
Imitative Planning using Conditional Normalizing
Flow

Shubhankar Agarwal1∗, Harshit Sikchi2∗, Cole Gulino∗, Eric Wilkinson∗ and Shivam Gautam3∗

Abstract—A popular way to plan trajectories in dynamic urban
scenarios for Autonomous Vehicles is to rely on explicitly specified
and hand crafted cost functions, coupled with random sampling
in the trajectory space to find the minimum cost trajectory. Such
methods require a high number of samples to find a low-cost
trajectory and might end up with a highly suboptimal trajectory
given the planning time budget. We explore the application of
normalizing flows for improving the performance of trajectory
planning for autonomous vehicles (AVs). Our key insight is to
learn a sampling policy in a low-dimensional latent space of
expert-like trajectories, out of which the best sample is selected
for execution. By modeling the trajectory planner’s cost manifold
as an energy function, we learn a scene conditioned mapping
from the prior to a Boltzmann distribution over the AV control
space. Finally, we demonstrate the effectiveness of our approach
on real-world datasets over IL and hand-constructed trajectory
sampling techniques.

I. INTRODUCTION

Generating a control trajectory which provides safe, com-
fortable, and socially responsible motion is a fundamental
problem for operating autonomous vehicles (AVs). Since high
quality human driving data is easily available, imitative models
which learn to mimic expert demonstrations are a popular
approach [1]. End-to-end imitation learning (IL) approaches
are attractive because they allow for a mapping to be learned
between high dimensional context features, such as sensor and
map data, and the control space of the vehicle platform.

However, these IL approaches have several limitations
which make their use in practice difficult. The first is that
for every scene there is only one label, since the expert
only provided one demonstration, and it is unclear how to
properly penalize deviations from the demonstration. This is
the commonly known distribution shift problem [2], and a
lack of an accurate simulator precludes us from correcting
the distribution shift. The second is that the internal belief
state of the expert is not available which means the AV is
unlikely to learn the correct response to it’s own aleatoric
and epistemic uncertainties about a road scene. Finally, AV
operation typically requires high confidence in the safety
outcomes of a control trajectory, which typically necessitates
a whitebox costing module to certify the IL method’s output.

In this work, we propose a method to address these problem
by treating the whitebox costing module as an energy based
model and learning a sampling policy that minimizes a certain

*Work done while at Aurora Innovation.
1Department of Electrical and Computer Engineering, The University

of Texas at Austin, 2Department of Computer Science, The University of
Texas at Austin, 3 Aurora Innovation {somi.agarwal, hsikchi,
}@utexas.edu

f -divergence to it. Furthermore, we restrict the policy actions
to a lower dimensional latent space, which is trained to encode
trajectories obtained from the expert demonstrations. White-
box planners ingest interpretable representations of the scene,
which enables the enforcement of strong conditions on safety,
and can reason about the uncertainties of the AV system.
Additionally, in contrast to a single expert demonstration, the
cost manifold provides information about how to penalize
deviations from the optima. Thus, instead of learning the
PDF of the expert given a scene the proposed method learns
a density function which corresponds to the planner’s cost
manifold. Specifically, we used normalizing flows to learn the
density function, because of their ability to learn complicated
multimodal distributions.

Our approach builds upon normalizing flows which are
capable of representing complex, multimodal manifolds from
a known prior distribution and supports efficient, parallel
sampling. First, we use a variational autoencoder to learn a
representative subspace of the control trajectory space from
all expert driving demonstrations. Samples from this encoding
space generate control trajectories which behave stylistically
the same as the expert, or encode trajectories that are kine-
matically similar to expert. Then we learn a normalizing
flow mapping from the prior distribution to a Boltzmann
distribution in the control trajectory encoding space using
the cost manifold as an energy function. We propose using
neural autoregressive flow (NAF) [3] for this flow mapping
because of it’s ability to learn complicated multimodal target
distribution, while performing accurate PDF inference. We
train our method following the inverse autoregressive flow
(IAF) [4] which allows for efficient control trajectory sample
generation using parallel transformations. Subsequently, we
will refer to our method as FlowPlan.

The main contributions of this work are:
• An efficient method to generate trajectories for autonomous

driving by learning a sampling policy in a scene-conditioned
low-dimensional latent space representative of expert driving
demonstrations.

• We demonstrate the utility of normalizing flow by taking
advantage of the exact pdf inference to further refine our
generated trajectories without the whitebox costing module.
As a by-product of our sampling policy we can efficiently
generate scores (log probs) of the sampled trajectories
without the whitebox costing module.

• We demonstrate the benefits of our approach over hand
constructed, parametric sampling strategies on real world
datasets.

II. RELATED WORK

Trajectory sampling techniques for planning attempt to
construct trajectories from structured, parametric representa-
tions which are likely to solve the SDV’s planning problem.
One common method used for in-lane driving is to construct
samples within a Frenet frame around a nominal path as ex-
plored by [5] with traffic-adaptive velocity profiles for highway
driving. A review encompassing these approaches including
clothoid, bezier, and polynomial representations can be found
in [6]. In contrast to our approach, these methods typically
involve hand crafting strategies for adapting the parameters of
the trajectory representation to the planning problem.

Variational methods which perform continuous optimiza-
tion in a function space are typically solved with iterative
strategies such as DDP [7] or iLQR [8]. These methods can
only represent a small subset of the real world problems,
i.e. convex problems or quadratic in case of iLQR, while
most of the self-driving problems are non-convex. A survey
of this class of approaches can be found in [9]. Our work
complements these methods since we present a data-driven
framework for planning without placing any assumptions on
convexity of the problem.

Imitation Learning Methods Learning-based approaches
have recently gained momentum in generating motion trajec-
tories, Imitation Learning (IL) being one of the most popular
approach. In IL, expert demonstrations are used to learn the
desired behavior or driving policy, [10] being one of the
first successful demonstration. Since then, significant progress
has been made to accomplish more complex maneuvers and
scenarios, in [11], [12]. But, these approaches are not able to
generalize outside the expert demonstrations as shown in [13].
[1] and [14], address generalization outside expert demon-
strations by doing closed-loop training and adding different
goal functions to guide imitation policy respectively. While
these IL approaches alleviate the need for hand-tuning cost
functions, they suffer from compounding errors due to auto-
regressive nature and provide very little or no interpretabil-
ity.Prior work has also explored using normalizing flows for
learning a density function over trajectories. [15] combine a
conditional normalizing flow model with VAE to learn an
invertible density model for trajectory sampling from expert
demonstration. [16] investigate conditional VAEs with end-
point conditioning to accomplish goal-directed sampling along
with a social pooling layer for capturing interaction. Our work
is distinct from these are we leverage a whitebox cost function
to generate reliable and compliant trajectories while using
expert driving behaviors as composable skills.

Inverse Reinforcement Learning Inverse Reinforcement
Learning (IRL) based approaches have been used to learn
the motion planning cost functions (alternatively reward func-
tions), removing the need for hand constructing cost functions
for autonomous driving. IRL’s early application in autonomous
driving stems from [17]. Since then, IRL has been used
for motion planning in [18], [19] and [20]. Most of these
approaches use IRL to make discrete decisions (pass, yield,

etc.) and operate in very specific simulated scenarios with
significantly smaller feature space than the real world. IRL
methods like [21], [22] require access to a simulator for
extracting the cost functions. Since it is infeasible to let the AV
explore in the real world, the use of a simulator is required, and
simulator inaccuracy can further lead to sim-to-real transfer
issues.

III. BACKGROUND

A. Motion Planning Problem

The purpose of the planner is to provide safe, comfortable
motion for an autonomous vehicle constrained by dynamic
and kinematic feasibility, partial observability, and user expe-
rience preferences. This is accomplished by formulating the
problem as a partially observable Markov decision process
(POMDP) which is optimized over a finite time horizon T .
In this work the POMDP model is defined by the tuple
⟨S,A,O, T ,Z, C, b⟩ where S is the state space of the scene,
A is the action space, O is the observation space, and
T (s′|s, a) is the probabilistic transition function from state
s to s′ when taking action a. The belief state bt(s) is a
probability distribution over the scene states s ∈ S which
the AV maintains from the history of observations and actions
ht = (o0, a0, o1, a1, . . . , ot−1, at−1) and the initial belief state
b0. The observation and transition models allow for the belief
state to be updated through Bayes rule. Z is the partition
function. C is the cost function, specifically for taking an action
a at state s given belief state b under policy π. A complete
description of POMDPs can be found in [23].

In this work the policy π is a stochastic mapping B → AT

from belief space to the action sequence of horizon T. We for-
mulate the planner cost as an energy based model [24] which
define a Boltzmann distribution using exponentiated cost func-
tions i.e π(a|b) ∝

∏T−2
t=0 e−C(st,at|π,bt) · e−CT (sT−1,aT−1|π,bT)

where a is the action sequence and CT is a terminal cost
function that approximates the remaining cost-to-go. The
performance of the policy is given by:

J(π|b) = Es0∼b,st∼T ,a∼π(.|b) (1a)[
1

Z

T−2∏
t=0

e−C(st,at|π,bt) · e−CT (sT−1,aT−1|π,bT)

]
(1b)

The planner performs an online search for the optimal
deterministic policy π∗ which maximizes the expected value
of the distribution under the belief state b

π∗ = argmax
π∈P

J(π|b) (2)

B. Normalizing Flows

A finite normalizing flow (flow) is an iterative framework
for estimating and building flexible target distributions intro-
duced in [27]. The flow model consists of a series of invertible
transformations τn which map a known prior distribution q(z0)
to a potentially complex, target distribution while preserving
the total probability mass of the original pdf . More formally,

Backbone

Detection Head

Flow Head

ILVM
(Prediction

Module)

Differentiable
Costing Module

Min Cost
Trajectory

Autoregressive
Flow

cVAE Decoder

Detections and
Predictions for

Costing

Sampled
Trajectories

Scene
Condition

Ego Vehicle
History (c)

HD Maps, Planner Gains

Fig. 1. Our model architecture for FlowPlan. Blue modules are used from previous work [25], [26] which are pretrained and are kept frozen during training.
Red modules represent our flow planner which works as a control trajectory sampling module. Green modules represent the components of a traditional
trajectory planner.

z0 ∼ q(z0) (3)

zN = τn(zn−1; θ|ht), ∀n = 1....N (4)

where θ are the parameters of the flow model transforma-
tions and are conditioned on the action and observation history
ht. Since each transformation is invertible, we can use the
change of variables formula to obtain the final log density:

log q(zN |ht) = log q(z0|ht)−
N∑

n=1

log det
∣∣∣ dzn
dzn−1

∣∣∣ (5)

We can think of transformations τn as expanding or con-
tracting the space of the known prior q(z0) into the conditional
target q(zN |ht) with the corresponding Jacobian determinant
describing the relative change of volume and ensuring total
probability mass is conserved.

IV. METHOD

An overview of our model architecture for FlowPlan can be
found in Figure 1. Raw sensor data (LiDAR, Cameras, Radars)
and HD map data is processed by a backbone network, to con-
struct an internal feature representation. Actor detections and
future predictions are generated from the output of backbone
network using separate deep networks, described in section
IV-A. The detections, predictions and HD maps are used by the
whitebox costing module to provide the cost for each trajectory
and is described in section IV-B. A σVAE is used to learn a
reduced dimensional latent space of the trajectory control sam-
ples from expert human demonstrations, described in section
IV-D. Our flow network works in parallel to the detector head
and also consumes the output of backbone network as a scene
conditioner. An autoregressive flow conditioned on the scene,
generates trajectory samples in a latent space, described in
section IV-C. The flow module is trained to minimize the loss
function defined in section IV-C.

A. Scene Conditioning

An AV’s observation and action history ht is high dimen-
sional, consisting of a historical sequence of sensor obser-
vations, map states, and vehicle states. Starting from this raw
data, we seek to construct a context feature vector representing
the belief state b(ht) for conditioning the flow network. In this
work, we use a pretrained detector [25] which takes as input
a voxelized LiDAR point cloud and rasterized map state and
constructs an internal feature representation of b(ht), which we
denote as b(ht). Output from this detector head is consumed
by the prediction head (ILVM [26]) for generating scene
predictions for the future. ILVM is a graph neural network
used for generating multimodal future actor distributions.
Actors are agents in the environment external to our AV,
such as pedestrians and other vehicles. These actor trajectory
predictions are passed to the whitebox costing module and
utilized to give an interpretable scalar cost as an output.
Simultaneously, the belief state b(ht) output by the detector
head is consumed as a scene conditioner for the flow-plan
module. An illustration of the ILVM output can be seen in
Figure 2(a).

B. Trajectory Planner

The purpose of a trajectory planner in an AV system is
to find control policy π∗ corresponding to the optima of the
cost manifold from Eq. 2. In this work, the planner comprises
of two parts: a control-trajectory sampling scheme and an
interpretable whitebox costing module. The output of the
planner is a deterministic control trajectory which provides
minimum expected cost. The sampling scheme is our main
contribution and discussed in section IV-C.

C. Sampling Policy

The whitebox costing module is a linear combination of a
number of cost functions, encoding preferences for safety, per-

Co
st
s

(a) (b)

Fig. 2. A self-driving scenario with actor predictions (a): The predicted trajectories for all the actors in the scene obtained via the ILVM [26] network.
The color gradient shows different timesteps in the predicted trajectory. White curves illustrate the ground truth behavior of the actor. Output of the baseline
Polynomial Frenet method (b): Control trajectories in continuous (x,y) frame generated from the baseline Polynomial Frenet method over a straight path.
The color gradient from blue to red indicates the change in costs for the control trajectories considering dynamics and lane following penalties.

formance and user comfort. We provide detailed descriptions
of the cost functions in Appendix F. We utilize the costing
module in two ways: During offline training as supervision
to learn a stochastic sampling policy, and in online testing to
select the best trajectories for execution. The module ingests
map data, vehicle platform state, and probabilistic multimodal
trajectory predictions for other actors future states to generate
a scalar expected cost. We rely on Dubins model to simulate
forward dynamics of the AV. A key requirement is that the
cost functions and dynamics used for forward propagation
to be differentiable to support training. We implement a
differentiable forward simulator using 2-D bicycle dynamics
[28] represented as a deferentially flat system [29].

D. Expert Demonstration Encoding

We construct an encoding space of human expert con-
trol trajectory demonstrations using a conditional Variational
Autoencoder (cVAE). The cVAE learns a lower dimensional
subspace of human-like trajectories using a large dataset of
human demonstrations. The inputs to the VAE are x which is
the human expert control trajectory and a condition vector
c which consists of a fixed-length history of AV control
trajectory. The cVAE is trained following the σVAE [30]
method which allows for the weight between the MSE and KL
divergence terms in the loss function to be learned removing
the need of additional hyperparameter tuning.

L = D lnσ +
D

2σ
MSE(x̂, x) +DKL(q(z|x)||p(z)). (6)

where the first two terms are reconstruction error under a
gaussian decoder parameterization and the last term controls
distance to the prior (similar to [30]).The σVAE is pre-trained
on all human expert control trajectories from the dataset and is
kept frozen during the flow training. During the main training
loop only the decoder is used to decode trajectory samples
from the latent space.

We propose to learn a stochastic sampling policy in the
latent space of the cVAE described above. Towards this goal,

We formulate the cost functions as an energy based model
(Eq.1) and learn a maximum entropy policy minimizing the
reverse KL divergence to it. We utilize Neural Autoregressive
Flow (NAF) to facilitate efficient learning of multimodal
energy landscape induced by the cost as well as to obtain
concrete probability estimates which provides a score for each
sampled trajectory. The affine transformations which were
used in earlier flow models such IAF [4] and MAF [31]
supported efficient inversion and log determinant calculation
required for (5) but are not as flexible in representing multi-
modal distribution as NAF as shown in [3]. Our NAF policy
will take as input a vector sampled from a prior distribution
(z0 ∼ N (0, 1)) and the belief state of the AV (b(ht)) as a
conditioner. It outputs zN in the latent space of our VAE, as
a result of a number of flow transformations along with its
probability.

In this work, we aim to learn a mapping from a known
prior distribution, q(z0) = N (0, 1), to the target distribution
defined by the planner cost surface in Eq. 1. We formulate
the mapping as the optimization as a reverse-KL divergence
minimization:

argminθDKL [q(zN |θ, b) || J(zN |b)] (7)

where q(zn|θ, b) is the output of the flow model in Eq. 5
and J(zn|b) is the likelihood of that output under the planner
cost surface. We train the normalizing flow policy by obtaining
the scene context feature vector from the backbone network
as described in section IV-A and drawing L samples from
the prior distribution z0 ∼ N (0, 1). The per sample loss for
reverse KL (Equation 7) can be simplified as follows:

L(b) = − log(J(zN |b))−
N∑

n=1

log det
∣∣∣ dzn
dzn−1

∣∣∣ (8)

The above loss function uses the cost function J to learn
a generator parameterized as a normalizing flow with prior
z0. Here, we can ignore the partition function as it does

 WHEEL ANGLE

 WHEEL ANGLE

AV HISTORY SAMPLES

ACCEL

AV HISTORY SAMPLES

ACCEL

SAMPLES

SAMPLES

AV HISTORY

AV HISTORY

Fig. 3. Outputs of the FlowPlan on two challenging self-driving scenarios. In the left image, the AV is a pink box, and red dots represent the chosen
trajectory under the planner cost. Top Left: A scenario where the AV must wait to merge behind an incoming actor which has priority. Our model generates
a variety of control trajectories that decelerate and preemptively steer for lane alignment. Bottom Left: A scenario where the AV is making a right turn while
staying in the lane, showing the importance of considering lane boundaries through the planner cost surface. Right Images: 64 sampled trajectories from the
FlowPlan model for the respective scene. The control trajectories’ color represents the trajectory’s respective cost under the planner cost surface. The area left
of the black line in the samples plot indicates AV’s 2 sec controls history. In the top scenario, trajectories merging the lane have high costs, while trajectories
staying in the lane have lower costs as expected (can be observed in the wheel angle image). In the bottom scenario, the trajectories making the right turn
have lower costs, and the other trajectories going out of the lane have higher costs can be observed in the wheel angle image). The key takeaway is that
our FlowPlan can operate in challenging scenarios with minimal sampled trajectories compared to the Polynominal Frenet method.

not depend on the parameter θ. We elaborate more on the
partition function in Appendix F. The obtained solution can
be interpreted as a maximum entropy sampling distribution
for the whitebox planner. A maximum entropy policy can
be proved to be a solution of robust-reward control problem
in the presence of an adversary as shown in [32]. Even in
the setting without an adversary, the adversarial objective
bounds the worst case performance of the agent. This is
similar to the policies obtained from state of the art model-free
Reinforcement Learning method SAC [33]. The solution to the
planning problem (Eq.2) is given by the maximum aposteriori
estimate (MAP) under the learned policy parameterized by θ.

V. EXPERIMENTAL RESULTS

Our proposed method and ablations are compared on the
autonomous driving dataset HES-4D [34]. HES-4D uses a 64-
beam roof-mounted LiDAR and consists of 6500 snippets in
total, each 25 seconds long, spanning multiple North American
cities. In each city, we have access to high definition maps
capturing the geometry and the topology of each road network.
The perceptual RoI including sensor and map data is 140×80

meters centered on the self-driving vehicle and for contextual
history we utilize a total of 10 LiDAR sweeps at 10 Hz. The
pretrained perception and prediction model (Section IV-A)
predicts 2 seconds into the future at 0.2 seconds intervals.
All models in this section utilize the pretrained Pixor [25] +
ILVM [26] network for generating the motion forecasts for
other actors used in the whitebox planner costs functions as
well as for generating the perception backbone feature vector
b(ht).

The σVAE (Section IV-D) is pretrained using the human
driving examples from the HES-4D and is conditioned with
the AV history consisting of 2 seconds of dynamics infor-
mation at 5 Hz. Our costing module design uses the cost
functions as described in [35], which consists of number
of costs including cost for vehicle dynamics (accel, jerk,
streering angle etc.), lane violations, collision penalty, distance
travelled along path among others. All samples generated
from prior distributions come from N (0, 1) unless otherwise
specified. For a baseline method we use a popular Frenet frame
method similar to [5] and generate trajectory samples from the
cross product of independent polynomials in the longitudinal

101 102 103

Num Samples (Log Scale)

8

6

4

2

0

2

A
vg

 M
in

 C
os

t
Avg Min Planner Cost vs. Num Samples

Polynomial Frenet
NAF
NAF + VAE + IL

VAE
FlowPlan

0 2 4 6 8
CEM iterations

10

5

0

5

10

15

20

25

A
vg

. c
os

t

Avg. cost vs Flow density
FlowPlan

(a) (b)

Fig. 4. Sampling efficiency of the FlowPlan compares to the baselines (a): A comparison of different sampling techniques used for generating low-cost
control trajectories. We measure the average cost of the best-performing control trajectory for every scene in the evaluation set. Our method, FlowPlan,
outperforms the baseline Polynominal Frenet method, especially in the low sample regime. High-probability regions in the learned distribution map to
lower-cost trajectories (b): We demonstrate that high probability regions of the NAF output distribution correspond to low-cost surface regions using the
cross-entropy method (CEM). As CEM iterations increase, the corresponding average cost under the planner cost surface of all samples in the CEM set
decreases.

and lateral dimensions. The polynomials are generated using
uniform distribution of end point conditions usually specified
in terms of lateral and longitudinal displacement, end-point
velocities and accelerations. This is referred to in the results
as Polynominal Frenet method. Figure 2(b) shows example
control trajectories generated by Polynominal Frenet. Control
trajectory samples for all methods consist of acceleration and
steering angle tuples for 2 seconds futures at 5 Hz. We provide
detailed descriptions of our dataset and model architectures in
Appendix A.

We provide qualitative results in Fig. 3 for our model.
These results demonstrate the effectiveness of the model and
the importance of learning the planning cost surface during
training.

A. Sampling Efficiency

We evaluate the sampling efficiency of various approaches
by measuring the average planner cost of the best performing
sample across the evaluation dataset as a function of number
of control trajectories generated. Lower cost implies that the
sampled control trajectory is closer to the optima of the cost
surface. In Figure 4 (a), we compare our method FlowPlan to
a number of baselines- 1. Polynomial Frenet method, and a
number of architectural variations of FlowPlan for learning
the sampling policy, 2. NAF: Sampling policy is learned
in complete trajectory space, 3. σVAE: A σVAE trained
on human demonstrations is directly queried for the future
trajectories given the history, 4. Context σVAE: A σVAE
trained on human demonstrations is directly queried for the
future trajectories given the history and the scene context, 5:
NAF+σVAE+IL: Uses the same architecture as FlowPlan but
the loss function is changed to be the behavior cloning loss to
maximize likelihood of human demonstrations.

In Figure 4 (a), we compare our method FlowPlan to the
baseline method Polynomial Frenet, several ablations, and
a model with the same architecture as FlowPlan but using
an imitation learning (IL) loss against the expert driving
demonstration. For the ablations, we examine taking samples
directly from the latent space of the pretrained σVAE without
the flow model. Samples are drawn from N (0, 1) in the latent
space. We also examine the NAF model without the σVAE to
evaluate the efficacy of learning a normalizing flow mapping
on the full control trajectory dimension without utilizing the
expert demonstration conditioned latent space.

At low sample counts, FlowPlan significantly outperforms
the baseline method Polynomial Frenet. This is because Flow-
Plan is better able to take advantage of historical and scene
contextual information unlike the baseline which requires the
use of hand coded rules to adapt to the context. As the
number of samples increase the methods begin to converge
to the same average min cost since the coverage of the action
space is much broader at higher sample counts in the baseline,
demonstrating that context matters less in the regime where
coverage is high.

The σVAE model also performs better than the Polynomial
Frenet baseline at low sample counts. We argue this is because
the future AV control trajectory for most road network scenes
is highly dependent on the historical dynamics information
of the AV itself, which the model has access to. FlowPlan
improves this performance by additionally accounting for the
perceptual information. NAF without σVAE tends to produce
non-smooth control trajectories as it cannot exploit a lower
dimensional latent space to produce reconstructions of expert
demonstrations which results in a higher average control
loss. The model trained with IL loss performance does not
depend on the sample count and performs worse than σVAE

despite both models only having access to the expert driving
demonstration. We argue this is due to the IL model learning
a narrower distribution around a single expert trajectory given
the context than σVAE which only has access to the AV
dynamics history. Since the IL distribution is narrow around a
single example there is less chance that a diversity of samples
will produce meaningful differences in planner cost.

NAF and the NAF+σVAE+IL baselines rely on complete
trajectory reconstruction. They have significantly worse per-
formance than FlowPlan in both low and high sample regime.
This shows the effectiveness of reasoning in a latent space of
expert-like trajectories as used in FlowPlan. σVAE and context
σVAE with behavior cloning perform better than the Polyno-
mial frenet method under limited sample budget. FlowPlan
outperforms both of these baselines while giving additional
benefit of further refinement as shown in section V-B. In
general it is difficult to compare imitation based method
and cost function based methods on a common metric. To
facilitate such a comparison we show a table M in Appendix
of commonly used motion planning metrics that are essential
for a good driving experience.

B. Target Distribution Learning

In this experiment, we are interested in empirically ver-
ifying if high probability density regions of the FlowPlan
output distribution correspond to low planner cost. We propose
finding high-probability regions in the output distribution of
FlowPlan using the cross-entropy method (CEM). In CEM,
we sample n times from an initial sampling distribution. The
top e samples with highest probability density under output
distribution from FlowPlan are selected and used to update the
mean and the variance of the original sampling distribution.
After N iterations of refinement we output the mean of the
resulting sampling distribution as our latent variable which has
the maximum density under the output distribution.

Ai = {zi}, Ai ∼ N (µm, Σm)∀i ∈ n

Aelites = sort(Ai)[−e :]

µm+1 = α ∗ mean(Aelites) + (1− α)µm

Σm+1 = α ∗ var(Aelites) + (1− α)Σm

(9)

In Figure 4 (b), we show that with each iteration of CEM
we sample higher probability trajectories in the FlowPlan
output distribution and on evaluation of these trajectories we
find the average planner cost decreases. This shows that high
probability control trajectories under our learnt distribution
correspond to low costs in the planner cost manifold. We can
further use this method to improve our performance as shown
in Appendix C2.

VI. DISCUSSION

We present FlowPlan, a normalizing flow approach for
generating control trajectory samples and associated proba-
bility density under the planner cost surface for AVs. As the
flow model is connected to a learned perception & prediction
model, which generates interpretable motion forecasting, the

model leverages the full scene context during inference and
adds little computational overhead to the existing AV stack.
We compare this model using a dataset of real-world driving
examples and show this approach is more efficient per sample
than alternative approaches. We believe our method, FlowPlan,
will perform similarly on other large real-world datasets [36],
[37], as they are similar to our HES-4D dataset.

Limitations and Future Work. Because the model learns
a non-transparent mapping from the prior distribution to the
target, in order to ensure that safety maneuvers, such as max
braking, are always in the considered trajectory set these have
to be added in through an outside process. Additionally, the
SDV trajectory samples are generated independently from the
motion forecasting of other actors the predicted actions of
other actors in the scene are not conditioned on the SDV intent.
In the future we would like to extend this work to a unified
probabilistic generative model that samples the SDV trajectory
samples jointly with the motion forecasts of other actors.

REFERENCES

[1] M. Bansal, A. Krizhevsky, and A. Ogale, “Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst,” arXiv preprint
arXiv:1812.03079, 2018.

[2] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
AISTATS, 2011.

[3] C.-W. Huang, D. Krueger, A. Lacoste, and A. C. Courville, “Neural
autoregressive flows,” in ICML, 2018.

[4] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and
M. Welling, “Improved variational inference with inverse autoregressive
flow,” in Advances in neural information processing systems, pp. 4743–
4751, 2016.

[5] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” pp. 987 –
993, 06 2010.

[6] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145,
2015.

[7] D. H. Jacobson and D. Q. Mayne, “Differential dynamic programming,”
1970.

[8] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.,”

[9] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of guidance, control, and dynamics, vol. 21, no. 2, pp. 193–207,
1998.

[10] D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural net-
work,” in NIPS, 1988.

[11] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, “End-
to-end driving via conditional imitation learning,” in 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 4693–4700,
2018.

[12] X. Liang, T. Wang, L. Yang, and E. P. Xing, “CIRL: controllable imita-
tive reinforcement learning for vision-based self-driving,” in Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part VII, 2018.

[13] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring
the limitations of behavior cloning for autonomous driving,” in 2019
IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019, 2019.

[14] P. Tigas, A. Filos, R. McAllister, N. Rhinehart, S. Levine, and Y. Gal,
“Robust imitative planning: Planning from demonstrations under uncer-
tainty,” 2019.

[15] A. Bhattacharyya, M. Hanselmann, M. Fritz, B. Schiele, and C.-
N. Straehle, “Conditional flow variational autoencoders for structured
sequence prediction,” ArXiv, vol. abs/1908.09008, 2019.

[16] K. Mangalam, H. Girase, S. Agarwal, K. Lee, E. Adeli, J. Malik,
and A. Gaidon, “It is not the journey but the destination: Endpoint
conditioned trajectory prediction,” CoRR, 2020.

[17] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the Twenty-First International
Conference on Machine Learning, 2004.

[18] L. Sun, W. Zhan, and M. Tomizuka, “Probabilistic prediction of inter-
active driving behavior via hierarchical inverse reinforcement learning,”
pp. 2111–2117, 11 2018.

[19] C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced planning for
autonomous vehicles using reinforcement learning and deep inverse
reinforcement learning,” Robotics and Autonomous Systems, vol. 114,
pp. 1 – 18, 2019.

[20] S. Levine and V. Koltun, “Continuous inverse optimal control with
locally optimal examples,” in Proceedings of the 29th International
Coference on International Conference on Machine Learning, 2012.

[21] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.,” in Aaai, vol. 8, pp. 1433–1438,
Chicago, IL, USA, 2008.

[22] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” arXiv preprint arXiv:1710.11248, 2017.

[23] M. J. Kochenderfer, Decision making under uncertainty: theory and
application. 2015.

[24] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial
on energy-based learning,” 2006.

[25] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection
from point clouds,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018.

[26] S. Casas, C. Gulino, S. Suo, K. Luo, R. Liao, and R. Urtasun, “Implicit
latent variable model for scene-consistent motion forecasting,” 2020.

[27] D. J. Rezende and S. Mohamed, “Variational inference with normal-
izing flows,” in Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, 2015.

[28] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dy-
namic vehicle models for autonomous driving control design,” pp. 1094–
1099, 06 2015.

[29] P. Martin, R. Murray, and P. Rouchon, “Flat systems, equivalence and
trajectory generation,” 01 2003.

[30] O. Rybkin, K. Daniilidis, and S. Levine, “Simple and effective vae
training with calibrated decoders,” 2020.

[31] G. Papamakarios, I. Murray, and T. Pavlakou, “Masked autoregressive
flow for density estimation,” in NIPS, 2017.

[32] B. Eysenbach and S. Levine, “If maxent rl is the answer, what is the
question?,” arXiv preprint arXiv:1910.01913, 2019.

[33] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv preprint arXiv:1801.01290, 2018.

[34] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and C. K.
Wellington, “Lasernet: An efficient probabilistic 3d object detector
for autonomous driving,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 12677–12686, 2019.

[35] A. Sadat, M. Ren, A. Pokrovsky, Y.-C. Lin, E. Yumer, and R. Urtasun,
“Jointly learnable behavior and trajectory planning for self-driving
vehicles,” arXiv preprint arXiv:1910.04586, 2019.

[36] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in perception
for autonomous driving: Waymo open dataset,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020.

[37] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” in CVPR, 2020.

[38] S. Casas, W. Luo, and R. Urtasun, “Intentnet: Learning to predict
intention from raw sensor data,” in CoRL, 2018.

[39] S. Casas, C. Gulino, R. Liao, and R. Urtasun, “Spatially-aware graph
neural networks for relational behavior forecasting from sensor data,”
arXiv preprint arXiv:1910.08233, 2019.

APPENDIX

SUPPLEMENTARY MATERIAL FOR IMITATIVE PLANNING USING CONDITIONAL

NORMALIZING FLOW

A. Experiment Details

Expert Dataset: HES-4D contains more than one million frames collected over several cities in North America with a 64-
beam, roof-mounted LiDAR. The labels are precise 3D bounding box tracks with a maximum distance from the self-driving
vehicle of 100 meters. There are 6500 snippets in total, each 25 seconds long. We have access to high definition maps capturing
the geometry and the topology of each road network in every city. Following previous works in joint perception and motion
forecasting [38], [39] we consider a rectangular region centered around the self-driving vehicle that spans 144 meters along
the direction of its heading and 80 meters across. This dataset involves trajectories observed in various situations like Lane
Keeping, Merging, Intersections among others. Each trajectory is trimmed to 4 second blocks.

B. Model Details

σ-VAE: We use a conditional variational auto-encoder to compress the trajectory to a small latent space of 5 dimensions.
This is motivated by the fact that the trajectories feasible under the kinodynamic constraints of the AV are limited and lie
in a much smaller latent space. The context used for the conditioning is the 2 second history and is used to reconstruct
the trajectory for the other 2 seconds of the trajectory obtained from the step above. Note that trajectories in these case are
represented as control inputs of acceleration, steering pair and not the position-angle form. Rather than hand-tuning a desired
weight between reconstruction error and KL divergence with prior in the VAE loss, we use σ-VAE which allows for this tuning
to happen automatically. For the encoder and decoder, we use 3 convolutional layers with batch normalization followed by 2
fully connected layers.

Normalizing flow: We use the deep sigmoidal flow variant of the Neural Autoregressive flow [3] in this work. Our flow
module comprises on 3 fully connected layers with 256 neuron units with exponential linear unit(elu) non linearities. The latent
space of 5 dimensions obtained after passing the input through the encoder is transformed into a multimodal latent sampling
distribution for low cost trajectories.

C. Imitation Learning Architecture

In this section we present the imitation leaning (IL) architecture used for experiments in section V-A. The exact details of
the models is exactly same as described in section B. Our IL framework uses different model architectures during training and
evaluation.

FlowPlan FlowPlan + 2 Steps CEM FlowPlan + 5 Steps CEM

10
3

10
4

Num Samples (Log Scale)

8.5

8.4

8.3

8.2

8.1

Av
g

M
in

 C
os

t

Avg Min Planner Cost vs. Num Samples

Fig. 5. Planner cost decreases with increase in CEM iterations on FlowPlan.

1) Training: The goal here is to learn from expert (human)
demonstrations given the scene context. Since we are not
costing any trajectories we do not need any detections,
prediction and differentiable costing modules. We pass the
expert trajectory through the cVAE Encoder, conditioned on
AV history, to model the expert trajectory in lower dimension
latent embedding referred to as ZN . In reference to NAF,
Encoder encodes the expert trajectory in a complex (mul-
timodal) distribution. Forward NAF, conditioned on scene
condition, maps the Z0 = NAF (ZN) to a normal distri-
bution. We train this model using maximum log-likelihood
loss.

2) Evaluation: The goal here is sample trajectories of
what most likely human would do given the scene condition,
as compared to FlowPlan where goal is sample trajectories
which minimize the cost functions. The architecture here is
same as FlowPlan except the NAF model used here is inverse
of NAF model used for training, ZN = NAF−1(Z0). Here
the flow model provides a mapping from normal distribution
to a complex distribution, conditioned on the scene. We pass
the ZN through cVAE Decoder to obtain trajectories from
the latent variable. We cost the trajectories with a differentiable costing module to find the best trajectory under planner cost
surface for the given scene.

Evaluation

Backbone
Flow Head

cVAE Encoder

Autoregressive
Flow (MAF)

Scene
Condition

Ego Vehicle
History (c)

Expert
Demostration

Backbone

Detection Head

Flow Head

ILVM
(Prediction

Module)

Differentiable
Costing ModuleInverted

Autoregressive
Flow (IAF)

cVAE Decoder

Detections and
Predictions for

Costing

Sampled
Trajectories

Scene
Condition

Ego Vehicle
History (c)

HD Maps, Planner Gains

Min Cost
Trajectory

Training

Fig. 6. Imitation Learning Architecture.

FlowPlan provides us with a good initial sampler producing trajectories which have low costs. Generally planners on AV
work under time constraints, and have a fixed amount of available time budget for planning. For example, a typical planner
aims to produce plans at 10 Hz frequency.

In this section we study improving upon the already obtained plans when we have additional time budget available.
To achieve this we rely on a similar method as used in Section V-B. We use CEM to refine our solutions iteratively. We

sample initially using FlowPlan and successively improve upon the solution using the Planner Cost (in contrast to the Flow
density) as the CEM objective now. We experiment with 2 and 5 iterations of CEM and find that increasing CEM iterations
increases the quality of solution. For a fair comparison against the basic FlowPlan we sum up the number of samples used
during all the CEM iterations (x-axis of Figure 5).

In this section we share some results which give more insights into our σ-VAE’s latent space.

D. Gaussian Sampling

We learn a latent embedding using a diverse set of trajectories obtained from expert demonstrations. Figure 7 shows some
examples fo the trajectories learned by the VAE. It also shows that the trajectories produced by the VAE may not be low cost
and can be compared to Figure 3 where we see that flow learns a tight low cost distribution in this latent space.

E. Latent Space Interpolation

Figure 8 shows the trajectories we obtain when interpolating in the latent space.

Position Acceleration Wheel Angle

X[m
]

𝑚/
𝑠! rad

Y[m] seconds seconds
Position Acceleration Wheel Angle

X[m
]

𝑚/
𝑠! rad

Y[m] seconds seconds
Position Acceleration Wheel Angle

X[m
]

𝑚/
𝑠! rad

Y[m] seconds seconds

Fig. 7. Output of σ-VAE when sampling from N(0, 1) from the latent space. This demonstrates that naively sampling from N(0, 1) results in control
trajectories with high coverage of the action space but not necessarily in low cost trajectories under the planner cost surface. Colors here illustrate the
respective cost of the control trajectory.

ThetaPostition

Velocity Theta Dot

Front Steering AngleAcceleration

Fig. 8. Smooth trajectories from σ-VAE’s latent space. Here we linearly interpolate between latent variables, from red to blue, belonging to the actual dataset
and show that the new latent variables result in smooth output. Theta is the heading of the AV.

F. σ-VAE Latent Space Analysis

FlowPlan Z3
FlowPlan Z5

FlowPlan Z8
FlowPlan Z16

FlowPlan Z32

10
1

10
2

10
3

Num Samples (Log Scale)

8.0

7.5

7.0

6.5

6.0

Av
g

M
in

 C
os

t

Avg Min Planner Cost vs. Num Samples

Fig. 9. Latent Dim Comparison

In this section we experiment with different latent dimen-
sions for FlowPlan. A smaller dimension makes it harder for
the latent space to capture the high dimensional trajectory
distribution and a high dimensional latent space increases
the complexity of learning and generalization. We find that
a latent dimension of 8 achieves the minimum average cost
when tested on the HES-4D dataset. In Figure 9, we see
that the average cost of FlowPlan decreases as we increase
the latent dimension from 3 to 8 and then increases as the
dimensions are increased to 32.

KL divergence is a good metric to evaluate if the sampling
policy we learn is close to the Boltzmann distribution induced
by the cost surface. We compute the KL divergence using a
sample based estimate, but we need a partition function since
our cost functions are unnormalized. We rely on importance
sampling to compute a sample based estimate of the partition
function, where the importance sampling distribution is our
current flow distribution. The importance sampling distribu-
tion becomes optimal as the policy approaches the Boltzmann
distribution induced by the cost functions.

Z =

∫
e−C(τ)dτ

Ẑ = Ez∼ZN

[
e−C(decoder(ZN))

p(ZN)

] (10)

where C is the unnormalized cost function, which costs the entire trajectory following Appendix F.
A sample based estimate for the reverse-KL divergence can be obtained as follows:

DKL[q(zN |θ, b) || J(zN |b)] = EzN∼ZN

[
log q(zN |θ, b)− log

e−C(decoder(ZN))

Z

]
= EzN∼ZN

[
log q(zN |θ, b) + C(decoder(ZN)) + log Ẑ

] (11)

The decoder takes the latent embedding of a trajectory and outputs the reconstructed trajectory.
In this work we generate control trajectories in the space of steering angle and acceleration. These control trajectories will

be simulated by a forward bicycle model to obtain trajectories in frenet space [5] and Cartesian space. Frenet space represents
the trajectory of a car as latitudes and longitudes based on a nominal path that a car is expected to follow at each points. We
will consider trajectories in both frames and the predictions obtained for each actor in the scene as a interpretable belief for
costing purposes.

We use a set of costs that allow for safe driving with user comfort in mind. In particular our cost functions can be divided
into five costs: path distance, centerline, obstacle collision, jerk, and twist costs. We expand upon all the cost functions in
detail below:

G. Path Distance Cost Cd

A basic objective of the car is to move along the directed centerline. A centerline is defined as a nominal path safe to
follow in presence of no obstacles. It is obtained as a part of the High Definition maps and in this work is just the centerline
equidistant from the two lane boundaries. We reward the agent to cover as much distance on the centerline as possible. The
cost function for the distance cost looks as follows:

Cd = −Agent cartesian displacement projected on the centerline (12)

H. Centerline Cost Cc

In addition to travelling as much longitudinal distance as possible we would like our AV to stay close to the centerline. We
do this be penalizing the normal displacement of a cartesian trajectory to the centerline along each control point along the
trajectory.

Cc =

T∑
t=1

d2t (13)

where dt is the normal distance (latitude) of the t timestep in trajectory to the centerline.

I. Obstacle Collision Cost Co

Penalizing collisions is an important aspect to ensure safety of AV. We consider the future actor predictions in the scene
and unrolled trajectory of the AV using a dynamics model to check for possible collisions. The cost function is summed over
all the probabilistic elements of the scene using the probabilities output by the prediction module. The expected cost is passed
through a rectified linear unit to penalize cost for only those actors that enter a 3 meter radius of the car.

Co =
∑

obstacles

probobs ∗ (rectified(distance to obstacle))2 (14)

J. Jerk Cost Cj

Jerk is defined as rate of change of acceleration. Minimizing jerk is crucial to obtain a comfortable user experience. We
encode this directly in our cost functions.

Cj =

T−1∑
t=1

(ȧ)2 (15)

where a is acceleration and ȧ is the jerk (first derivative of acceleration).

K. Twist Cost Ct

Ensuring smooth changes in curvature for the trajectory is another aspect of encoding user preference for comfort. We do
this by directly imposing a smoothness constraint on the steering of the vehicle.

Ct =

T−1∑
t=1

ċ2i (16)

where c is curvature and ċ is the twist (first derivative of curvature).

L. Cost Gains

The final cost for a trajectory is the weighted combination of the cost functions applied to the trajectory by cost gains. The
gains are manually tuned for best performance and interpretability.

Final Cost = wd ∗ Cd + wc ∗ Cc + wo ∗ C0 + wj ∗ Cj + wt ∗ Ct (17)

M. Motion Planning Metrics

Models Avg. Jerk
(mpsss)

Avg Lat
Accel

(radpss)

Avg.
Progress (m)

Collision
0.5s

Collision
1.0s

Collision
1.5s

Collision
2.0s

Human 4.14 1.93 13.05 0.00 0.00 0.00 0.00
Polynomial
Frenet

3.03 3.89 13.27 0.00 0.00 0.01 0.02

NAF 1.59 4.10 10.44 0.00 0.00 0.03 0.11
σ-VAE 3.47 3.20 13.29 0.00 0.00 0.00 0.1
FlowPlan 1.53 3.05 13.21 0.00 0.00 0.00 0.1

Fig. 10. Motion Planning Metrics: We compare the performance comparison of different sampling techniques used for generating low cost control trajectories
on various planning metrics. This table provides an intuition into how FlowPlan was able to generate plans with lower cost. Specifically, plans generated by
FlowPlan has lower Avg Jerk, Avg. Lat Accel, higher Avg. Progress and minimal collisions.

