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Abstract. We present an algorithm, Fourier Activity Recognition (FAR),
for UAV video activity recognition. Our formulation uses a novel Fourier
object disentanglement method to innately separate out the human agent
(which is typically small) from the background. Our disentanglement
technique operates in the frequency domain to characterize the extent of
temporal change of spatial pixels, and exploits convolution-multiplication
properties of Fourier transform to map this representation to the corre-
sponding object-background entangled features obtained from the net-
work. To encapsulate contextual information and long-range space-time
dependencies, we present a novel Fourier Attention algorithm, which
emulates the benefits of self-attention by modeling the weighted outer
product in the frequency domain. Our Fourier attention formulation uses
much fewer computations than self-attention. We have evaluated our ap-
proach on multiple UAV datasets including UAV Human RGB, UAV
Human Night, Drone Action, and NEC Drone. We demonstrate a rel-
ative improvement of 8.02% - 38.69% in top-1 accuracy and up to 3
times faster over prior works.

1 Introduction

Deep learning techniques have been widely used for activity recognition [21,7,5].
Video analysis of scenes captured using UAV cameras [43,52] is much harder
than activity recognition in ground-camera datasets [7,63]. In these UAV videos,
the object of interest, i.e. the human actor (any individual appearing in the
video performing scripted or non-scripted actions), is typically much smaller in
terms of number of pixels or the area than the corresponding background, and
thus provides less knowledge than a front view capture. Moreover, it is harder
to capture and label UAV videos. Overall, there are fewer and smaller labeled
datasets of aerial videos, as compared to ground videos. For instance, ground-
camera datasets like Kinetics-400 [7] contain 306, 245 videos while the recent
UAV-Human [43] database has 22, 476 videos.

Given that the size of the human actor in UAV videos is much smaller than
the corresponding background, a neural network trained on these datasets may
learn to infer more from the background [41] than the human actor. While both
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background and context are important [12], the network must learn to first iden-
tify the human actor and the corresponding action, and then deduce relations
of the human actor with the surroundings in a judicious manner. In the absence
of annotated detection boxes that can demarcate the human actor, the network
needs to be able to differentiate the moving human actor from the background in
an intrinsic manner. One approach is to detect the object of interest via object
detection [57]. However, action recognition models that heavily rely on localiza-
tion of the human actor require near to perfect object detection accuracy [82].
While it is practically not feasible to annotate all datasets for object detection,
object detectors trained on ground camera datasets will not generalize well UAV
videos due to domain gap issues [70,8,4]. Domain adaptation solutions do not
lead to perfect generalization yet.

On the other hand, traditional optical flow [3] techniques require hundreds of
optimization iterations each frame, and split the network into RGB and motion
streams which increases computation and model parameters [54]. Low compu-
tation alternatives such as deep learning based optical flow [58,33,16], motion
feature networks [39] and ActionFlowNet [50] are inferior in performance com-
pared to optical flow. Techniques such as background subtraction [53] and motion
segmentation [77] are not very promising either [60,19]. Thus, the network needs
to learn to automatically disentangle [81,18] object feature representations from
the corresponding entangled state containing both the object and background
information.

In addition to object-background separation, it is important for the network
to acquire knowledge [5] about the context, relationships between the object, and
background and intra-pixels correspondences as well. Self-attention [69,78] can
model this information by capturing long-range dependencies within an image/
video. Prior work on attention based video activity recognition [5,44,1] has seen
two classes of self attention networks by either directly applying self-attention on
convolutional layers or using self-attention as the building block. Mathematically,
the core step in the computation of self-attention is matrix multiplication, which
makes it computationally expensive.

1.1 Main contributions

We present a novel method, FAR , for UAV video action recognition. The de-
sign of FAR in the frequency domain is motivated by the fact that frequency
spectrums contain knowledge about a signals’ characteristics that are not easily
interpretable in the time domain. Our novel components include:

– We propose a novel Fourier Object Disentanglement method (FO) to bestow
the network with the ability to intrinsically recognize the moving human
actor from the background. FO operates in the frequency domain dictated
by the spectrum of the Fourier transform corresponding to the temporal
dimensions of the video. It characterizes the motion of the human actor
based on the magnitude and rate of temporal change of feature maps that
encode information about the spatial pixels of the video. The amplitudes at
each spatial-temporal location of the feature maps are innately representative
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of dynamic salient, static salient, dynamic non-salient and static non-salient
regions, in the same order of relevance. This also empowers the network to
handle videos with moving background pixels and dynamic cameras.

– We present Fourier Attention (FA) to encapsulate context and long range
space-time dependencies within a video. Fourier attention works in the fre-
quency domain corresponding to the space-time dimensions of the video,
and emulates the benefits of self-attention. The time complexity of FA is
O(n2logn) as opposed to O(n3) for traditional self-attention, and the accu-
racy of Fourier-attention approximates that of self-attention.

Moreover, such a representation promotes global mixing. FAR has multiple ben-
efits. (i) It elegantly exploits the mathematical properties of Fourier transform
to achieve the desired objectives of object background separation and context
encoding by performing fewer computations than traditional methods. (ii) It is
parameter-less, i.e., it does not have any learnable layers/ parameters. (iii) FAR
can be embedded within any 3D action recognition network such as I3D [7,21]
to achieve state-of-the-art performance. (iv) FAR converges faster than the cor-
responding 3D action recognition backbone.

We experimentally demonstrate that FAR outperforms prior work by 8.02%−
38.69% performance across multiple UAV datasets including UAV Human RGB [43],
UAV Human Night [43], Drone Action [52], and NEC Drone [13]. We compare
with the state-of-the-art Fourier method, efficient attention method and self-
attention based transformer methods and demonstrate accuracy, computation
and memory benefits.

2 Related Work

Action Recognition: Action recognition is a well studied topic in computer
vision. The emergence of large-scale ground-camera videos datasets [7,63,49] has
led to development of deep learning techniques for action recognition. We re-
fer the reader to [11] for a survey on action recognition. Broadly speaking,
three classes of network architectures have been proposed for action recogni-
tion. The first [64,23,26,30,73] builds on the two-stream theory in cognition
to model space and time separately. The second [22,21,7,5,67,32] models space
and time jointly via 3D CNNs. The third class includes transformer-based ar-
chitectures [55,27,46,5,72]. These transformer-based solutions are built on self-
attention [69,78] and have high computational complexity. In the interest of op-
timizing GPU memory, frame sampling strategies [28,80,37,29] for video action
recognition have been proposed. The above solutions are focused on challenges
pertaining to action recognition in ground-camera videos. However, UAV video
action recognition is much more difficult.
UAV Action Recognition: UAV video databases [2,43,13,52] have been used
to develop solutions [65,51,15,68] for UAV action recognition. However, these so-
lutions are directly based off techniques designed for ground-camera datasets [7,49],
where the size of the object is comparable to the background. Moreover, for
ground camera videos, an auxilliary guidance factor based on object detec-
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tion [57] is a viable option. However, these assumptions do not hold true in
UAV videos [17,48].
FFT and Deep Learning FFT has been immensely used in traditional image
[6,56] and video processing [79,14] applications. Fast Fourier Transform (FFT)
has been recently used in deep learning methods. One of its first applications
was to accelerate convolution operations [38]. Incorporating FFT between NN
layers [10,75,66] instead of CNNs to transform the feature space to the frequency
domain, and aid global mixing of knowledge, has been used to improve accuracy
for image classification, detection and ground-camera action recognition. An
interesting application of FFT includes image stylization [76] as a guiding factor
for domain adaptation. Most recently, FFT was used to naively replace self-
attention layers [69] for NLP applications.
Efficient attention Methods to improve memory efficiency of transformers in-
clude modifications in matrix multiplication [61], low rank approximations [71],
kernel modifications [35] for linear time complexity [74,59,36,42]. While most of
these solutions are focused on NLP and image-based computer vision tasks, EA
[61] demonstrates results on temporal action localization and STAR [62] per-
forms skeleton action recognition. The former can be regarded as a localization
task w.r.t. the temporal dimension while the latter uses pose information making
the task of classification easier. None of these solutions are customized to UAV
action recognition which brings forth different challenges.

Fig. 1: Fourier Object Disentanglement (FO) and Space-Time Fourier At-
tention (FA): FO empowers the network to intrinsically separate out the moving
human agent from the background, without the need for any annotated object detec-
tion bounding boxes. This enables our network to explicitly focus on the low resolution
human agent performing action, and not just learn from background cues. FO inher-
ently characterizes salient and non-salient, and static and dynamic regions of the scene
via the amplitudes of the feature maps it computes. FA elegantly exploits the math-
ematical properties of the Fourier transform to imbibe the properties of self-attention
and capture contextual knowledge and long-range space-time dependencies at a much
lower computational complexity.
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3 Fourier Disentangled Space Time Attention

In this section, we describe our approach. We design two novel methods to de-
cipher the human actor performing action, and encode context. Fourier Object
Disentanglement (FO) disentangles the object from the background in an au-
tomatic manner. Fourier Space-Time Attention (FA) imbibes the properties of
self-attention to capture long range space-time relationships at a lower compu-
tational cost. These modules can be embedded within any state-of-the-art 3D
video recognition backbone such as I3D [7] or X3D [21] for improved action
recognition. We now describe the methods in detail.

3.1 Fourier Object Disentanglement

We present a Fourier Object Disentanglement (FO) method to automatically
separate the human actor from the background. Movement of the human actor
in the scene can be characterised by temporal change of feature maps encoding
spatial pixels (across space dimensions H × W ) in the video frames. The rate
and magnitude of change of a signal can be quantified by amplitude of a sig-
nal at different frequencies. Thus, to identify the movement, we first transform
the feature maps to a temporal frequency space. We perform this computa-
tion using 1D Fourier transform along the temporal dimension. Specifically, let
f(c, t, h, w) ∈ C×T ′×H ′×W ′ denote the feature maps on which FO is applied,
where C is the number of channels and T ′ and (H ′ ×W ′) denote the temporal
and spatial dimensions of the feature maps, respectively. The amplitude of the
temporal Fourier transform at the frequency −2πk/N is:

FT (f)(k) =

n=T ′∑
n=0

f(c, t, h, w)× e−2πkn/N , (1)

which can be computed efficiently using the FFT algorithm [24]. FT (f)(k) math-
ematically represents the amplitude of the temporal signal at every spatial and
channel location of the feature map f , at various frequencies. Intuitively, high
frequency in the temporal dimension corresponds to the movement, and low fre-
quency represents static regions of the scene. Therefore, regions corresponding
to the moving human actor should have higher amplitude of Fourier transform
at high frequencies. To infer the presence of the moving human actor at various
spatial locations, we encapsulate the relationships between amplitudes and fre-
quencies by multiplying the L2-norm-square of the amplitude at each frequency
with the L2-norm-square of the frequency itself. L2-norm ensures that frequen-
cies and amplitudes are positive. L2-norm-square amplifies high amplitudes of
the Fourier transform of the signal at high frequencies and suppress low am-
plitudes at low frequencies for disentangling dynamic regions of the scene. The
frequencies, in order, are:frk = [e−2πk/N ], k = 1....T ′.

Note that the frequencies are independent of the input video. Thus, the
dynamic mask MFO can be represented as

MFO = ∥FT (f)(k)∥22 × ∥frk∥22, (2)
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where |a|22 is L2 norm-square of a vector |a|. MFO disentangles (or amplifies)
parts of the scene corresponding to moving pixels. This may include moving
background (and camera motion) in addition to moving human actor. Our next
task is to use MFO to demarcate moving object pixels from moving back-
ground pixels.

To further separate out only the moving actor, we capitalize on the activation
maps f computed by the model. While not perfect, the activations at salient
regions of the scene are higher than those at the non-salient regions. Hence, the
final object disentangled representations can be represented as a dot product of
MFO and network features f , which amplifies dynamic, salient regions of the
scene. Mathematically,

FFO = f ⊙MFO. (3)

According to this formulation, dynamic salient regions are amplified the most,
and static non-salient regions are heavily suppressed. The amplitude at static
salient regions and dynamic non-salient regions is lower than the amplitude at
dynamic salient regions. Due to the l2 operation in the computation of MFO

and linear application of f in Equation 3, static salient regions have a higher
amplitude than the dynamic non-salient regions. Thus, the ordering of ampli-
tudes that is formed as: dynamic-salient > static-salient > dynamic-non-salient
> static-non-salient, in concordance with the relevance for decision making for
action recognition. Thus, static as well as dynamic background regions have lower
amplitudes than static and dynamic regions of the object executing action.
Time complexity: The time complexity of FO depends on the time complexity
of 1D FFT, which is nlog(n), for an n-element input vector. Consider the classical
case [31] where the temporal and spatial dimensions at the mid level feature
representations is half and one-fourth of the number of frames sampled and
spatial dimensions of the image respectively. The number of FFTs that need to
be computed is C × (H/8)× (W/8) where C,H,W correspond to the number of
channels at the mid-level, and spatial dimensions of the image. Therefore, the
total time complexity is C × (H/8)× (W/8)× (T/2)log(T/2).

3.2 Space-Time Fourier Attention

Consider a scene that depicts a human actor swimming in a swimming pool.
Here, it is important to decipher the relationship between the human actor and
the pool. While explicit modeling of correspondences between different pixels
illustrating pose, orientation, and joint movements may not be necessary, it is
crucial for the neural network to inherently capture this knowledge. Space-time
self-attention for video action recognition [5,44,1] is capable for extracting this
knowledge, but comes at the cost for expensive matrix multiplications.

We propose Fourier Space-Time Attention (FA) for acquiring knowledge
about the long-range space-time relations within a video. Fourier attention ap-
proximates self-attention in an elegant fashion at a reduced computational cost.
To understand the mechanics of Fourier attention, we first succinctly present
self-attention [78]. The inputs to self-attention are key, query and value vectors
which are representations obtained by 1× 1 convolutions using a common input
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feature map. Vaswani et al. [69] describe the computation of self-attention as “
a weighted sum of the values, where the weight (or sub-attention) assigned to
each value is computed by a compatibility function of the query with the corre-
sponding key.” Key, query and value are 1 × 1 convolution layers transforming
the input feature maps. Mathematically, with x representing the input feature
maps, and ⊙ denoting matrix multiplication,

Attention = Value(x)⊙ [Query(x)
T ⊙Key(x)]T (4)

Our space-time Fourier attention method proceeds as follows. The first step
is to obtain a representation equivalent to the key-query computation, termed
Fourier sub-attention. Fouurier sub-attention is motivated by autocorrelaton,
which is the correlation coefficient between different parts of the same signal. We
define Fourier sub-attention as the element-wise product of the Fourier transform
of feature maps with the conjugate transpose of the Fourier transform of these
feature maps (Equation 6). To compute this space-time Fourier sub-attention,
we reshape the video feature maps f to a 3D representation C × T ′ × (HW ),
which are transformed to the frequency domain via 2D Fourier transform along
the space and time axes as follows:

FST (f)(m,n) =
∑
h,w

f(c, t, h, w)e−2πmh/Me−2πnw/N . (5)

computed efficiently using the FFT algorithm [24]. FFT is a representation of
the signal as a whole at a wide spectrum of frequencies, and enables inherent
and exhaustive global mixing between various spatial and temporal regions of
the video. The space-time Fourier sub-attention AST in the Fourier domain is
simply the element wise multiplication between FST and its complex conjugate
FST

∗:
AST = FST ×FST

∗ (6)

Next, we compute the inverse FFT (IF) of AST to obtain the correlations in the
time domain, and reshape to C × T ′ ×H ′ ×W ′. These sub-attention “weights”
are then used in a dot product (or element wise multiplication) with the input
feature maps f to compute the final space-time Fourier attention maps fFA. A
scaling factor λFA, chosen empirically to be 0.01, scales these Fourier attention
maps, which are then sum-fused with the input feature maps. Mathematically,

fFA = F + λFA × IF(AST ), (7)

Time complexity: Traditional self-attention [69] requires the model to perform
two matrix multiplications. In the first matrix multiplication of self attention,
we multiply the query matrix (THW×C) with the key matrix (C×THW ). The
time complexity is O(C × THW × THW ). In the second matrix multiplication,
we multiply the value matrix (C ×HWT ) with the attention matrix (HWT ×
HWT ). The complexity of this stage is O(C×HWT×HWT ). Hence, the overall
time complexity of space-time self-attention [5] is O(HWT ×HWT × C).
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In contrast, our Fourier attention solves the problem via one 2D FFT and one
2D iFFT. 2D FFT is computed on a matrix of dimensions HW ×T . The number
of 2D FFTs that need to be computed is equal to the number of channels (C).
Hence, the complexity is O(C ×HWTlog(HWT )). The complexity of 2D FFT
and 2D iFFT are the same. Therefore, the overall time complexity of Fourier
attention is O(C × HWTog(HWT )). Clearly, Fourier attention is much more
efficient than self attention. In terms of accuracy, space-time Fourier attention
is comparable to space-time self-attention [5].

3.3 Mathematical Analysis

Lemma 1. Given an input matrix A, Fourier attention as well self-attention
[69,5] encapsulate long-range relationships for global mixing by computing outer
products.

Proof: We refer the reader to the supplementary material for the detailed proof.
We present a concise version here. Without loss of generality, let [aij ] denote
the elements of a square matrix A (with dimensions N) in 2D. f , g, h represent
1× 1 convolutions for key, query, value computations in self-attention. The self-
attention matrix Smn is:

Smn =

N∑
l=1

haml

N∑
k=1

[galk × fakn] (8)

Fourier attention Fmn is:

Fmn =

N∑
b=1

N∑
c=1

hmn(b,c)︷ ︸︸ ︷
exp(−2πmc/N) exp(−2πnb/N) amn×

{
N∑
j=1

N∑
i=1

exp(−2πj(b−c)/N)︸ ︷︷ ︸
fmn(b,c)

aij × exp(−2πi(c−b)/N)︸ ︷︷ ︸
gmn(b,c)

aij} (9)

f , g, h in Equation 10 are 1 × 1 convolutions, and that the exponential
terms span the entire spectrum of frequencies lets us define f , g, h for Fourier
attention as shown in Equation 11. Thus, the equation for Fourier attention can
be simplified as:

Fmn =

N∑
b=1

N∑
c=1

hmn(b, c)amn × {
N∑
j=1

N∑
i=1

fmn(b, c)aij × gmn(b, c)aij}

In self-attention, f,g,h are learnable. In contrast, in Fourier attention, f,g,h are
pre-defined by the Fourier spectrum. Nonetheless, they exhaustively cover the
Fourier spectrum. Moreover, the terms involved and the structure of computa-
tions (multiplications followed by summation) in Equations 10 and 12 are similar,
both promote global mixing and encapsulate long-range relationships.
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4 FAR: Activity Recognition in UAVs

We present FAR, a network for video action recognition in UAVs (Figure 1).
FAR samples 8-16 frames from the input video by using randomly initialized
uniform sampling, described in Section 4.1. These frames are passed through
the first few layers of the 3D backbone network (or encoder) to generate feature
maps f . These features contain entangled object and background information
along the space-time dimensions. The choice of this intermediate layer in the
backbone network that extracts feature maps f is a careful trade-off between
the spatial-temporal resolutions needed for FAR to work well and the amount of
knowledge contained in the networks’ layers. We describe this choice in detail in
this section, as well as present ablation experiments in 5.3 to justify our choice.

The Fourier Object Disentanglement module (Section 3.1), and the Fourier
Space-Time Attention module (Section 3.2) act on f , in parallel, to generate
fFO and fFA, respectively. fFO and fFA are sum fused and passed through the
remaining layers of the neural network to generate the final action classification
probability distribution, used in a multi-class cross entropy loss term with the
ground-truth label for back-propagation.
Incorporating FO within the 3D backbone: Typically, to encapsulate tem-
poral movement at each spatial location, we need to ensure that the spatial
temporal dimensions of the feature map is not too small. Thus, it is useful to
perform this operation using mid-level features (output from the middle layer
of the network, as shown in Figure 1) that strike a fine balance between generic
features that capture context, and focused high level features (at output layer).
Incorporating FA within the 3D backbone: After FO, the network does
not contain any background signal. Hence, Fourier attention needs to be applied
either before FO or in parallel with FO. FO is applied on mid-level features.
Applying FA at a high level is not very effective because the extracted features
do not have sufficient information. Hence we apply FA on the mid-level features
as well, in parallel with the Fourier object disentanglement module.

4.1 Randomly Initialized Uniform Sampling

It is computationally expensive to use all the frames in a video. In traditional
uniform sampling, T frames are sampled at uniform intervals. The standard way
of uniform sampling under-utilizes [80,37] the knowledge that can be gained from
the original video, which adds to the pre-existing issue of limited data. We use a
variation of uniform sampling to improve the variance of the network and hence
boost accuracy. First, we compute the step size as the ratio of total number
of frames in the video and number of frames that we desire to sample. Next,
we generate a random number between 0 and step size, and correspondingly
designate the first frame to be sampled. This is followed by uniformly sampling
video frames at step size intervals from the designated first frame.

5 Experiments and Results

We will make all code and trained models publicly available.
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5.1 Datasets

In this section, we briefly describe the UAV datasets used for evaluating FAR.
UAV Human RGB [43] is the largest UAV-based human behavior under-
standing dataset. Split 1 contains 15172 and 5556 images for training and testing
respectively captured under various adversities including illumination, time of
day, weathers, etc. UAV Human Night Camera [43] contains videos simi-
lar to UAV Human RGB captured using a night-vision camera. The night vision
camera captures videos in color mode in the daytime, and grey-scale mode in the
nighttime.Drone Action [52] is an outdoor drone video dataset captured using
a free flying drone. It has 240 HD RGB videos across 13 human actions. NEC
Drone [13] is an indoor UAV video dataset with 16 human actions, performed
by human subjects in an unconstrained manner.

5.2 Implementation Details

Backbone network architecture: We benchmark our models using two state-
of-the-art video recognition backbone architectures (i) I3D [7] (CVPR 2017) (ii)
X3D-M [21] (CVPR 2020). For both X3D and I3D, we extract mid-level features
after the second layer.
Training details: Our models were trained using NVIDIA GeForce 1080 Ti
GPUs, and NVIDIA RTX A5000 GPUs. Initial learning rates were {0.01, and
0.001} across datasets. We use the Stochastic Gradient Descent (SGD) optimizer
with weight decay of 0.0005 and momentum of 0.9, and cosine/ poly annealing
for learning rate decay. The final softmax predictions of all our models were
constrained using multi-class cross entropy loss.
Evaluation: We report top-1 and top-5 accuracies.

Table 1: Results on UAV Human RGB. Table (a): FAR can be embedded within
any 3D action recognition backbone to achieve state-of-the-art performance. Pretrain-
ing with Kinetics boosts performance, and large input sizes work better since FA and
FO are designed to capture global, as well as local knowledge. FAR imparts improve-
ments of 2.20%-38.69% over 3D action recognition backbones across training configu-
rations. Table (b) - Ablation experiments: We demonstrate that each component
of FAR imparts substantial improvement in top-1 accuracy by upto 8%.

Backbone FAR Frames Input Size Init. Top-1 Top-5

(i) I3D ✗ 8 540 × 960 Kinetics 21.06 40.81
(ii) I3D ✓ 8 540 × 960 Kinetics 29.21 50.27

(iii) X3D-M ✗ 16 224 × 224 None 27.0 44.2
(iv) X3D-M ✓ 16 224 × 224 None 27.6 44.1

(v) X3D-M ✗ 16 224 × 224 Kinetics 30.6 50.3
(vi) X3D-M ✓ 16 224 × 224 Kinetics 31.9 50.3

(vii) X3D-M ✗ 8 540 × 540 Kinetics 36.6 57.1
(viii) X3D-M ✓ 8 540 × 540 Kinetics 38.6 59.2

(a)

FO FA Sampling Top-1

✗ ✗ ✗ 21.06
✓ ✗ ✗ 25.89
✗ ✓ ✗ 24.15
✓ ✓ ✗ 27.00
✓ ✓ ✓ 29.21

(b)
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Drink Before FO After FO Dig a hole Before FO After FO Shake hand Before FO After FO

Left turn Before FO After FO Punch Before FO After FO Rmv. coat Before FO After FO

Fig. 2: Qualitative results on UAV Human RGB. We show the effect of our
Fourier Object Disentanglement (FO) method. In each sample, the images, in order,
correspond to a frame from the video, feature representation before disentanglement
and the feature representation after disentanglement respectively. Notice the effective-
ness of FO in scenes with light noise (Row 1 Image 2, Row 2 Image 3), dim light (Row
1 Image 2), dynamic camera and dynamic background (Row 1 Image 1). Regions of
the scene corresponding to moving human actor (or salient dynamic) are amplified
most (solid yellow). Static background is completely suppressed (solid purple). Static
salient regions are slightly amplified (e.g. lower body of human actor in Row 2 Image
3 - yellow), and dynamic backgrounds are suppressed to a great extent (pale yellow in
Row 1 Image 1). We show more results in the supplementary material.

5.3 Main Results: UAV Human RGB

Benchmarking FAR FAR can be embedded within any 3D action recognition
backbone to achieve state-of-the-art performance. In Table 1a, we show results on
UAVHuman RGB at different frame rates, input sizes, backbone network archi-
tectures and pre-trained weights initialization. In experiment (i) and (ii), we use
the I3D backbone, and initialize the network with pretrained Kinetics weights.
Spatially, we downsample the input video by a factor of 2, and sample 8 frames
per video. This configuration gives the network full access to the spatial por-
tions of the video at every stage of training and testing. FAR imparts a relative
improvement of 38.69% and 23.18% in top-1 and top-5 accuracy, respectively.

In the subsequent experiments, we use X3D-M, as the backbone. Many vision-
based papers crop the original video into small patches of resolution 224×224. We
explore this in experiments (iii)-(vi) under two settings: without initializing with
Kinetics pretrained weights, and by initializing with Kinetics pretrained weights.
Concurrent with our intuition, initializing with Kinetics pretrained weights re-
sults in better performance than without initializing with Kinetics pretrained
weights. In both cases, with small crop siz, FAR improves performance over the
corresponding baselines by 2.2%− 4.24%. At a resolution of 224× 224, there is
a slight decrease in Top-5 accuracy (0.1%).

Video action recognition is a global level task. Hence, it is important for
the network to see a larger spatial region of the video to understand context,
and get a better view of the human actor. Moreover, since the design of FAR
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Fig. 3: FAR converges much faster than the state-of-the-art action recogni-
tion method X3D-M [21]. In the left curve, we show the top-1 train accuracy as a
function of the networks’ training iterations. In the right figure, we plot the training
loss curve. We demonstrate that FAR imparts convergence benefits over prior work,
under the same hyperparameter and GPU configurations.

is specifically inspired of challenges pertaining to object background separation,
and context encoding, the margin of improvement imparted by FAR to the back-
bone architecture is larger when the crop size is higher. At a crop size of 540×540,
FAR improves top-1 and top-5 accuracies by 5.46% and 3.67% respectively, over
the corresponding baselines.

Table 2: Comparisons with state-of-the-art self-attention based transformer
methods on UAV Human. We initialize all our models with Kinetics pre-trained
weights. We observe higher accuracy and computational benefits (up to 3x) with FAR.

Method Param Top-1 FLOPs GPU Inference
M % GFlops/video GB/video Time (sec)/video

I. Baseline non-attention models

X3D-M 3.8 36.6 14.39 3 0.08
I3D-M 12 21.06 346.55 10 0.1

II. Comparisons with the state-of-the-art Fourier-based method

I3D + FNet [40] (2021) 12 24.39 346.56 10 0.1
I3D + FAR (Ours) 12 29.21 346.6 10 0.2

III. Comparison with the state-of-the-art efficient-attention method

I3D + Efficient Attention [61] (WACV 2021) 12 21.13 462 13.3 0.12
I3D + Fourier Attention (Ours) 12 24.15 346.57 10 0.19

IV. Comparisons with the state-of-the-art self-attention based transformer methods

ViT-B-TimeSformer (ICML 2021) [5] 121.4 33.9 2380 32 0.27
MVIT (ICCV 2021) [20] 36.6 24.3 70.8 9 0.16
X3D-M + FAR (Ours) 3.8 38.6 14.41 3 0.09

Ablation Experiments FAR ablations. We present ablation experiments on
the components of FAR in Table 1b. We use the I3D backbone [7], and sample
8 frames per video. We initialize with Kinetics pretrained weights, and spatially
downsample (and then feed in the entire frame) the video by a factor of 2. In
the first four experiments, we uniformly sample 8 frames from frame 0. The first
row is the baseline experiment with neither Fourier object disentanglement nor
Fourier attention. We observe in the experiment corresponding to Row 2 that
object disentanglement improves performance by 22.9% over the baseline. FO
is a high pass filter (L2). The usage of a linear (L1) high pass filter results in
an accuracy of 25.56%. Thus, we used the L2 high-pass filter as it results in a
higher accuracy. Next, we determine the importance of context and long-range
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space-time relationships by using only Fourier attention, and demonstrate an
improvement of 14.67% in Row 3.

FO and FA complement each other - the former disentangles object from
the background, while the latter decodes contextual information and inter-pixel,
inter-frame relations. Using FO and FA in parallel, and sum-fusing the resultant
feature maps cumulatively improves performance by 28.2% over the baseline.
Finally, we incorporate the sampling scheme, vis-a-vis, randomly initialized uni-
form sampling along with FO and FA. This results in a final accuracy of 29.21%,
38.69% over the baseline.
FA ablations. We conduct ablation experiments on our proposed Fourier At-
tention (FA). We use the I3D backbone, and a video resolution of 540×960×8. In
all these experiments, FO is applied on level 2. In the first experiment, we extend
FA to channels [25] in addition to space-time, at level 2, the accuracy is 26.48.
In the second experiment, we apply channel FA at level 4 [25] while retaining
space-time FA at level 2, the accuracy further degrades to 25.77. In contrast, the
accuracy with space-time Fourier attention is 27.00. Thus, we find that global
mixing at channel level does not contribute to improvement in performance.

Next, we explore the notion of multi-level FA, where FA is applied at multiple
levels and not just level 2, the accuracy is 29.16. In contrast, FAR’s accuracy
is 29.21. Our conclusion is that FA extracts knowledge prerequisite to learning
long-range space-time relationships at level 2, to its maximum capacity, and
applying it at more layers is redundant.

State-of-the-art comparisons We report state-of-the-art comparisons in Ta-
ble 2. For all our experiments, we set the temporal and spatial resolutions at 8
frames and upto 540 (short side) respectively. We establish the baseline accura-
cies using non-attention networks vis-a-vis, I3D [7] and X3D [21], in experiment
I.
Comparisons with FNet. In Table 2 experiment II, we report the accuracy
using FNet, which is the state-of-the-art Fourier transform based self-attention
method. FNet naively replaces every self-attention layer with the Fourier trans-
form of the feature maps at that level. The motivation is to ”mix” different
parts of the feature representation and thus gain global information. Originally
designed for NLP, it achieves 92 − 97% of the accuracy of BERT counterparts
on the GLUE counterparts. However, when applied to video activity recognition
on UAV Human RGB with the I3D backbone, we find that the accuracy is just
24.39%. In contrast, with the same backbone and hyperparameter settings, we
demonstrate that FAR achieves 29.21%, an improvement of 19.76%.
Comparisons with efficient attention methods. We compare with the cur-
rent state-of-the-art efficient attention method [61] in experiment III. For fair
comparisons, we use the I3D backbone in both cases, at a video resolution of
540 × 960 × 8. We demonstrate better accuracies with our Fourier Attention
formulation at lower FLOPs and GPU memory.
Comparisons with transformer/self-attention methods.We compare against
self-attention based transformer methods in Table 2. Specifically, we compare
against (i) TimesFormer [5] (ICML 2021) - a self-attention video recognition
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method based on joint space-time self attention, and (ii) MViT (ICCV 2021) -
a transformer based method that combines multi-scale feature hierarchies. We
demonstrate much better performance at lower number of FLOPs, GPU mem-
ory and inference time. Another benefit is that FAR does not add any new
parameters to the neural network and uses the same number of parameters as
its backbone network. In contrast, MVIT and TimeSformer use much higher
number of parameters.

Table 3: Results on more UAV datasets. We demonstrate that FAR improves the
state-of-the-art accuracy by 8.02%-17.61% across popular UAV datasets.

Method Frames Input Size Init. Top-1

(i) Dataset: UAV Human Night [43]

I3D [7] 8 480 × 640 Kinetics 28.72
FAR 8 480 × 640 Kinetics 33.78

(ii) Dataset: Drone Action [52]

HLPF [34] All 1920 × 1080 None 64.36
PCNN [9] - 1920 × 1080 None 75.92

X3D-M [21] 16 224 × 224 Kinetics 83.4
FAR 16 224 × 224 Kinetics 92.7

(iii) NEC Drone [13]

X3D-M [21] 8 960 × 540 Kinetics 66.15
FAR 8 960 × 540 Kinetics 71.46

5.4 Results: More UAV Datasets

We demonstrate the effectiveness of FAR on multiple UAV benchmarks in Table
3. We demonstrate that FAR outperforms prior work by 17.61%, 11.15% and
8.02% on UAV Human Night, Drone Action, and NEC Drone respectively.

6 Conclusions, Limitations and Future Work

We present a new method for UAV Video Action Recognition. Our method
exploits the mathematical properties of Fourier transform to automatically dis-
entangle object from the background, and to encode long-range space-time re-
lationships in a computationally efficient manner. We demonstrate benefits in
terms of accuracy, computational complexity and training time on multiple UAV
datasets. Our method has a few limitations. The sampling strategy based on
randomly initialization is a naive method to span all video frames. It might
be interesting to explore the usage of better video sampling strategies [80,37].
Next, we assume that the input videos contain only one human agent performing
action. Multi-action videos could be a potential extension of our method. More-
over, we believe that FAR can be extended to other tasks such as video object
segmentation and video generation, front-camera action recognition, graphics
and rendering [45,47].
Acknowledgements: We thank Rohan Chandra for reviewing the paper. This
research has been supported by ARO Grants W911NF1910069, W911NF2110026
and Army Cooperative Agreement W911NF2120076.
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A. Appendix

A.1. Datasets

We describe the UAV datasets used for evaluating FAR.

UAV Human RGB [43]: UAV Human is the largest UAV-based human behav-
ior understanding dataset. Split 1 contains 15172 and 5556 images for training
and testing respectively. This challenging dataset covers human actions cap-
tured under varying illumination, time of day (daytime, nighttime), different
subjects and backgrounds, weathers, occlusions, etc, across 155 diverse human
actions. UAV Human RGB is collected by drones with an Azure Kinect DK
camera. The videos are of resolution 1920 × 1080. The dataset is available at
https://sutdcv.github.io/uav-human-web/.

UAV Human Night Camera [43]: UAV Human Night Camera contains videos
similar to UAV Human RGB captured using a night-vision camera. The night
vision camera captures videos in color mode in the daytime, and grey-scale mode
in the nighttime. The resolution of the videos is 640×480. The dataset is available
at https://sutdcv.github.io/uav-human-web/.

Drone Action [52]: Drone Action is an outdoor drone video dataset captured
using a free flying drone. It has 240 HD RGB videos with 66919 frames, across 13
human actions. The dataset is available at https://asankagp.github.io/droneaction/.

NEC Drone [13]: NEC Drone dataset is an indoor UAV video dataset with
16 human actions captured by a DJI Phantom 4.0 pro v2 drone, performed by
human subjects in an unconstrained manner. The dataset contains 2079 labeled
videos at a resolution of 1920×1080. It has 10 single person actions such as walk,
run, jump, etc, and 6 two person actions such as shake hands, push a person,
etc. The dataset is available at https://www.nec-labs.com/ mas/NEC-Drone/.

A.2. Implementation Details

In the interest of reproducibility, we will make all code and pretrained models
publicly available upon acceptance of the paper. We also attach the codes used
in our experiments with the supplementary zip folder submitted for review.

Backbone network architecture: We benchmark our models using two state-of-
the-art video recognition backbone architectures (i) I3D [7] (CVPR 2017) (ii)
X3D-M [21] (CVPR 2020). I3D is a 3D inflated CNN, based on 2D CNN inflation,
and enables the learning of spatial-temporal features. X3D is also a 3D inflated
CNN, and progressively expands a 2D CNN along multiple network axes such
as space, time, width and depth. For both X3D and I3D, we extract mid-level
features after the second layer.
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Training details: Our models were trained using NVIDIA GeForce 1080 Ti
GPUs, and NVIDIA RTX A5000 GPUs. Initial learning rates were {0.01, and
0.001} across datasets. We use cosine annealing and poly annealing for learning
rate decay in X3D and I3D respectively, We use the Stochastic Gradient Descent
(SGD) optimizer with weight decay of 0.0005 and momentum of 0.9, and cosine/
poly annealing for learning rate decay. The final softmax predictions of all our
models were constrained using multi-class cross entropy loss.

A.3. Fourier Disentanglement

Videos depicting human action have four types of entities: moving salient regions
(typically corresponding to moving object), static salient regions (typically cor-
responding to static object), moving non-salient regions (typically corresponding
to dynamic background), and static non-salient regions (typically corresponding
to static background). Robust action recognition systems should learn features
that heavily amplify moving objects, followed by static objects (that provide
contextual cues and are relevant to the prediction). This should be followed by
background entities. According to our formulation, dynamic salient regions are
amplified the most. This is because the Fourier mask highlights dynamic regions,
and the features learnt by the network have a higher amplitude at the salient
regions. Static non-salient regions are at the other end of the spectrum because
the Fourier mask suppresses these regions, as well as the features learnt by the
network have a lower amplitude at the non-salient regions. Static-salient and
dynamic salient regions lie at the middle of the spectrum. The final equation
for Fourier disentanglement uses the l2 operation in the computation of MFO

and linear application of f . This implies that static salient regions have a higher
amplitude than the dynamic non-salient regions. Thus, the ordering of ampli-
tudes that is formed as: dynamic-salient > static-salient > dynamic-non-salient
> static-non-salient, in concordance with the relevance for decision making for
action recognition. Thus, static as well as dynamic background regions have lower
amplitudes than static and dynamic regions of the object executing action.

In addition, the video may contain noise (light noise or otherwise) and camera
movement. In regions of the video where there is noise, the amplitude of the
feature map depicting saliency will be low. Hence, noise gets suppressed. Any
movement of non-salient pixels due to camera motion gets suppressed since they
are a part of dynamic non-salient regions. Moreover, camera motion is generally
uniform across the spatial dimensions of the video (covering salient as well as
non-salient regions). Thus, it doesn’t impact the decision making ability of the
aerial video recognition system.
Comparisons with motion-based methods. Motion-based methods either
model spatial and temporal information separately using two-stream 2D CNNs
[39] or use motion representation as an auxiliary guiding factor to 3D CNNs.
The latter is very expensive [54]. In contrast, we jointly model space and time
using a 3D backbone, and then disentangle the moving human actor from the
background using FO. Prior work has demonstrated the superiority [22,21] of
3D CNNs over two-stream 2D CNNs. FO imparts a relative improvement of
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22.93% over the 3D I3D backbone and can be used with any 3D CNN to achieve
state-of-the-art performance.

A.4. Fourier Attention

Lemma 2. Given an input matrix A, Fourier attention as well self-attention
[69,5] encapsulate long-range relationships for global mixing by computing outer
products.

Proof Self-attention: Without loss of generality, let [aij ] denote the elements
of a square matrix A (with dimensions N) in 2D. f , g, h represent 1 × 1 con-
volutions for key, query, value computations in self-attention. Hence, key, query
and value vectors are [faij ], [gaij ] and [haij ] respectively. The first step of self-
attention is the computation of sub-attention, which is the matrix multiplication
of the transpose of query with key, which is [gaij ]

T ⊙ [faij ], which is equal to∑N
i=1 gami × fain. The next step is the computation of self-attention, which is

the matrix multiplication of the value vector with the transpose of sub-attention,
which is equal to [haij ]⊙

∑N
k=1 galk×fakn. Hence, the self-attention matrix Smn

is:

Smn =

N∑
l=1

haml

N∑
k=1

[galk × fakn] (10)

Fourier-attention: Without loss of generality, let [aij ] denote the elements
of a square matrix A (with dimensions N) in 2D. The Fourier transform is∑N

i=1

∑N
j=1 exp(−2πmi/N) exp(−2πnj/N). Multiplication of the Fourier trans-

form with its conjugate transpose, and inverse FFT gives us

N∑
b=1

N∑
c=1

exp(−2πmc/N−2πnb/N)amn×{
N∑
j=1

N∑
i=1

exp(−2πj(b−c)/N−2πi(c−b)/N)a2ij}

. Finally, weighted multiplication of the above term with [aij ] and a careful
rearrangement of the terms involved leads us to the final expression for Fourier
attention. Fourier attention Fmn is:

Fmn =

N∑
b=1

N∑
c=1

hmn(b,c)︷ ︸︸ ︷
exp(−2πmc/N) exp(−2πnb/N) amn×

{
N∑
j=1

N∑
i=1

exp(−2πj(b−c)/N)︸ ︷︷ ︸
fmn(b,c)

aij × exp(−2πi(c−b)/N)︸ ︷︷ ︸
gmn(b,c)

aij} (11)

f , g, h in Equation 10 are 1 × 1 convolutions, and that the exponential
terms span the entire spectrum of frequencies lets us define f , g, h for Fourier
attention as shown in Equation 11. Thus, the equation for Fourier attention can
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be simplified as:

Fmn =

N∑
b=1

N∑
c=1

hmn(b, c)amn×

{
N∑
j=1

N∑
i=1

fmn(b, c)aij × gmn(b, c)aij} (12)

In self-attention, f,g,h are learnable. In contrast, in Fourier attention, f,g,h are
pre-defined by the Fourier spectrum. Nonetheless, they exhaustively cover the
Fourier spectrum. Moreover, the terms involved and the structure of computa-
tions (multiplications followed by summation) in Equations 10 and 12 are similar,
both promote global mixing and encapsulate long-range relationships.

6.1 A.5. Future Work: Extension to Multi-Agent Systems

We mainly focus on popular UAV datasets that consist of single human agent
performing an action to validate our Fourier object disentanglement (FO) method.
We plan to extend our method to multi-agent systems as a part of future work.
Our formulation of FO should work for multi-agent systems. Corresponding to
the regions with multiple human actors (which are all dynamic salient regions),
the value of FFO will be high, the equations described in Section 3 for FO will
remain unchanged. Thus, FO can disentangle multiple human actors in the scene
without any external bounding boxes. This is because the formulation based on
frequency of pixels and saliency activations highlights any region (even for mul-
tiple actors) in the video that has salient dynamic objects i.e. actors performing
action. This is done intrinsically, within the computation of the networks’ feature
maps.

For multi-agent systems, the system needs to (spatially) localize the hu-
man actor, in addition to classifying the action of each actor. To do this, action
localization systems [82] such as typically setup an object detection-like pipeline
with bounding boxes regressors and classifiers. Just as our FO method can be
embedded within any 3D backbone (such as SlowFast or [82] or I3D or X3D)
for improved action classification (Section 5.3), our FO method can also be em-
bedded within any 3D backbone for improved action localization. The region
highlights inferred by FO corresponding to pixels with multiple human actors
will help the downstream bounding box regression as well as classification mod-
ules perform better in multi-agent scenes.
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rear rt.turn Before FO After FO chaseHumn Before FO After FO Drink toast Before FO After FO

Dig a hole Before FO After FO Kick aside Before FO After FO Move left Before FO After FO

Fig. 4: Qualitative results on UAV Human RGB. We show the effect of our
Fourier Object Disentanglement (FO) method. In each sample, the images, in order,
correspond to a frame from the video, feature representation before disentanglement
and the feature representation after disentanglement respectively. Notice the effec-
tiveness of FO in scenes with light noise, dim light, dynamic camera and dynamic
background. Regions of the scene corresponding to moving human actor (or salient dy-
namic) are amplified most (solid yellow). Static background is completely suppressed
(solid purple). Static salient regions are slightly amplified, and dynamic backgrounds
are suppressed to a great extent. We show videos depicting various complexities along
with the predictions in the video file attached with the supplementary.
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(a) Predicted: Drop
something
GT: Put hands on
hips

(b) Predicted: Open
the bottle
GT: Decelerate

(c) Predicted: Punch
with fists
GT: Cheer

(d) Predicted: Push-
ing someone
GT: Rob something
from someone

(e) Predicted: Smoke

GT: Apply cream to
hands

(f) Predicted: Play
with cell phones
GT: Applaud

(g) Predicted: Blow
nose
GT: Throw litter

(h) Predicted: Ap-
plaud
GT: Cross palms to-
gether

Fig. 5: Failure cases on UAV Human RGB. We show frames from UAV
Human RGB videos where FAR predicts the wrong class. In many cases, we
observe that the predicted class has pixel level interactions similar to the ground
truth. For instance, in case (d), both, predicted class and GT are two-person
actions, and entail one person harming the other. Similarly, in video (h), both
actions involve interaction between the two hands of a person. In video (a),
both actions correspond to a human standing straight with hands at hip level. It
would be interesting to explore learning distinguishable feature representations
for the 155 classes as a part of future work.
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