIRCA than Reserve Thresholding.

Improved Agent Participation and Bid Size. For both Uni-
form and Beta(2,2) distributions, shown in Figures 4 and 5,
the proposed mechanism (CIRCA) increases participation rates
and average bids by upwards of 15% and 20% respectively. At
the endpoints of possible price thresholds, pϵ = 0 and 1, both
mechanisms perform similarly. The reason is that at a low com-
pliance threshold price pϵ ≈ 0, agents are highly likely to have
a total value Vi larger than a value close to zero. The inverse
is true for pϵ ≈ 1, where it is unlikely that agents will have
a total value Vi larger than a value close to 1. The proposed
mechanism shines when compliance threshold prices are in the
middle; the premium compensation offered by the regulator
incentivizes agents to participate and bid more for the chance
to win.

Compliance-Cost Ablation Study. Below, an ablation study is
conducted to demonstrate that in realistic settings, compliance
is mapped to cost in a monotonically increasing way (as detailed
in Assumption 2). While there are many compliance metrics
to consider when gauging AI deployment, model fairness is
analyzed, via equalized odds, for image classification in this
study. Equalized odds measures if different groups have sim-
ilar true positive rates and false positive rates (lower is better).
Multiple VGG-16 models are trained on the Fairface dataset
[Karkkainen and Joo, 2021] for fifty epochs (repeated ten times
with different random seeds), and consider a gender classifi-
cation task with race as the sensitive attribute. Models with
the largest validation classification accuracy during training are
selected for testing.

Many types of costs exist for training compliant models, such
as extensive architecture and hyper-parameter search. In this
study, the cost of an agent acquiring more minority class data
is considered. Acquiring more minority class data leads to a
larger and more balanced dataset. Various mixtures of training
data are simulated, starting from a 95:5 skew and scaling up to fully balanced training data with respect to the sensitive
attribute. In this study, equalized odds performance is gauged on well-balanced test data for the models trained on
various mixtures of data. The results of this ablation study are shown in Table 1 and Figure 6.

Table 1: Equalized Odds as Minority Class Data Increases.

Minority Class % Mean Equalized Odds Score
5% 22.55

10% 22.31
15% 18.97
20% 17.46
25% 15.78
30% 15.44
35% 13.09
40% 11.01
45% 9.83
50% 9.38

As expected, in Table 1, the equalized odds score decreases (more compliant model) when collecting more minority
class data (increased cost). To adjust equalized odds to fit into the setting where ϵ ∈ (0, 1), the original equalized odds
score are inverted and normalized. In Figure 6, one can see that compliance level is indeed monotonically increasing
with respect to the cost.

9
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Figure 6: Strictly Monotonic Compliance-Cost Relationship. As the percentage of minority class data increases
(greater cost), equalized odds metric improves (greater compliance) on Fairface.

7 Conclusion

As AI models grow, the risks associated with their misuse become significant, particularly given their opaque, black-box
nature. Establishing robust algorithmic safeguards is crucial to protect users from unethical, unsafe, or illegally-
deployed models. In this paper, we present a regulatory framework designed to ensure that only models deemed
compliant by a regulator can be deployed for public use. Our key contribution is the development of an auction-based
regulatory mechanism that simultaneously (i) enforces compliance standards and (ii) provably incentivizes agents to
exceed minimum compliance thresholds. This approach encourages broader participation and the development of more
compliant models compared to baseline regulatory methods. Empirical results confirm that our mechanism increases
agent participation by 15% and raises agent spending on compliance by 20%, demonstrating its effectiveness to promote
more compliant AI deployment.

Impact Statement

Unchecked AI deployment runs the risk of unsafe consequences that can harm users and stoke division within our
society. It is imperative to outline and employ regulatory frameworks to mitigate these dangers and ensure user safety.
However, regulation in AI is heavily under-researched. The goal of this paper is to take a step towards designing
realistic and effective regulation to ensure AI model compliance. We hope that the impact of our paper will spur future
research into regulatory AI, and soon provide a robust solution for governments to implement.
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Appendix

A Notation Table

Table 2: Notating and Defining all Variables Listed Within CIRCA.

Definition Notation
Regulator R

Number of Agents n
Compliance Threshold ϵ

Compliance-to-Cost Function M
Price of Attaining Compliance pϵ

Agent i Bid bi
All Other Agents Bids b−i

Agent i Utility ui

Agent i Model Compliance si
Total Value for Agent i Vi

Total Value Distribution DV

Agent i Scaling Factor λi

Scaling Factor Distribution Dλ

Deployment Value for Agent i vdi
Premium Compensation Value for Agent i vpi

Probability Density Function for Premium Compensation fv
Cumulative Distribution Function for Premium Compensation Fv

B Theoretical Proofs

Below, we provide the full proofs of our Theorems and Corollaries presented within our work.

B.1 Proof of Theorem 1

Theorem 1 (Restated). Under Assumption 2, agents participating in Reserve Thresholding (2) have an optimal bid and
utility of,

b∗i = pϵ, ui(b
∗
i ; b−i) = vdi − pϵ,

and submit models with the following compliance level,

s∗i =

{
ϵ if ui(b

∗
i ; b−i) > 0,

0 (no submission) else.

Proof. From agent i’s utility within Reserve Thresholding, Equation (2), it is clear that ui(0) = 0. We proceed to break
the proof up into cases where agents have (1) a deployment value equal to or less than the price of compliance pϵ and
(2) a deployment value larger than pϵ.

Case 1: vdi ≤ pϵ. From Equation (2), if vdi ≤ pϵ then an agent will never attain positive utility,

max
bi∈(0,1]

vdi · 1bi≥pϵ − bi ≤ max
bi∈(0,1]

pϵ · 1bi≥pϵ − bi = max
bi∈[pϵ,1]

pϵ − bi = pϵ − pϵ = 0. (14)

argmax
bi∈(0,1]

ui(bi) = pϵ. (15)

For an agent with deployment value at most equal to pϵ, the upper bound on attainable utility when it participates, i.e.,
bi ∈ (0, 1], is zero (Equation (14)). This maximum utility is attained when bidding bi = pϵ (Equation (15)). Thus,
agents have nothing to gain by participating, as they already start at zero utility ui(0) = 0. As a result, agents will not
submit a model, s∗i = M(0) = 0.
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Case 2: vdi > pϵ. Similar steps to Case 1 above,

max
bi∈(0,1]

vdi · 1bi≥pϵ
− bi > max

bi∈(0,1]
pϵ · 1bi≥pϵ

− bi = max
bi∈[pϵ,1]

pϵ − bi = pϵ − pϵ = 0. (16)

b∗i = argmax
bi∈(0,1]

ui(bi) = pϵ −→ ui(b
∗
i ) = vdi − pϵ > 0. (17)

An agent with deployment value larger than pϵ will have a maximal utility that is non-negative when it participates
(Equation (16)). Maximal utility is attained when bidding b∗i = pϵ (Equation (17)). Furthermore, at this optimal bid, the
corresponding compliance level is s∗i = M−1(pϵ) = ϵ.

B.2 Proof of Theorem 2

Theorem 2 (Restated). Agents participating in CIRCA (6) will follow an optimal bidding strategy b̂∗i of,

b̂∗i := pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz > pϵ,

where Fv(·) denotes the cumulative density function of the random premium reward variable corresponding to the
premium reward vpi = Viλi.

Proof. Before beginning our proof, we note that each agent i cannot alter its own valuation vpi for winning the all-pay
auction. Each valuation is private (unknown by other agents) and predetermined: total reward Vi and partition factor
λi are randomly selected from a given distribution D on [0, 1] and [0, 1/2] respectively by “nature”. We define the
cumulative distribution function for the auction reward vpi = Viλi as Fv(·) and the probability distribution function as
fv(·).

From Equation (6), we find that an agent i that does not participate (i.e., bi = 0) receives no utility,

ui(0) = 0. (18)

An agent receives negative utility if its bid does not reach the price of compliance pϵ,

max
bi∈(0,pϵ)

ui(bi) < 0. (19)

Consequently, rational agents will either opt not to participate (notated as the set of agents N ) or participate (notated as
the set of agents P ) and bid at least pϵ. We define these groups as,

N = {i ∈ [n] | max
bi∈[0,1]

ui(bi) ≤ 0}, (20)

P = {i ∈ [n] | max
bi∈[0,1]

ui(bi) > 0}. (21)

From here, we only focus on agents i ∈ P which participate (i.e., have utility to be gained by participating). As a result
from Equations (18) and (19), Equation (21) transforms into,

P = {i ∈ [n] | max
bi∈[pϵ,1]

ui(bi) > 0}. (22)

The result of (22) is that participating agents bid at least pϵ. This is important, as every participating agent knows that
all rival agents j they will possibly be compared against have bj ∈ [pϵ, 1]. Agents can dictate how much they bid, and
we design our auction to ensure that agents bid in proportion to their valuation.

Following previous literature [Amann and Leininger, 1996, Bhaskar, 2018, Tardos, 2017], we desire a monotone
increasing bidding function b(·) : [0, 1/2] → [pϵ, 1] that each agent follows. We will prove that each agent i’s best
strategy is to bid its own valuation b(vpi ) irrespective of other agent bids (Nash Equilibrium). Using a bidding function
transforms agent utility,

ui(bi) =
(
vdi + vpi · 1(if i wins auction)

)
· 1(if bi≥pϵ)︸ ︷︷ ︸

satisfied for agents i∈P

− bi,

= P
(
b(bi) > b(bj)

)
vpi − b(bi) + vdi , bj ∼ randomly sampled agent bid. (23)
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Since b(x) is monotone increasing up to 1, agents bidding b = 1 automatically win, the utility function above can be
simplified as,

ui(bi) = vpi P
(
bi > bj

)
− b(bi) + vdi , bj ∼ randomly sampled agent bid,

= vpi Fv(bi)− b(bi) + vdi . (24)

Taking the derivative and setting it equal to zero yields,

d

dbi
ui(bi) = vpi fv(bi)− b′(bi) = 0. (25)

As agents bid in proportion to their valuation, we solve the first-order equilibrium conditions at bi = vpi ,

b′(vpi ) = vpi fv(v
p
i ). (26)

Integrating by parts, and knowing ϵ is the minimum bid (b(0) = pϵ), reveals our optimal bidding function,

b(vpi )− b(0) =

∫ x

0

vpi fv(v
p
i )dv

p
i ,

b(vpi )− pϵ = vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz,

b̂∗i = b(vpi ) : = pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz. (27)

B.3 Proof of Corollary 1

Corollary 1 (Restated). Under Assumption 2, for agents having total value Vi and scaling factor λi both stemming
from a Uniform distribution, with vdi = (1− λi)Vi, and vpi = λiVi, their optimal bid and utility participating in CIRCA

(6) are b∗i := min{b̂∗i , 1},

b̂∗i =

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 ,

ui(b
∗
i ; b−i) =

{
2(vp

i )
2 ln(pϵ)

pϵ−1 + vdi − b∗i if 0 ≤ vpi ≤ pϵ

2 ,
2(vp

i )
2(ln(2pϵ)−1)+pϵ

pϵ−1 + vdi − b∗i if pϵ

2 ≤ vpi ≤ 1
2 .

Participating agents submit models with compliance,

s∗i :=

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no submission) else.

Proof. Let vpi := Viλi, where Vi ∼ U [pϵ, 1] and λi ∼ U [0, 1/2]. The reason that Vi is within the interval [pϵ, 1], is that
all participating agents must have a value of at least pϵ or else they would not have rationale to bid. The smallest value
of Vi such that this is possible is pϵ, so it is the lower bound on this interval. Our first goal is to find the PDF of vpi ,
fvp

i
(·).

We begin solving for fvp
i
(·) by using a change of variables. For the product of two random variables v = x1 · x2, let

y1 = x1 · x2 and y2 = x2. Thus, we find inversely that x2 = y2 and x1 = y1/y2. Since x1 and x2 are independent and
both uniform, we find that,

fy1,y2
(x1, x2) = (

1

1− pϵ
)(

1

1/2− 0
) =

2

1− pϵ
. (28)

When using the change of variables this becomes,

fy1,y2(y1, y2) = fy1,y2(x1, x2)|J | =
2

(1− pϵ)y2
, |J | =

∣∣∣∣ (1/y2 −y1/y
2
2

0 1

) ∣∣∣∣ = 1/y2 (29)
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Marginalizing out y2 (a non-negative value) yields,

fy1(y1) =

∫ ∞

0

2

(1− pϵ)y2
dy2. (30)

The bounds of integration depend upon the value of y1. The change of variable to the (y1, y2) space, where 0 ≤ y1, y2 ≤
1/2, results in a new region of possible variable values. This region is a triangle bounded by the three vertices: (0, 0),
(pϵ/2, 1/2), and (1/2, 1/2). Thus, the bounds of marginalization depend upon the value of y1. For 0 ≤ y1 ≤ pϵ/2 we
have,

fy1
(y1) =

∫ y1/pϵ

y1

2

(1− pϵ)y2
dy2 =

2

(1− pϵ)
[ln(y2)

∣∣y1/pϵ

y1
] =

2 ln(pϵ)

(pϵ − 1)
. (31)

For pϵ ≤ y1 ≤ 1/2 we have,

fy1
(y1) =

∫ 1/2

y1

2

(1− pϵ)y2
dy2 =

2

(1− pϵ)
[ln(y2)

∣∣1/2
y1

] =
2 ln(2y1)

(pϵ − 1)
. (32)

Thus, as a piecewise function the PDF is formally,

fy1
(y1) =

{
2 ln(pϵ)
(pϵ−1) for 0 ≤ y1 ≤ pϵ

2 ,
2 ln(2y1)
(pϵ−1) for pϵ

2 ≤ y1 ≤ 1/2.
(33)

Now, the CDF is determined through integration,

Fy1
(y1) =

∫ y1

0

fy1
(y1)dy1 =

{
2y1 ln(pϵ)
(pϵ−1) for 0 ≤ y1 ≤ pϵ

2 ,
2y1(ln(2y1)−1)+pϵ

(pϵ−1) for pϵ

2 ≤ y1 ≤ 1/2.
(34)

We can integrate the CDF to get,∫ y1

0

Fy1(y1) =

{
y2
1 ln(pϵ)
(pϵ−1) for 0 ≤ y1 ≤ pϵ

2 ,
4y2

1(2 ln(2y1)−3)+8y1pϵ−p2
ϵ

8(pϵ−1) for pϵ

2 ≤ y1 ≤ 1/2.
(35)

Plugging all of this back into Equation (7) yields,

b̂∗i =

{
pϵ + vpi

2vp
i ln(pϵ)

pϵ−1 − (vp
i )

2 ln(pϵ)

pϵ−1 ,

pϵ + vpi
2vp

i (ln(2v
p
i )−1)+pϵ

(pϵ−1) − 4(vp
i )

2(2 ln(2vp
i )−3)+8vp

i pϵ−p2
ϵ

8(pϵ−1) ,

=

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 .

(36)

Since bi cannot be larger than 1, we cap the bidding function at one via,

b∗i := min{b̂∗i , 1}. (37)

The utility gained by agent i for using such a bidding function is,

u(b∗i ) =

{
vdi − b∗i +

2(vp
i )

2 ln(pϵ)

pϵ−1 for 0 ≤ vpi ≤ pϵ

2 ,

vdi − b∗i +
2(vp

i )
2(ln(2vp

i )−1)+pϵ

(pϵ−1) for pϵ

2 ≤ vpi ≤ 1/2.
(38)

When this utility is larger than 0, the agent will participate otherwise the agent will not submit a model to the regulator.
Finally, we can find the optimal compliance level by using Assumption 2,

s∗i := M−1
(
b∗i
)
. (39)
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B.4 Proof of Corollary 2

Corollary 2 (Restated). Under Assumption 2, let agents have total value Vi and scaling factor λi stem from Beta
(α = β = 2) and Uniform distributions respectively, with vdi = (1− λi)Vi and vpi = λiVi. Denote the CDF of the Beta
distribution on [0, 1] as Fβ(x) = 3x2 − 2x3. The optimal bid and utility for agents participating in CIRCA (6) are,

b∗i := min{b̂∗i , 1}, b̂∗i =

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
if pϵ

2 ≤ vpi ≤ 1
2 ,

u(b∗i ; b−i) =

vdi +
6(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
− b∗i for 0 ≤ vpi ≤ pϵ

2 ,

vdi +
vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

− b∗i for pϵ

2 ≤ vpi ≤ 1/2.

Participating agents submit models with compliance,

s∗i =

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.

Proof. Similar to Corollary 1, we begin solving for fvp
i
(·) using a change of variables. For the product of two random

variables v = x1 · x2, let y1 = x1 · x2 and y2 = x2. Inversely, x2 = y2 and x1 = y1/y2. While x1 and x2 are
independent, x1 comes from a Beta distribution and x2 from a Uniform one. The PDF and CDF of a Beta distribution,
with α = β = 2, on [0, 1] are defined as,

fβ(x) := 6x(1− x), (40)

Fβ(x) := 3x2 − 2x3. (41)

Now, the PDF over y1, y2 is defined as,

fy1,y2
(x1, x2) = (

6x1(1− x1)

1− Fβ(pϵ)
)(

1

1/2− 0
) =

12x1(1− x1)

1− Fβ(pϵ)
. (42)

When using the change of variables this becomes,

fy1,y2
(y1, y2) = fy1,y2

(x1, x2)|J | =
12y1(1− y1

y2
)

(1− Fβ(pϵ))y22
, |J | =

∣∣∣∣ (1/y2 −y1/y
2
2

0 1

) ∣∣∣∣ = 1/y2 (43)

Marginalizing out y2 (a non-negative value) yields,

fy1(y1) =
12y1

1− Fβ(pϵ)

∫ ∞

0

1

y22
− y1

y32
dy2. (44)

The bounds of integration depend upon the value of y1. The change of variable to the (y1, y2) space, where 0 ≤ y1, y2 ≤
1/2, results in a new region of possible variable values. This region is a triangle bounded by the three vertices: (0, 0),
(pϵ/2, 1/2), and (1/2, 1/2). Thus, the bounds of marginalization depend upon the value of y1. For 0 ≤ y1 ≤ pϵ/2 we
have,

fy1(y1) =
12y1

1− Fβ(pϵ)

∫ y1/pϵ

y1

1

y22
− y1

y32
dy2 =

12y1
1− Fβ(pϵ)

[− 1

y2
+

y1
2y22

∣∣y1/pϵ

y1
]

=
12y1

1− Fβ(pϵ)
[−pϵ

y1
+

p2ϵ
2y1

+
1

y1
− 1

2y1
] =

6(p2ϵ − 2pϵ + 1)

1− Fβ(pϵ)
. (45)

For pϵ ≤ y1 ≤ 1/2 we have,

fy1
(y1) =

12y1
1− Fβ(pϵ)

∫ 1/2

y1

1

y22
− y1

y32
dy2 =

12y1
1− Fβ(pϵ)

[− 1

y2
+

y1
2y22

∣∣1/2
y1

]

=
12y1

1− Fβ(pϵ)
[−2 + 2y1 +

1

y1
− 1

2y1
] =

6(4y21 − 4y1 + 1)

1− Fβ(pϵ)
. (46)
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Thus, as a piecewise function the PDF is formally,

fy1
(y1) =


6(p2

ϵ−2pϵ+1)
1−Fβ(pϵ)

for 0 ≤ y1 ≤ pϵ

2 ,
6(4y2

1−4y1+1)
1−Fβ(pϵ)

for pϵ

2 ≤ y1 ≤ 1/2.
(47)

Now, the CDF is determined through integration,

Fy1(y1) =

∫ y1

0

fy1(y1)dy1 =


6y1(p

2
ϵ−2pϵ+1)

1−Fβ(pϵ)
for 0 ≤ y1 ≤ pϵ

2 ,
2y1(4y

2
1−6y1+3)+p2

ϵ(2pϵ−3)
1−Fβ(pϵ)

for pϵ

2 ≤ y1 ≤ 1/2.
(48)

We can integrate the CDF to get,∫ y1

0

Fy1
(y1) =


3y2

1(p
2
ϵ−2pϵ+1)

1−Fβ(pϵ)
for 0 ≤ y1 ≤ pϵ

2 ,

8y1

(
2y3

1−4y2
1+3y1+p2

ϵ(2pϵ−3)
)
+p3

ϵ(4−3pϵ)

8(1−Fβ(pϵ))
for pϵ

2 ≤ y1 ≤ 1/2.
(49)

Plugging all of this back into Equation (7) yields,

b̂∗i =

pϵ + vpi
6vp

i (p
2
ϵ−2pϵ+1)

1−Fβ(pϵ)
− 3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
,

pϵ + vpi
2vp

i (4(v
p
i )

2−6vp
i +3)+p2

ϵ(2pϵ−3)

1−Fβ(pϵ)
− 8vp

i

(
2(vp

i )
3−4(vp

i )
2+3vp

i +p2
ϵ(2pϵ−3)

)
+p3

ϵ(4−3pϵ)

8(1−Fβ(pϵ))
,

=

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
if pϵ

2 ≤ vpi ≤ 1
2 .

(50)

Since bi cannot be larger than 1, we cap the bidding function at one via,

b∗i := min{b̂∗i , 1}. (51)

The utility gained by agent i for using such a bidding function is,

u(b∗i ) =

vdi − b∗i +
6(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
for 0 ≤ vpi ≤ pϵ

2 ,

vdi − b∗i +
vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

for pϵ

2 ≤ vpi ≤ 1/2.
(52)

When this utility is larger than 0, the agent will participate otherwise the agent will not submit a model to the regulator.
Finally, we can find the optimal compliance level by using Assumption 2,

s∗i := M−1
(
b∗i
)
. (53)

C Additional Experiments

Within this section, we verify empirically that our computed PDF and CDFs in Corollaries 1 and 2 are correct. To
accomplish this, we randomly sample and compute the product of Vi and λi fifty million times. We then plot the PDF
and CDF of the resultant products and compare it with our theoretical PDF and CDF. The theoretical PDF and CDF for
Corollary 1 are defined in Equations (33) and (34), while those for Corollary 2 are found in Equations (47) and (48).
The results of these simulations, which validate our computed PDFs and CDFs, are shown in Figures 7 and 8. To ensure
correctness, we perform testing on different values of pϵ. As expected, our theory lines up exactly with our empirical
simulations for both Corollaries as well as across varying pϵ.
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Figure 7: Numerical validation of our derivations for fv(v
p
i ) and Fv(v

p
i ), where vpi := Viλi, for Vi and λi coming from

Uniform distributions (Corollary 1). The price of attaining ϵ is set as pϵ = 1/4 (top row) and pϵ = 1/2 (bottom row).

Figure 8: Numerical validation of our derivations for fv(vPi ) and Fv(v
P
i ), where vpi := Viλi, for Vi coming from a

Beta distribution and λi from a Uniform distributions (Corollary 2). The price of attaining ϵ is set as pϵ = 1/4 (top
row) and pϵ = 1/2 (bottom row).
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D Repeating CIRCA Auctions

The current auction structure (Algorithm 1) expects agents to submit a single model trained solely for the upcoming
auction. There is no expectation that the model will be reused for a future auction, or indication that the model has been
submitted to a previous auction. Looking towards the future, we would like to design CIRCA to fit a repeatable auction
structure, in which approved or rejected models may be resubmitted in subsequent auctions.

Repeated Agent Utility. Previously, in Algorithm 1, agents start the regulatory process with zero cost and value (i.e.,
they are building their models from scratch). In repeating CIRCA auctions, agent cost and value are accumulated across
all previous auction submissions. For example, if an agent trains its already-accepted model further to attain a higher
compliance level si, its total accumulated training cost is M(si). This agent’s total value becomes the value its model
gained from previous auction submissions plus any value gained from the current auction.

By allowing repeated CIRCA auctions, an agent is able to repeatedly submit its model for regulatory review. We note
that repeated submissions decrease the value of model deployment; once an agent earns the reward for deploying their
model, subsequent deployments of the same model with improved compliance levels can be realistically expected to
earn less value than the initial deployment. We characterize this loss in value for repeated submissions with an indicator
function in the utility function that only allows deployment value to be obtained once, on initial acceptance of a model.
While we allow agents to win premium rewards across multiple auctions, we note that a regulator can curb this by
either limiting the number of auction submissions per agent or the number of auctions held per year. We now define the
repeated CIRCA auction utility of agent i, who has participated in a− 1 previous auctions, as:

ui,a(bi) =

(
a∑

n=1

νni

)
− bi, (54)

where νni , the value gained at the nth auction model i was submitted to, is formulated as:

νni =


vd,ni · 1(if νn−1

i = 0) if bnj ≥ pnϵ and bni < bnj randomly sampled bid bnj ,

vd,ni · 1(if νn−1
i = 0) + vp,ni if bni ≥ pnϵ and bni > bnj randomly sampled bid bnj ,

0 if n ≤ 0.

(55)

The repeated CIRCA auction setup creates a unique property for models in training. If an agent intends to obtain a high
compliance level, but an auction takes place mid-training, the agent is actually incentivized to submit their model early
if they have a chance at winning the premium reward. Though the model may have a lower likelihood of earning the
reward, there is no consequence for models failing to attain the premium reward. Gaining value is strictly beneficial to
agents, and accumulated value helps offset the costs of training a model. This property only exists for the premium
reward; the deployment reward can only be obtained once, thus there is no incentive to submit early to earn it.

Repeated Optimal Bidding Function. Using the same assumptions for single-auction CIRCA, namely Assumptions 1
and 2 along with private values, we can derive the bidding function for a rational agent under a repeated CIRCA auction
setting. We follow an equivalent setup to Lemma 1 with regards to the valuation of rewards, giving us the cumulative
distribution function for vpi = Viλi as Fv(·) and the probability distribution function as fv(·).

From our definition of utility ui,a(bi), we find that an agent i that does not participate (i.e., submitting bi = 0) receives
utility equal to νai . However, since bi = 0 will never be larger than pϵ (by definition), it must be true that νai = 0 as
well, since the model will never meet the required compliance threshold. Therefore, a non-participating agent will
always receive non-negative utility.

ui,a(0) = 0. (56)

Following closely to the proof of Theorem 2 in Appendix B, we find that participating agents i ∈ P (with P defined in
the previous proof) will now have a utility of,

ui,a(bi) = νai + vdi · 1(νa
i = 0) + vpi P

(
bi > bj

)
− b(bi), bj ∼ randomly sampled agent bid,

= νai + vdi · 1(νa
i = 0) + vpi Fv(bi)− b(bi). (57)

Taking the derivative and setting it equal to zero yields,

d

dbi
ui,a(bi) = vpi fv(bi)− b′(bi) = 0. (58)
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As agents bid in proportion to their valuation, we solve the first-order conditions at bi = vpi ,
b′(vpi ) = vpi fv(v

p
i ). (59)

Note, at this point in the proof the bidding function calculation is now equivalent to the calculations found in Lemma 1.
We can thus follow the same steps to reveal our optimal bidding function,

b(vpi ) : = pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz, (60)

which is equivalent to the optimal bidding function derived in Lemma 1.

As the optimal bidding function is equivalent, calculations for the Nash Bidding Equilibrium are also equivalent to those
found in Corollary 1 and Corollary 2. The optimal bid and utility participating in CIRCA (6) under the assumptions of
Corollary 1 will thus be,

b∗i := min{b̂∗i , 1}, b̂∗i =

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 ,

ui,a(b
∗
i ; b−i) =

{
νai + vdi · 1(νa

i = 0) +
2(vp

i )
2 ln(pϵ)

pϵ−1 − b∗i if 0 ≤ vpi ≤ pϵ

2 ,

νai + vdi · 1(νa
i = 0) +

2(vp
i )

2(ln(2pϵ)−1)+pϵ

pϵ−1 − b∗i if pϵ

2 ≤ vpi ≤ 1
2 .

Agents participating in CIRCA under Corollary 1 submit models with the following compliance,

s∗i :=

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.

The optimal bid and utility participating in CIRCA (6) under the assumptions of Corollary 2 will be,

b∗i := min{b̂∗i , 1}, b̂∗i =

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
if pϵ

2 ≤ vpi ≤ 1
2 ,

ui,a(b
∗
i ; b−i) =

νai + vdi · 1(νa
i = 0) +

6(vp
i )

2(p2
ϵ−2pϵ+1)

1−Fβ(pϵ)
− b∗i for 0 ≤ vpi ≤ pϵ

2 ,

νai + vdi · 1(νa
i = 0) +

vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

− b∗i for pϵ

2 ≤ vpi ≤ 1/2.

Agents participating in CIRCA under Corollay 2 submit models with the following compliance,

s∗i =

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.

E Future Work

While this work addresses key challenges in regulating AI compliance, several directions remain open for future
exploration:

(1) Model Evaluation: Creating a realistic protocol for the regulator to evaluate submitted model compliance levels is
important to ensure agents do not skirt around compliance requirements. While we leave this problem for future work,
one possible solution is that agents can either provide the regulator API access to test its model or provide the model
weights directly to the regulator. Truthfulness can be enforced via audits and the threat of legal action.

(2) Extension to Heterogeneous Settings: Extending our mechanism to heterogeneous scenarios, where evaluation
data for agents and regulators differs, is a critical next step. Real-world data distributions often vary across contexts,
and understanding how these variations affect both model compliance and agent strategies will create a more robust
regulatory mechanism. While explicit protocols or mathematical formulations are left as future work, we have a
few ideas. One idea could be establishing a data-sharing framework between agents and the regulator, where each
participating agent must contribute part of (or all of) its data to the regulator for evaluation. If data can be anonymized,
then this would be a suitable solution. Another idea could be that the regulator collects data on its own, and can
compare its distribution of data versus each participating agents’ data distribution. If distributions greatly differ, then
the regulator could collect more data or resort to the previous data-sharing method.
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