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Multi-Event-Camera Depth Estimation and
Outlier Rejection by Refocused Events Fusion

Suman Ghosh and Guillermo Gallego

Abstract—Event cameras are bio-inspired sensors that offer advantages over traditional cameras. They operate asynchronously,

sampling the scene at microsecond resolution and producing a stream of brightness changes. This unconventional output has sparked

novel computer vision methods to unlock the camera’s potential. Here, the problem of event-based stereo 3D reconstruction for SLAM

is considered. Most event-based stereo methods attempt to exploit the high temporal resolution of the camera and the simultaneity of

events across cameras to establish matches and estimate depth. By contrast, this work investigates how to estimate depth without

explicit data association by fusing Disparity Space Images (DSIs) originated in efficient monocular methods. Fusion theory is

developed and applied to design multi-camera 3D reconstruction algorithms that produce state-of-the-art results, as confirmed by

comparisons with four baseline methods and tests on a variety of available datasets.

✦

VIDEO AND CODE

Project page: https://github.com/tub-rip/dvs mcemvs

1 INTRODUCTION

Intelligent navigation in our complex 3D world relies on
robust and efficient visual perception, which is challeng-
ing for autonomous robots. However, humans use vision
very efficiently to navigate 3D environments, even in novel
scenarios. Inspired by human vision, neuromorphic spike-
based sensing and processing has been recently investigated
for robot vision [1], [2] and retinal implants [3].

Event cameras, such as the Dynamic Vision Sensor [4]–
[6] (DVS), are neuromorphic sensors that acquire visual
information very differently from traditional cameras. They
sample the scene asynchronously, producing a stream of
spikes, called “events”, that encode the time, location and
sign of per-pixel brightness changes. Event cameras possess
outstanding properties compared to traditional cameras:
very high dynamic range (HDR), high temporal resolution
(≈ µs), temporal redundancy suppression and low power
consumption. These properties offer potential to tackle chal-
lenging scenarios for standard cameras (high speed and/or
HDR) [7]–[11]. However, this calls for novel methods to
process the unconventional output of event cameras in order
to unlock their capabilities [2].

In this work, we tackle the problem of event-based
stereo 3D reconstruction for Visual Odometry (VO) and
Simultaneous Localization and Mapping (SLAM). An ef-
ficient SLAM system is critical for the navigation of au-
tonomous intelligent agents (like field robots) in challeng-
ing unstructured environments, especially in extreme ones
like offshore drilling, nuclear power plants, etc. [12]. An
event-based SLAM system has the potential to efficiently
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Monocular Stereo (Ours)

Fig. 1: Semi-dense depth maps estimated by event-based
monocular [10] and stereo methods. Stereo is beneficial for
more accurate estimation and outlier removal compared to
monocular depth estimation (e.g., traffic sign in the center).
Depth is pseudo-colored, from red (close) to blue (far). Color
frames are only shown for visualization. Data from [16].

overcome difficult scenarios in these applications [13]–[15].
For example the HDR advantages of event cameras translate
into high-fidelity depth maps in difficult lighting conditions,
as demonstrated by a broad variety of works in VO/SLAM
[13, Fig. 12], [14, Fig. 8], [15, Fig. 15].

Our work is inspired by EVO [13], which is the state
of the art in event-based monocular VO. The effectiveness
of EVO is largely due to its mapping module, Event-based
Multi-View Stereo (EMVS) [10], which enables 3D recon-
struction without the need to recover image intensity, with-
out having to explicitly solve for data association between
events, and without the need of a GPU (it is fast on a
standard CPU –e.g., speed of 1.20 Mev/s/core [10]). Addi-
tionally, EMVS admits an interpretation in terms of event
refocusing or event alignment (contrast maximization) [17],
which is the state of the art framework to tackle other
vision problems [18]–[26]. Our goal is to extend EMVS to
the multi-camera setting (i.e., two or more event cameras
in a multi-view configuration sharing a common clock),
and in particular to the stereo setting, in order to benefit
from these advantages and connections (Figure 1). In the
process, we revisit the event simultaneity assumption used
in stereo depth estimation and develop a theory of fusion of
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refocused events, which could be useful in other problems,
such as feature or camera tracking [27].

In summary, our contributions are:

• Simple, efficient and extensible solutions to the prob-
lem of event-based stereo 3D reconstruction for SLAM
using a correspondence-free approach. We investigate
early event data fusion strategies in two orthogonal di-
rections: between cameras (“spatial stereo”, Section 3.3)
and along time (“temporal stereo”, Section 3.5).

• The investigation of several functions to fuse refocused
events (using e.g., Generalized means, Section 3.4) and
its application to the two mentioned directions.

• A comprehensive experimental evaluation on five pub-
licly available datasets and comparing against sev-
eral baseline methods, producing state-of-the-art results
(Section 4). We also show how the method can naturally
handle multi-event-camera setups with linear complex-
ity.

This research aims at developing robust multi-camera
visual perception systems for the navigation of artificial
intelligent systems in challenging environments, like stereo
depth perception for SLAM and attention in robots [28],
[29].

2 RELATED WORK

What: Stereo depth estimation using event cameras has been
an interesting problem ever since the first event camera
was invented by Mahowald and Mead in the 1990s [30].
As such, they simultaneously designed a stereo chip [31]
to implement Marr and Poggio’s cooperative stereo algo-
rithm [32]. This approach has inspired a lot of literature
that focuses on 3D reconstruction over short time intervals
(“instantaneous stereo”) [33]–[35]. These methods work well
with stationary cameras in uncluttered scenes (where events
are caused only by few moving objects), thus enabling 3D
reconstruction of sparse, dynamic scenes. For a detailed
survey on these stereo methods we refer to [36], [37]. In con-
trast, stereo event-based 3D reconstruction for VO/SLAM
has been addressed recently [15], [38]. It assumes a static
world and known camera motion (e.g., from a tracking
method) to assimilate events over longer time intervals, so
as to increase parallax and produce more accurate semi-
dense depth maps. Some other works estimate depth by
combining an event camera with other devices, such as light
projectors [8], [39], [40] or a motorized focal lens [41], which
are different from our hardware setup and application.

How: Depth estimation with stereo event cameras is
predominantly based on exploiting the epipolar constraint
and the assumption of temporal coincidence of events across
retinas, namely that a moving object produces events of
same timestamps on both cameras [39], [42], [43]. This aims
at exploiting the high temporal resolution and redundancy
suppression of event cameras to establish event matches
across image planes and then triangulate. It is also known
as event simultaneity or temporal consistency [38], and it is
analogous to photometric consistency in traditional cam-
eras. This assumption does not strictly hold [44], [45], and so
it is relaxed to account for temporal noise (jitter and delay).
Essentially event simultaneity is exploited to solve the data
association problem (establishing event matches), which is

Fig. 2: DSI projections of a non-planar scene (rpg monitor data
from [38], also in Figure 5). Disparity Space Image (DSI)
values (i.e., ray counts) are pseudo-colored, from blue (low)
to yellow (high). The DSI has dimensions w × h × NZ ,
according to the resolution of the event camera DAVIS240
(w = 240, h = 180 pix) and the number of inverse-depth
planes used, NZ = 100. The three DSI max-projections are:
front view (top left, 240 × 180 pix), top view (bottom left,
240× 100 pix) and side view (top right, 100× 180 pix).

a well-known difficult problem due to the little information
carried by each event and their dependency with motion
direction (changing “appearance” of events [2], [46]).

The above ideas are used in the mapping module of [15],
the state-of-the-art stereo 3D reconstruction method for
VO/SLAM. In this method temporal consistency is mea-
sured across space-time neighborhoods of events by first
converting the events into time surfaces (TSs) [47] and
then comparing their spatial neighborhoods. Stereo point
matches are established and provide depth estimates which
are fused in a probabilistic way using multiple TSs to
produce a more accurate semi-dense inverse depth map.

In contrast, we investigate a new way of doing stereo,
without explicitly using event simultaneity and hence without
establishing event matches. Therefore, to the best of our
knowledge, we completely depart from previous event-
based stereo methods. Correspondence-free approaches for
depth estimation have been proposed for frame-based cam-
eras [48]–[50]. For example, [50] proposes a method to
estimate affine fundamental matrices without explicit cor-
respondences, but it does not solve the full problem of
depth estimation. On the other hand, [49] aims to solve
the problem of stereo depth estimation, but for the special
case of planar or quasi-planar scenes. It is an extension of
[51] for arbitrary camera positions. In contrast, our method
solves the full depth estimation problem and is not lim-
ited to the planar case, following the seminal idea of [48]
to sweep space and exploit the sparsity of scene edges.
Inspired by [10], [48], we circumvent the data association
task by leveraging the sparsity of events (event cameras
naturally highlight edges, which are sparse, in hardware)
and by exploiting the continuous set of camera viewpoints
at which events are available. This provides a rich collection
of back-projected rays through the events to estimate scene
structure. Our contributions pertain to the processing (e.g.,
fusion) of such back-projected rays or “refocused events”,
which has not been considered before (since [10] and newer
approaches [52] do not consider data fusion, e.g., across
cameras).
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Fig. 3: Our method takes as input the events from two or more synchronized, rigidly attached event cameras and their
poses, and estimates the scene depth. Using Space Sweeping, it builds ray density Disparity Space Images (DSIs) from each
camera data and fuses them into one DSI (Section 3.4), from which the 3D structure of the scene is extracted in the form
of a semi-dense depth map, which may be cast into a point could. Fusion across cameras (Section 3.3) is represented with
yellow lines, and temporal fusion (Section 3.5) with red lines. The optional shuffling block (“S”) is presented in Section 3.6.

3 EVENT-BASED STEREO DEPTH ESTIMATION

This section reviews how an event camera works (Sec-
tion 3.1) and the monocular method EMVS (Section 3.2)
before presenting our stereo depth estimation approach.
Two main event fusion directions are presented: fusion of
camera views (Section 3.3) using one of several functions
(Section 3.4), and fusion of multiple time intervals (Sec-
tion 3.5). Then, we revisit the event simultaneity assumption
(Section 3.6) and analyze the computational complexity of
the approach (Section 3.7).

3.1 How an Event Camera Works

Event cameras, such as the Dynamic Vision Sensor (DVS)
[4], are bio-inspired sensors that capture pixel-wise bright-
ness changes, called events, instead of brightness images. An
event ek

.
= (xk, tk, pk) is triggered when the logarithmic

brightness L at a pixel exceeds a contrast sensitivity θ > 0,

L(xk, tk)− L(xk, tk −∆tk) = pk θ, (1)

where xk
.
= (xk, yk)

⊤, tk (in µs) and pk ∈ {+1,−1} are
the spatio-temporal coordinates and polarity of the bright-
ness change, respectively, and tk − ∆tk is the time of the
previous event at the same pixel xk. Hence, each pixel has
its own sampling rate, which depends on the visual input.
Assuming constant illumination, pixels produce events pro-
portionally to the amount of scene motion and texture.

3.2 EMVS: Monocular 3D Reconstruction

The problem of monocular depth estimation with an event
camera consists of estimating the 3D structure of the scene
given the events and the camera poses (i.e., position and
orientation) as the sensor moves through the scene. The
method in [10] solves this problem, called EMVS, in two
main steps: it builds a Disparity Space Image (DSI) using
a space sweeping approach [48] and then detects local
maxima of the DSI. The key idea is that, as the camera
moves, events are triggered at an almost continuous set of
viewpoints, which are used to back-project events into space
in the form of rays (a DSI). The local maxima of the ray

Algorithm 1 Stereo event fusion across cameras

1: Input: stereo events in interval [0, T ], camera trajectory,
camera calibration (intrinsic and extrinsic).

2: Define a single reference view (RV) for both DSIs, coincid-
ing with the left camera pose at say t = T/2.

3: Create 2 DSIs by back-projecting events from each camera.
4: Fusion: compute the pointwise harmonic mean of the DSIs.
5: Extract depth and confidence maps from the fused DSI f :

Z∗(x, y)
.
= argmax f(X(x, y)), c∗(x, y)

.
= max f(X(x, y)).

density (where many rays intersect, as shown in Figure 2)
are candidate locations for the 3D edges that produce the
events. Specifically, the DSI is discretized on a projective
voxel grid defined at a reference view, and local maxima are
detected along viewing rays, thus producing a semi-dense
depth map. Events are processed in packets of about 0.20–
1.00 M events. The key benefits of EMVS are its simplicity,
accuracy, efficiency (real-time, with ∼1.2Mev/s throughput
per CPU core [10]) and that it estimates depth without
explicit data association.

3.3 Fusion Across Cameras

We consider the problem of depth estimation from two
synchronized and calibrated event cameras rigidly attached.
Hence, the input consists of a stereo event stream and
poses, and the desired output is a (semi-dense) depth map
or, equivalently, a 3D point cloud with the scene structure
(Figure 3).

3.3.1 Challenges and Proposed Architecture

A naive solution to the problem consists of running two
instances of EMVS, one per camera, and fusing the resulting
point clouds into a single one, including post-processing
to mitigate redundant 3D points. This is a late-fusion ap-
proach, which greatly ignores the benefits that arise from
having two cameras observing the same scene. By contrast,
we seek to perform fusion earlier in the processing pipeline:
at the DSI stage. Hence the first technical challenge is to
define the DSI. EMVS defines a DSI per camera, located at a
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(b) Evolution of DSI projections.

Fig. 4: Intuitive Example: Monocular vs. Stereo method on
planar rock scene and 1D motion along the camera’s X axis.
Plots of the evolution of the DSI projections (see text) for
different methods (rows) as time increases (columns). The
3D edge patterns in the DSI (in yellow) are less localized in
EMVS (top row) than in stereo Alg. 1 (bottom).

reference view (RV) along the camera’s trajectory. However,
the fusion of DSIs at two different RVs is prone to resam-
pling errors. Thus it is key to define a common DSI location
for both cameras.

The second challenge is to investigate sensible fusion
strategies. Our approach includes, as a particular case, that
of back-projecting the events from both cameras into a single
DSI and simply counting rays. This is equivalent to the
scenario of a single event camera that moves twice through
the scene, with different motions, but uses the same DSI
to aggregate rays. It doubles the ray count in the DSI, but
summation discards valuable information for fusion, such
as how many rays originate in each camera: given 8 rays
at a point, it is preferable to have 4 rays from each camera
than an unbalanced situation (a 3D edge seen only by one
camera).

To deal with the above challenges we define two DSIs
at a common reference view: having one DSI per camera
allows us to preserve the origin of the event data, and
having geometrically aligned DSIs avoids resampling errors
during fusion. Without loss of generality, let the RV be a
point along the trajectory of the left camera. We investigate
how to compare and fuse the ray densities from each event
camera. Figure 3 shows the block diagram of our stereo
approach. For now, assume there is Ns = 1 DSI per camera
(Ns > 1 is presented in Section 3.5). First, the aligned
DSIs are populated with back-projected events from each
camera, then they are fused (combined) into a single one
(e.g., using a voxel-wise harmonic mean or other similarity
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Fig. 5: Output of Stereo Alg. 1 on two scenes. Top: our method
produces a semi-dense depth map of the scene (color coded
from red (close) to blue (far), overlaid on a grayscale frame
of the DAVIS [53]), and a confidence map (Bottom) with
the maximum DSI value along each reference view pixel, in
negated scale (bright = small; dark = large).

score (Section 3.4)), and finally local maxima are extracted
to produce a semi-dense depth map. The steps are specified
in Alg. 1.

3.3.2 Intuitive Example

To illustrate key differences between EMVS (monocular)
and the stereo Alg. 1 we use a sequence acquired with
two event cameras [53] performing a 1D motion (translation
along the X axis, using a linear slider). As input to EMVS
we use the data from the left camera. Figure 4 shows
the evolution of the DSIs as time progresses, i.e., as the
camera rig moves and more events are acquired and back-
projected onto the DSIs (and fused in the stereo case). We
plot projections of the DSI along its three coordinate axes
(like in Figure 2) at the reference viewpoint RV.

As Figure 4 shows, the stereo DSI (bottom row) converges
faster to the 3D structure of the scene than the monocular
DSI (top row). This is specially noticeable in the top views:
only one set of nearly parallel rays, poor for triangulation, is
visible in the monocular case. By contrast, the top views of
the stereo DSIs show two sets of rays, one from each camera:
the rays from the left camera are nearly straight, whereas the
rays from the right camera are curved due to inverse depth
parametrization of the DSI grid and the fact that the DSI is
projective. In both scenarios, the rays intersect at multiple
voxels and as time progresses the true intersection locations
dominate over others, i.e., the 3D structure emerges by event
refocusing [10], [18]. Additionally, in the stereo case refocusing
is combined with the proposed fusion functions (Section 3.4) to
speed-up the emergence and better highlight 3D structure.
In Alg. 1 this is achieved by the harmonic mean, which
deemphasizes the non-intersecting parts of the rays.

3.3.3 Output of the Stereo Method

Figure 5 shows the output of Alg. 1 on two scenes. After DSI
fusion, Alg. 1 extracts a depth map by locating the DSI max-
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ima along each viewing ray (through RV pixel x = (x, y)⊤).
Letting f : R3 → R≥0 be the fused DSI, its maxima provide
the confidence or “contrast” map c(x) = f(x, Z⋆(x)) and
the depth map Z⋆(x). Adaptive Gaussian Thresholding
(AGT) selects the pixels with highest local value, thus mak-
ing the depth maps semi-dense. A median filter is applied
to remove isolated points. The front-view projection of the
DSI in Figure 2 corresponds to the confidence map, which
is called this way because it is used in AGT to “select the
most confident pixels in the depth map” [10] (since voxels
with many ray intersections are more likely to capture true
3D points than voxels with few ray intersections).

3.4 DSI Fusion Functions

DSI fusion is the central part of our method (Figure 3). It
takes two ray density DSIs on the same region of space
as input (one per camera) and produces a merged DSI,
which is then used to extract depth information (candidate
locations of 3D edges). So, what are sensible ways to compare
two DSIs? FMRay density DSIs have very different statistics
from natural images, hence standard similarity metrics for
image patches may not be the most appropriate ones [54].

Formally, let El = {elk}
N l

e

k=1
and Er = {erk}

N l

e

k=1
be stereo

events over some time interval [0, T ], and fl, fr : V ⊂ R
3 →

R≥0 be the ray densities (DSIs) defined over a volume V :

fl(X) =

N l

e∑

k=1

δ
(
X−X

′
k(e

l
k)
)
, (2)

where X
′
k(e

l
k) = (xl′⊤

k , Z)⊤ is a 3D point on the back-
projected ray through event elk, at depth Z with respect to
the reference view (RV). Events are transferred to RV using
the continuous motion of the cameras and candidate depth
values Z ∈ [Zmin, Zmax]:

x
l′
k = W

(
elk, P

l(tk), Pv, Z
)
, (3)

where Pl(t) is the pose of the left event camera at time t and
Pv is the pose of RV. The warp W corresponds to the planar
homography induced by a plane parallel to the image plane
of RV and at the given depth Z . In a coordinate system
adapted to RV (i.e., Pv = (I,0)), the planar homography is
given by the 3× 3 homogeneous matrix

HW ∼
(
R+

1

Z
te

⊤
3

)−1
, (4)

where P
l(tk) = (R, t) and e3 = (0, 0, 1)⊤. A similar formula

applies to compute fr from Er and the corresponding cam-
era poses. In practice, DSIs are discretized over a projective
voxel grid with NZ depth planes in [Zmin, Zmax], and the
Delta δ in (2) is approximated by bilinear voting [10], [55].
Hence, each voxel counts the number of event rays that pass
through it.

Next, letting u = fl(X), v = fr(X) be the values of the
DSIs at a 3D point X, we seek to define a fused value g(X).
For simplicity, we consider metrics operating in a point-wise
(i.e., voxel-wise) manner, i.e., with a slight abuse of notation:

g(X) ≡ g
(
fl(X), fr(X)

)
= g(u, v). (5)
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u

0

1

2

3

4
max(u,v)

RMS(u,v)
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G(u,v)

H(u,v)

min(u,v)

Fig. 6: Fusion functions considered, for u = [0, 4], v = 1.

The metrics considered are the following:

A(u, v)
.
= (u+ v)/2 Arithmetic mean (6)

G(u, v)
.
=

√
uv Geometric mean (7)

H(u, v)
.
= 2/(u−1 + v−1) Harmonic mean (8)

RMS(u, v)
.
=

√
1

2
(u2 + v2) Quadratic mean (9)

min(u, v) Minimum (10)

max(u, v) Maximum (11)

They are special cases of the Generalized mean (power
mean or Hölder mean) and satisfy an order (see Figure 6):

min ≤ H ≤ G ≤ A ≤ RMS ≤ max, (12)

where the equal sign holds if and only if u = v. Eq. (12) also
establishes a qualitative order of the depth maps obtained
after DSI fusion with the corresponding function. The arith-
metic mean A (i.e., averaging ray densities) corresponds to
the above-mentioned particular case of counting the back-
projected stereo events on a single DSI. Hence, functions
performing worse than this case are not pursued.

3.4.1 What makes a good fusion function?

Intuitively, given two ray densities defined on the same
volume, a fusion function should emphasize the regions of
high ray density on both DSIs and deemphasize the rest. It
is not sufficient for one of the two densities to be large at a
point X to signal the presence of a 3D edge; both densities
have to be similar and large at X. The arithmetic mean A
and its dominant functions (e.g., quadratic mean and max in
(12)) do not satisfy this “AND” logic, whereas the geometric
mean, harmonic mean and min functions do satisfy it (e.g.,
a large value G(u, v) can only be achieved if both u and v
are large).

Mathematically, this requirement is well described by
the concavity properties of the function (plot in Figure 6).
The arithmetic mean A and functions below it are concave
(assuming non-negative inputs). Further, G, H and min are
strictly concave. As the experiments will show, fusion using
G still lets notorious outliers pass. Functions H and min
deemphasize considerably more than G. The min function
saturates strictly, treating values u > v as u = v, hence
clipping and discarding potentially beneficial information
about ray density values. The harmonic mean H shows



6

strong concavity and varies smoothly with both input ar-
guments, without discarding information. H is dominated
by the minimum of its arguments,

min(u, v) ≤ H(u, v) ≤ 2min(u, v) (13)

(in terms of the plot in Figure 6 (v = 1), the green curve is
bounded: H(u, 1) ≤ 2). The goal of the present work is to
introduce and study fusion functions rather than to select a
single “best one”. To narrow the discussion we often use a
subset of the fusion functions.

3.4.2 Interpretation in terms of Contrast Maximization

The proposed stereo fusion method is related to con-
trast/focus maximization [17], [18]. The depth slices of the
DSIs count refocused events (warped by back-projection),
i.e., they constitute so-called images of warped events
(IWEs) [17]. The fused DSI can be interpreted as a similarity
score between refocused events. Since fusion functions such
as H try to emphasize DSI regions with large and similar
values, stereo Alg. 1 tries to maximize the similarity score
between refocused events (in-focus effect) on both cameras,
jointly. The confidence map registers the maximum focus
similarity score at each viewing ray of the fused DSI.

3.4.3 More fusion functions

Additional means exist beyond those in Figure 6, such as the
contraharmonic mean, logarithmic mean, quasi-arithmetic
mean, arithmetic-geometric mean, Heronian mean and
weighted generalized means. However they are not covered
for the sake of brevity and to avoid clutter. In some cases,
the order relation (12) can be extended to justify their limited
practical interest. Seeking more fusion functions, one could
combine functions in Figure 6 with non-linear transforma-
tions of the input DSIs, in a homomorphic filtering fashion.
For example, the A-mean of the log-DSIs is related to the
G-mean of the DSIs, which has a stronger concavity than
the A-mean of the DSIs. The same idea can be applied to
other functions to increase concavity: the G-mean of the log-
DSIs, G(log(1+u), log(1+v))), has stronger concavity than
the G-mean of the original DSIs. The logarithm plays down
large DSI values, thus deemphasizing differences between
corresponding DSIs before fusion. For simplicity, we restrict
the study to the functions in Figure 6.

3.4.4 Loose connection with prior fusion work

A method for fusing 3D representations called “temporally
synchronized event disparity volumes” was proposed in
[56], where two binary data volumes IL, IR were fused
using an intersection-over-union (IoU) cost. It resembles the
H mean:

IoU =

∑

x∈W IL(x, d) ∩ IR(x, d)
∑

x∈W IL(x, d) ∪ IR(x, d)
vs. H = 2

uv

u+ v
, (14)

where the product in the numerator (“intersection”) acts
as an “AND” condition and the sum in the denominator
(“union”) acts as a normalization factor. However, note that
the IoU in [56] is computed by aggregating binary data
IL, IR over spatial windows W (of 32× 32 pixels), whereas
H (Figure 6) is computed voxel-wise, without spatial aggre-
gation (i.e., it has higher spatial resolution), on continuous
ray densities.

Algorithm 2 Stereo event fusion across cameras and time

1: Input: stereo events in interval [0, T ], camera trajectory,
camera calibration (intrinsic and extrinsic).

2: Define a single reference view (RV) for all DSIs.
3: Divide the interval [0, T ] into Ns sub-intervals (of equal

size or equal number of events). Create 2Ns DSIs by back-
projecting events from each subinterval and camera.

4: S2 ◦ S1: Two fusion axes (cameras and time). If S2 ≡ At

and S1 ≡ Hc, compute first the S1 fusion (H-mean of
two corresponding DSIs, on the same sub-interval); then
compute the S2 fusion (A-mean of all sub-interval DSIs).

5: Extract depth and confidence maps from the fused DSI.

3.5 Temporal Fusion

The functions presented in Section 3.4 can be used to fuse
any pair of aligned DSIs. Moreover, the functions can be
extended to handle more than two inputs: they allow us to
fuse an arbitrary number of registered DSIs, with a complexity
that is linear in the number of DSIs. The DSIs may be
populated by events from different cameras or, as we also
investigate, from different time intervals. The main idea is to
split an interval into multiple sub-intervals, build the DSI for
each of them and fuse all DSIs into a single one (Figure 3).
This strategy can be applied regardless of the number of
cameras in the system, hence it represents an independent
axis of variation. Moreover, the same technique enables camera-
and time- fusion, which we collectively call Alg. 2. The key
lines of Alg. 2 that change with respect to Alg. 1 are lines 3
and 4.

Given N fusion functions (N = 6 in Figure 6) there
are 2N2 possible fusion schemes considering the choice of
temporal fusion function, across-camera fusion function and
the order of application (Alg. 2). For brevity we reduce the
analysis to the comparison of N = 2 fusion functions: A and
H , which yield 8 possible fusion schemes.

Let At denote the fusion operation along the time (t) axis
using the arithmetic mean (A). Likewise, Hc is the fusion
operation along the camera (c) axis using the harmonic
mean (H). Then, At◦Hc first applies Hc (producing as many
DSIs as sub-intervals) and then At. Out the of 8 possibilities,
there are only 6 distinct ones due to commutativity:

Ac ◦At = At ◦Ac and Hc ◦Ht = Ht ◦Hc. (15)

The four remaining fusion combinations are:

At ◦Hc, Ac ◦Ht, Ht ◦Ac and Hc ◦At. (16)

Clearly, Ac◦At is equivalent to the approach of summing all
stereo events into a single DSI, and Ht◦Hc is very restrictive
because only edges seen by all cameras in all subintervals
will survive. Alg. 1 is also a particular case of Alg. 2 (Hc◦At).

3.6 Is Event Simultaneity Needed in Stereo?

Data association is a fundamental problem in event-based
vision [2]. In stereo, event simultaneity is a cornerstone
assumption to resolve data association (i.e., find corre-
sponding points) and subsequently infer depth. A thought-
provoking discovery made while developing our method
is that across-camera fusion does not need to be done on
corresponding intervals (step 4 in Alg. 2). We tested our
method with the shuffling block in Figure 3 enabled and it
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still produced good results (see Section 4.4.3). Hence, the
proposed stereo method foregoes the event simultaneity
assumption. The explanation is that given the camera poses,
events are transformed into a representation (i.e., the DSI)
where event simultaneity is not as critical as in the instanta-
neous stereo problem (Section 2). The camera poses serve as
a proxy allowing us to reproject stereo events to a common
DSI and fuse them, even if the DSIs are well separated in
time. The DSI representation is sufficient to produce 3D
reconstructions. Stereo is not solved by matching events, but
by comparing possibly non-simultaneous DSIs (each DSI
spans several thousands of events).

3.7 Complexity Analysis

Let us analyze the complexity of the proposed stereo meth-
ods in comparison with the monocular case. The main steps
of the methods are: DSI creation (event back-projection), DSI
fusion, maxima detection along viewing rays of the DSI, and
thresholding (AGT). If Ne is the number of events, Np is the
number of pixels in the reference view, NZ is the number of
depth planes in the DSI, and Nk is the number of pixels in
the AGT kernel (e.g., 5× 5), then the complexity of [10] is

O( NeNZ
︸ ︷︷ ︸

DSI creation

+NZNp
︸ ︷︷ ︸
arg max

+NpNk
︸ ︷︷ ︸

AGT

). (17)

In the case of Alg. 1 with Nc cameras, assuming that each
camera produces Ne events, there are Nc DSIs to build and
fuse. Hence, the complexity is:

O(NcNeNZ
︸ ︷︷ ︸

DSI creation

+NcNZNp
︸ ︷︷ ︸

DSI fusion

+NZNp
︸ ︷︷ ︸
arg max

+NpNk
︸ ︷︷ ︸

AGT

). (18)

In the case of Alg. 2 with Ns subintervals, there are Ns

DSIs per camera, but each one has Ne/Ns events, and so the
complexity of DSI creation does not change. Only the fusion
step becomes more expensive:

O(NcNeNZ
︸ ︷︷ ︸

DSI creation

+NsNcNZNp
︸ ︷︷ ︸

DSI fusion

+NZNp
︸ ︷︷ ︸
arg max

+NpNk
︸ ︷︷ ︸

AGT

). (19)

4 EXPERIMENTS

To assess the performance of our method we test on a wide
variety of real-world and synthetic sequences, which are
introduced in Section 4.1. Section 4.2 compares functions
for fusion across cameras. Section 4.3 compares our method
with three state-of-the-art methods on MVSEC and UZH
data. Section 4.4 evaluates temporal fusion and sub-interval
shuffling. Then, we evaluate on higher resolution data: driv-
ing dataset DSEC (Section 4.5), 1Mpixel VIO dataset TUM-
VIE (Section 4.6), and analyze the sensitivity with respect
to the camera’s spatial resolution (Section 4.7). We also
present trinocular examples (Section 4.8), analyze runtime
(Section 4.9) and sensitivity with respect to the camera’s
contrast threshold (Section 4.10). Finally, Section 4.11 sum-
marizes the findings and Section 4.12 discusses limitations
of the method.

TABLE 1: Parameters of stereo or trinocular event-camera
rigs used in the experiments.

Dataset Cameras Resolution [pix] Baseline [cm] FOV [°]

ECCV18 [38] DAVIS240C 240× 180 14.7 62.9

MVSEC [57] DAVIS346 346× 260 10.0 74.8

EVIMO2 [58] Samsung Gen3 640× 480 trinocular 75
2× Prophesee Gen3 640× 480 trinocular 70

DSEC [16] Prophesee Gen3 640× 480 60 60.1

TUM-VIE [59] Prophesee Gen4 1280× 720 11.84 90

ESIM [60] Simulator up to 1280× 960 20 77.3

4.1 Datasets and Evaluation Metrics

4.1.1 Datasets

We evaluate our stereo methods on sequences from five pub-
licly available datasets [16], [38], [57]–[59] and a simulator.
Sequences from [38], [58] were acquired with a hand-held
stereo or trinocular event camera in indoor environments.
Sequences in the MVSEC dataset [57] were acquired with
a stereo event camera mounted on a drone while flying
indoors. The sequences in the DSEC dataset [16] were
recorded with event cameras on a car that drove through
Zurich’s surroundings. The TUM-VIE dataset was recorded
with the sensor rig mounted on a helmet, and its sequences
contain indoor and outdoor scenes. The simulator [60], [61]
provides synthetic sequences using an ideal event camera
model and scenes built using CAD models.

Ground Truth. Some datasets contain ground truth poses
from a motion-capture system, which we use as input to
all tested methods. If camera poses are not available (e.g.,
TUM-VIE), we compute them using data from the sensor rig
(e.g., a visual-inertial odometry algorithm). Some datasets,
such as MVSEC and DSEC, contain ground truth depth for
quantitative assessment of the 3D reconstruction methods.
Depth is given by a LiDAR operating at 10.00–20.00 Hz. The
event camera pixels corresponding to points outside the
LiDAR’s field of view (FOV) or points close to the sensor
rig may not have a LiDAR depth value.

Rigs and Calibration. The main geometric parameters of
the event cameras used in the above datasets are sum-
marized in Table 1. The stereo rigs in [38], [57] consist of
two Dynamic and Active Pixel Vision Sensors (DAVIS) [53].
The DAVIS comprises a frame-based and an event-based
sensor on the same pixel array, thus calibration (intrinsic
and extrinsic) is achieved using the intensity frames, and
then it is applied to the events. The datasets whose cameras
output only events (EVIMO2, DSEC and TUM-VIE), are
calibrated by converting events to frames and calibrating
the latter (e.g., using [62]). All methods work on undistorted
coordinates.

4.1.2 Metrics

The performance of the proposed method is quantitatively
characterized using several standard metrics on the datasets
with ground truth depth (i.e., MVSEC and DSEC). We pro-
vide mean and median errors between the estimated depth
and the ground truth one (median errors are more robust
to outliers than mean errors). We also report the number
of reconstructed points, the number of outliers (bad-pix
[63]), the scale invariant depth error (SILog Err), the sum of
absolute value of relative differences in depth (AErrR), and
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Fig. 7: Fusion Functions. Semi-dense depth maps (top rows) and confidence maps (bottom row) produced by Alg. 1 using
the fusion functions in Figure 6 on data from [38]. The columns (fusion functions) follow the order in (12). The differences
are subtle: the depth maps on the left columns have fewer outliers than those on the right columns (zoomed-in insets). The
differences are more noticeable in the confidence maps, whose sharpness increase from right to left. Depth is color coded,
from red (close) to blue (far), in the range 0.55–6.25 m. Confidence maps are colored as in Figure 5.

TABLE 2: Depth errors for stereo DSI fusion across cameras (Section 4.2). Experiments on 200 s (110 million events) of the
three indoor flying sequences from MVSEC [57]. The maximum scene depth is 8.40 m.

Mean Abs Error [cm] ↓ Median Abs Error [cm] ↓ bad-pix [%] ↓ #Points [million] ↑
Sequence [57] flying1 flying2 flying3 flying1 flying2 flying3 flying1 flying2 flying3 flying1 flying2 flying3

minc ◦At 58.13 68.79 49.96 24.07 39.20 20.35 17.40 38.82 12.40 6.13 12.72 5.83
Alg. 1 (Hc ◦At) 60.16 68.83 51.94 25.45 39.63 21.15 18.58 38.91 13.70 6.61 13.54 6.27
Gc ◦At 63.57 70.48 55.22 28.17 41.51 22.97 20.30 39.68 15.30 6.90 14.18 6.35
Ac ◦At 78.78 79.95 60.35 38.15 47.63 25.03 27.20 44.64 17.56 5.97 14.53 4.50
RMSc ◦At 99.15 88.46 88.21 61.73 55.71 47.45 36.84 48.89 29.86 7.65 17.48 5.41
maxc ◦At 109.30 93.81 104.52 75.44 61.71 66.56 41.31 51.64 36.27 9.25 19.99 6.92

δ-accuracy values on the percentage of points whose depth
ratio with respect to ground truth is within some threshold
(see [64]). We also provide precision, recall and F1-score
curves [65]. Precision is the percentage of estimations that
are within a certain error from the ground truth. Recall (e.g.,
completeness or reconstruction density) is the percentage of
ground truth points that are within a certain error from the
estimations. The F1 score is the harmonic mean of precision
and recall, which is dominated by the smallest of them.
Since the depth maps obtained are semi-dense (while the
ground truth is often more dense), recall often dominates.

The method in Section 3 is presented for the events in
a time window. To apply the method to a whole sequence,
we split the latter into non-overlapping time windows and
apply the method to each of them. When thresholding to
obtain semi-dense depth maps (AGT step), we normalize by
a robust maximum DSI value obtained over the sequence,
which makes the comparisons more stable.

4.2 Comparison of Across-Camera Fusion Functions

We first evaluate Alg. 1 using the fusion functions in
Figure 6. Figure 7 shows qualitatively the corresponding
depth- and confidence maps for a sample sequence. The
columns follow the order in (12). The arithmetic mean (A)
corresponds to counting the back-projected event rays from

both cameras (left/right) on a single DSI. It has not been
proposed before in the literature and is a particular case
of our fusion methods. It provides moderate results by
conveying that a 3D point is detected if enough rays are
counted at a voxel, regardless of which camera the event ray
originated from. However, it does not filter out spurious ray
intersections (which do not correspond to actual 3D points)
until there is sufficient evidence. Spurious ray intersections
are more common in the stereo case than in the monocular
one because rays are originated from two moving sources
in stereo instead of just one. The columns in Figure 7 to the
right of A (i.e., quadratic mean and max) produce worse
results than A. They convey that 3D points are detected if
enough rays from at least one camera are counted at a voxel.
This strategy might be good to mitigate occlusions (edges
seen in only one camera), but it does not produce optimal
results if the edge is visible from both event cameras. Finally,
the columns to the left of A (i.e., G,H,min) produce better
results than A. This is due to the fact that they implement
a more conservative strategy: 3D points are detected only if
enough rays from both cameras are counted at a voxel. The
results are more noticeable in the confidence maps; these are
sharper in the first columns than in the last ones.

Table 2 quantitatively compares the six fusion functions
on the three indoor flying sequences from [57]. The experi-
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Fig. 8: Event-based Stereo 3D Reconstruction. Comparison of depth estimation results on several sequences using various
stereo methods. For visualization purposes, the first column depicts intensity frames from the DAVIS camera (not used by
any method). Columns 2 to 7 show semi-dense inverse depth maps produced by GTS [43], SGM [66], ESVO [15], our Alg. 1
and Alg. 2 (At ◦Hc and Ac ◦At, with Ns = 2), respectively. Depth maps are pseudo-colored, from red (close) to blue (far),
in the range 0.55–6.25 m for the rpg sequences [38] and in the range 1.00–6.50 m for the upenn MVSEC sequences [57].

ment consists of running stereo Alg. 1 on 200 s of data (110
million events), at 20 Hz. The estimated depth produces
≈28.4 million points on ≈4000 ground truth snapshots
for each fusion function. The differences between fusion
functions are most noticeable when less data is available,
and so we use events packets of 0.1s for this experiment.
Table 2 reports mean and median depth errors, bad-pixel
percentage and number of reconstructed points. Errors and
bad-pix follow a clear trend, decreasing towards the top
rows. The number of reconstructed points also decreases,
but non-monotonically in sequences 1 and 3. Median errors
are considerably smaller than mean errors, signaling the
presence of outliers (points with large depth errors). We
observe an accuracy-completion trade-off: the top rows are
more accurate than the bottom rows, but the bottom rows
provide more reconstructed points. Comparing the top two
rows (highest accuracy), the differences in accuracy are
small (mean: 2.41 %, median: 3.43 %) while the difference
in number of points is larger: 6.83 %. Hence these results
indicate, together with theoretical aspects (Section 3.4), that
the H-mean is advantageous to fuse across cameras.

4.3 Comparison with Stereo State of the Art

We assess the performance of our methods in comparison to
several event-based stereo methods, in Figure 8 and Table 3.

4.3.1 Baseline Methods

The Generalized Time-Based Stereovision method
(GTS) [43] follows a classical two-step approach: stereo

matching plus triangulation. Matching is based on a
per-event time-based consistency score. The Semi-Global
Matching (SGM) method [66] is adapted to event data
by feeding time images [47] and masking the produced
depth map at recent event locations [38]. We also compare
against the mapping module of Event-based Stereo Visual
Odometry (ESVO) [15], which fuses multiple depth
estimates using Student-t filters, with each estimate and
its uncertainty obtained by maximizing spatio-temporal
consistency between patches of stereo time images. GTS and
SGM are also endowed with depth propagation-and-fusion
filters, as implemented in [15]. Finally, we also compare
stereo against the monocular method EMVS [10], which
has not been carried out before. All baseline methods
produce depth maps at the LiDAR rate (20 Hz) and use
ground truth poses to propagate depth estimates in time, if
needed. ESVO on MVSEC data works by fusing 20 depth
maps generated at 20 Hz, i.e., 1 s of data. EMVS works
on event packets of 1 s, shifted by 50 ms (20 Hz). For a
sensible comparison with EMVS, baseline stereo methods
are also run on event packets of 1 s, shifted by 50 ms; this is
highlighted as “indep 1s” in Table 3.

4.3.2 Results

Figure 8 compares qualitatively the inverse depth maps
produced by the above stereo methods. To illustrate the
appearance of the scenes, the first column shows grayscale
frames from the DAVIS [67]. The remaining columns show
the output of GTS, SGM, ESVO and our methods. Because
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Algorithm Mean Err Median Err bad-pix SILog Err AErrR log RMSE δ < 1.25 δ < 1.252 δ < 1.253 #Points
[cm] ↓ [cm] ↓ [%] ↓ ×100 ↓ [%] ↓ ×100 ↓ [%] ↑ [%] ↑ [%] ↑ [million]↑

S
O

T
A

EMVS [10] (monocular) 33.78 14.35 3.84 4.20 12.74 20.72 84.75 94.87 97.99 1.27
ESVO [15] 25.00 10.59 3.35 3.48 10.19 18.83 90.44 95.76 97.98 2.04
ESVO indep. 1s 22.70 9.83 2.83 3.03 9.59 17.53 91.82 96.50 98.38 1.56
SGM indep. 1s 35.42 12.35 6.39 8.45 16.17 29.49 85.34 93.05 96.03 14.46
GTS indep. 1s 389.00 45.43 38.45 74.47 102.92 89.08 49.56 62.19 69.36 0.06

O
u

rs

Hc ◦At (Alg 1) 20.07 9.53 1.35 1.72 7.80 13.24 95.04 98.08 99.21 0.81
Hc ◦At (Alg 1) + MF 20.64 9.72 1.43 1.80 7.94 13.54 94.74 97.95 99.17 3.00
Hc ◦Ht 23.45 10.98 1.89 2.18 8.86 14.93 93.00 97.49 99.03 1.47
Ht ◦Ac 22.61 10.68 1.67 2.03 8.61 14.44 93.49 97.76 99.12 1.25
Ac ◦Ht 23.35 10.94 1.84 2.15 8.83 14.85 93.07 97.53 99.04 1.42
Ac ◦At 20.38 9.60 1.51 1.80 7.93 13.55 94.67 98.01 99.20 0.99
At ◦Hc 20.92 9.76 1.66 1.86 8.05 13.81 94.39 97.80 99.14 1.14
At ◦Hc + shuffling 22.60 10.71 1.68 2.11 8.58 14.28 93.49 97.76 99.13 1.24

TABLE 3: Quantitative evaluation and comparison of our proposed method with the state of the art. All metrics are
averaged over the three indoor MVSEC sequences (flying 1, 2, 3), where the maximum ground truth depth is 8.40 m. The
methods are evaluated on 200 s of data (110 million events and 4000 ground truth depth maps). Each estimated depth map
is computed using 1 s of event data (≈ 0.55 million events). MF: morphological filter (see text). Per-sequence results are in
Tables 7 to 9.

event cameras naturally respond to the apparent motion
of edges, which occupy only a small portion of the image
plane, most stereo methods produce semi-dense depth maps
representing 3D scene edges. GTS produces modest results,
albeit with many outliers. SGM has the most dense results
because its regularizer fills in depth estimates in regions
where the data fidelity term (time-image consistency) is
not dominant. ESVO gives remarkable results in terms of
accuracy and completeness, thus showing the effectiveness
of its probabilistic inverse depth filters. Finally, our methods
produce the best results: visually similar to ESVO but with
finer details, thus being able to resolve more and finer edges
in the scene.

Table 3 summarizes the quantitative performance with
the metrics defined in Section 4.1 and on the same MVSEC
sequences as [15], [38], [56], [68] (with ground truth depth).
The best result per column is highlighted in bold, and the
second best is underlined. Detailed, per-sequence tables
are provided in the Supplementary Material. Contrary to
previous works, we test on the entire sequences, consisting
of 200 s (110 M events). The top part of Table 3 reports
the results of the baseline methods, where ESVO is a top
performer. EMVS is slightly worse than ESVO, consistently
in most metrics, which shows that sensible stereo depth
estimation (ESVO’s Student-t filters) is beneficial to gain
accuracy and reduce the number of outliers with respect
to the monocular case. The bottom part of Table 3 reveals
the results of several variations of Alg. 2 ((15)-(16)) with
Ns = 2 sub-intervals. All accuracy and outlier metrics of
Alg. 1 are significantly better than those of ESVO and EMVS,
demonstrating the effectiveness of our fusion approaches:
outperforming the state of the art and quantifying the gap
between monocular and stereo methods.

Regarding completion, Alg. 1 recovers fewer points than
ESVO. This has a natural explanation: ESVO generates
several depth estimates per second that are propagated
and fused. Even using ground truth poses, the estimates
are noisy, and so they transfer to the fused image plane
producing thick edges (Figure 8). By contrast, our stereo

method generates depth estimates at the AGT thresholding
step, which is called just once, and therefore generates
thinner edges than ESVO (finer details and well distributed
at scene edges, as shown in Figure 8). To justify that lower
completion values are not an issue, we applied a 4-neighbor
morphological filter (MF) to dilate the mask of the depth
map produced by AGT, and filled in the depth values
using the center pixels. This almost quadrupled the number
of reconstructed points (from 0.81M to 3M) while had a
minimal effect on accuracy (row “MF” in Table 3), and
therefore reduces the importance of comparing completion
values given by very different algorithms. This also aligns
with ideas in semi-dense and sparse SLAM, where fewer
but more accurate points are preferred for several reasons:
to have better distributed points on the image plane and to
reduce the computational load (i.e., increase efficiency and
speed) [69].

Variants At ◦ Hc and Ac ◦ At are also top performing.
Despite the abundance of events accumulated in the DSI,
Table 3 quantifies a gap between Alg. 1 and Ac ◦ At (the
gap between the arithmetic mean and more concave fusion
functions like H would be most noticeable if less data was
used, as in Table 2). The last row of Table 3 is discussed in
Section 4.4.3.

Driving sequences. The tests on the outdoor MVSEC
sequences did not give good results because the camera
baseline is very small compared to the scene depth, so
geometrically the data is poor for 3D reconstruction. As
noticed in [56], most points in those sequences are beyond
the depth resolved by a disparity of 1 pix. Instead, we show
results of our method on driving sequences from the DSEC
dataset (Section 4.5), which has a larger baseline of 60 cm.

4.4 Temporal Fusion Experiments

4.4.1 Stereo

Figure 8 and Table 4 show the effect of temporal fusion.
Using as few as Ns = 2 sub-intervals in Alg. 2 already
delivers gains compared to the state of the art. While the
optimal choice of the number of subintervals Ns depends
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Ns Mean Err Median Err bad-pix SILog Err AErrR log RMSE δ < 1.25 δ < 1.252 δ < 1.253 #Points
[cm] ↓ [cm] ↓ [%] ↓ ×100 ↓ [%] ↓ ×100 ↓ [%] ↑ [%] ↑ [%] ↑ [million]↑

2 20.92 9.76 1.66 1.86 8.05 13.81 94.39 97.80 99.14 1.14
4 20.49 9.58 1.63 1.94 7.88 13.65 94.64 97.82 99.15 1.19
8 19.80 9.27 1.56 1.84 7.63 13.31 94.99 97.90 99.19 1.20

TABLE 4: Sensitivity of At ◦Hc (Alg. 2) with respect to the number of subintervals Ns. Continuation of Table 3.
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Fig. 9: Effect of temporal fusion (Ns = 4 sub-intervals) on
monocular 3D reconstruction. Rocks scene in Figure 4.

on many factors, such as the number of events processed
(duration of the intervals), the camera motion, etc. we found
that using Ns ∈ [2, 8] gives satisfactory results. This is
reported in Table 4, which is an ablation study of Alg. 2
At ◦Hc with respect to Ns. There is a clear trend: accuracy
and completion values increase with Ns. However, memory
and complexity also increases (linearly with Ns, see (19)).
Comparing the values in Table 3 and Table 4, we notice
that the improvement due to temporal fusion is not as
pronounced as that due to stereo parallax (for example, the
median error improves 32.00 % from EMVS to stereo At ◦Hc

(Ns = 2), and 5.02 % from At ◦Hc Ns = 2 to Ns = 8).

4.4.2 Monocular

As a by-product, temporal fusion using the H-mean is a
simple modification that can be applied to lightly improve
the monocular method [10], specially when little data is
available. While this is not the focus of the paper, we
provide an example: Figure 9 shows the effect of monocular
temporal fusion on the same slider rock-plane sequence as
Figure 4. It compares the evolution of DSIs with and without
temporal fusion. As expected, with H-mean fusion the DSI
converges faster to the 3D structure and deemphasizes the
locations of spurious ray intersections visible in the unfused
DSI.

The effect of temporal fusion is dramatic if we com-
pare the depth maps obtained from each subinterval with
the depth map obtained after fusion. This is illustrated in
Figure 10, where an interval of the upenn flying3 sequence
[57] is divided into Ns = 4 sub-intervals. The first four
columns depict depth maps produced by EMVS (row 1)
and Alg. 1 (row 2) applied to individual sub-intervals (each
with ≈56k events per camera). These depth maps are noisy;
however, when the DSIs are temporally fused and depth
is extracted (Alg. 2), the final depth maps are remarkably

cleaner (last column). Also, the fused stereo depth map has
fewer outliers than the monocular one.

4.4.3 Stereo Fusion from Shuffled Sub-intervals

Arranging events in time subintervals allows us to question
the event simultaneity assumption for depth estimation.
Figure 11 shows the results of applying the system in
Figure 3 with the shuffling block enabled to the MVSEC and
UZH sequences. The shuffling block modifies line 4 in Alg 2
to use different subintervals for the S1 fusion. The results are
surprising: despite using non-corresponding subintervals
(i.e., non-simultaneous events) for DSI fusion across cam-
eras, the obtained depth- and confidence maps are very sim-
ilar to those obtained with corresponding subintervals, with
some added noise. Hence, event simultaneity is not needed
for stereo depth estimation with our system (Figure 3). Only
the similarity between the DSIs to be fused (intermediate
ray density representations built by combining events and
camera poses) is required.

Quantitatively, the last row of Table 3 informs about
the depth errors and outliers incurred by shuffling. The
differences with respect to the unshuffled case are small
(slightly higher errors and outliers), which is remarkable
given the quite diverse input events.

4.5 Experiments on DSEC Driving Dataset

We also give results on sequences from the driving dataset
DSEC [16]. Figure 12 shows qualitative results. Driving sce-
narios are challenging for event-based sensors because for-
ward motions typically produce considerably fewer events
in the center of the image (where apparent motion is small)
than in the periphery. Forward motion is also not particu-
larly amenable for 3D reconstruction methods compared to
sideways motions. Nevertheless, our stereo method shows
notable results on this dataset. As expected, more 3D points
are recovered in the periphery than in the center of the
image, except when the car is turning.

Quantitative results are summarized in Table 5. Because
the amount of events recorded by the VGA-resolution
Prophesee Gen3 cameras is exorbitant, the experiments are
carried out on a subset of the dataset. We test Alg. 1 and the
baselines on 635 million events. Similarly to the results on
MVSEC, Table 5 indicates that Alg. 1 has higher accuracy
than ESVO and EMVS (at least 18.65 % better in mean
absolute error, and 42.30 % in median absolute error). ESVO
has marginally higher inlier values (1.45 % for δ < 1.25). The
monocular method produces the largest errors (the mean
and median absolute errors are 1.7-2.8× larger than those
of stereo Alg. 1), and also a larger number of bad pixels
and outliers. We also apply a morphological dilation filter
(MF), with similar conclusions as in Table 3: the number
of reconstructed points triples while the accuracy remains
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Fig. 10: Effect of temporal fusion on the obtained depth maps. Depth is color coded as in Figure 8.
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Fig. 11: Event Simultaneity? Fusion across cameras and time with shuffled time intervals (Ns = 2). Same scenes as Figure 8.

better than ESVO’s. Finally, we notice that the ground truth
depth of DSEC is sparser than that of MVSEC. This is
due to the increased pixel resolution (VGA size) and the
fact that LiDAR points do not fill as many camera pixels
(percentage-wise) as in lower resolution cameras. Please see
the accompanying video for a visual comparison between
our method, ESVO, EMVS and GT.

4.6 Experiments on TUM-VIE Dataset

We present depth estimation results using Alg. 1 on the
TUM-VIE dataset [59], the first public visual-inertial dataset
with 1 Megapixel stereo event cameras (Prophesee Gen4
[5]). To the best of our knowledge, our work is the first to
provide results on this new event-based dataset (the original
paper presented the data but did not evaluate it on any
event-based algorithm). Our experiments have served as a
means to debug and fix the dataset. Since the dataset has no
ground truth depth, we only present qualitative results.

Figure 13 presents results in indoor and outdoor se-
quences. Indoor sequences recorded in a room have ground
truth poses given by a motion capture (mocap) system
(columns 1 and 2). The indoor scene depth is small relative
to the camera baseline (11.84 cm). Nevertheless, our method
does a notable job in recovering 3D structure, with reduced
number of outliers and clean the depth maps. Having set the

reference view of the fused DSI on one camera trajectory, the
large baseline makes the event rays back-projected from the
other camera appear nearly parallel, which does not favor
fusion.

For sequences recorded outside the mocap room, we
computed ground truth poses using Basalt’s VIO [70] on
the stereo frames and IMU. The last two columns of Fig-
ure 13 depict the performance of our stereo method on such
sequences. The space-sweeping method to build the DSIs
works best with sideways translations that produce parallax
necessary for the convergence of the back-projected rays.
However, majority of the non-mocap sequences comprise
forward camera motions, which contribute little parallax
and also produce fewer events; hence they are not amenable
for 3D reconstruction. The forward motion and the lower
quality of camera poses lead to an overall poorer reconstruc-
tion quality compared to the sequences in the mocap room.
On the other hand, the stereo setup is able to exploit the
camera baseline as additional parallax for 3D reconstruction.
In the accompanying video we provide a visual comparison
between our method and ESVO on the TUM-VIE dataset,
showing that our method performs better at higher resolu-
tions than ESVO.

We noticed that the calibrationA sequences (skate-easy,
desk2) produced better results than the calibrationB se-
quences, which leads us to believe that the calibration errors
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Fig. 12: Results on DSEC data [16]. Top row: Semi-dense depth maps (overlaid on color frames) estimated by Alg. 1 on event
packets of 200 ms. Depth is color-coded from red (close) to blue (far), in the range 4–200 m. Bottom row: confidence maps.

Algorithm Mean Err Median Err bad-pix SILog Err AErrR log RMSE δ < 1.25 δ < 1.252 δ < 1.253 #Points
[m] ↓ [m] ↓ [%] ↓ ×100 ↓ [%] ↓ ×100 ↓ [%] ↑ [%] ↑ [%] ↑ [million]↑

EMVS [10] (monocular) 5.64 2.52 13.68 13.23 25.52 36.49 72.56 87.12 93.56 1.31
ESVO [15] 3.88 1.56 12.08 9.23 18.89 30.80 84.53 92.57 95.63 3.40
Hc ◦At (Alg 1) 3.27 0.90 10.75 8.19 17.48 28.73 83.30 91.56 95.62 1.25
Hc ◦At (Alg 1) + MF 3.51 0.96 11.81 8.89 18.84 29.99 81.72 90.68 95.07 3.83

TABLE 5: Quantitative evaluation on the driving dataset DSEC (zurich04a sequence) with maximum ground truth depth
50 m. The methods are evaluated on 35s of stereo data, consisting of 635 million events and containing 350 ground truth
depth maps. Each depth map is computed using 0.2 s of event data (≈ 3.5 million events). ESVO is executed fusing two
depth maps generated at 10 Hz (LiDAR rate), i.e., 0.2 s of event data. MF: morphological filter.

were significant in the latter. We also compared the results
of our method with two different sources of ground truth
poses (the mocap system and Basalt), and observed no
significant differences in the depth- and confidence maps.
Hence, we concluded that (i) the poses from Basalt may be
considered as accurate as the mocap for short time intervals
(e.g., 0.5 s, with ≈10M events), and (ii) there is robustness
to noise: our methods provide reasonable depth estimates
using poses from a VIO (non-mocap) algorithm.

Event cameras offer advantages over frame-based cam-
eras to handle HDR scenes, as demonstrated in Figure 14.
In the first row, the grayscale frame is overexposed in the
outdoor area, whereas the events capture the floor tiles and
garden scene well. In the second row, the end of the corridor
is underexposed in the frame, whereas the events capture
the whole scene. Our stereo method correctly estimates
depth in all regions due to the HDR capabilities of the
events.

4.7 Effect of Varying the Sensor’s Spatial Resolution

So far, results on datasets from three different resolutions
have been presented: DAVIS346 (MVSEC), Prophesee Gen3
(DSEC) and Prophesee Gen4 (TUM-VIE). However, the
scenes are all different, some do not have ground truth
depth, and calibration errors may influence the results. To
analyze the response of our stereo Alg. 1 to varying pixel
resolutions under controlled conditions (same scene, same
FOV, etc.), we generate events using a simulator (ESIM
[60]). We use the textured scene flying room, with a camera
baseline of 20 cm and the OpenGL renderer. The scene is
visualized in Figure 15 (bottom right). Inspired by MVSEC,

DSEC and TUM-VIE datasets, three sensor resolutions are
tested: 320 × 240 pix, 640 × 480 pix and 1280 × 960 pix,
respectively.

We run Alg. 1 on stereo events generated during the
same time duration (increasing the sensor resolution in-
creases the number of events generated within the same
time duration: roughly 0.25 Mev, 2.25 Mev and 14.3 Mev
for the three above resolutions, respectively). Figure 15
compares qualitatively the semi-dense depth maps and
confidence maps recovered by our method on the three
sensor resolutions inputs. The observations from these im-
ages are complemented by the quantitative analysis in Fig-
ure 16. Figure 16a demonstrates quantitatively that depth
errors decrease as the sensor resolution increases, for both
monocular and stereo cases. Stereo fusion reduces the error
almost by half with respect to the monocular case. Next, we
also analyze the density of the reconstructions. Figure 16
also reports the precision, recall and F1-score plots for the
depth maps in Figure 15. A clear trend is observed: the
precision increases with increasing camera resolution (lower
errors, like in Figure 16a). For the highest resolution tested
(1280×960 pix), the precision reached ≈ 97 % within 4 cm of
depth error tolerance. However, the recall curves state that a
lower resolution may allow us to recover more 3D points in
the scene (6.00 % vs. 2.00 %), at the expense of bigger depth
errors. Since the depth outputs are highly sparse due to the
nature of event data, the F1-score is heavily skewed by the
low values of recall.
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Fig. 13: Depth estimation using 1Mpix event cameras. Depth estimated using Alg 1 on 0.50 s intervals of data from TUM-VIE
[59]. Depth maps are color-coded from red (near) to blue (far). The range is 0.45–4 m for indoor sequences in the motion-
capture room (6dof, desk2), 1–20 m for the corridor sequence skate-easy and 3–200 m for the outdoor sequence bike-easy.

Frame (left camera) Events (left camera) Confidence map Depth map

Fig. 14: HDR scenes. Output of Alg. 1 on HDR scenes from the TUM-VIE dataset. Unlike frame-based cameras, event
cameras can perceive both under- and over-exposed regions of the scene well, leading to good depth estimation throughout.

4.8 Fusing More than Two Event Cameras

We also test our method on sequences from the EVIMO2
dataset [71], recorded with a trinocular event-camera rig
consisting of a Samsung DVS Gen3 [72] and two Prophesee
CD Gen3 event cameras [73], all with 640×480 pix. The field
of views (FOVs) of the cameras have a narrow overlap due
to the way they are arranged in the sensor rig (Prophesee
event cameras are in portrait mode, whereas the Samsung
DVS, in the middle, is in landscape mode). We set the central
camera (Samsung DVS) as the reference one.

Figure 17 shows the depth- and confidence maps from
each camera separately and for the fused DSI during two
motions (two pairs of columns): a normal one and a fast
motion, with retinal speeds between 1900 pix/s for objects
in the far end and 3500 pix/s for objects close to the camera.
The resulting semi-dense depth map obtained from the
fused DSI inherit the above-mentioned narrow FOV overlap
of the cameras. Overall, the fused depth map suppresses
noise that would otherwise appear as very prominent out-
liers in the individual depth maps. This experiment shows
that our method naturally fuses multiple cameras with linear

TABLE 6: Runtime comparison of the different steps of three
algorithms. Parameters: Ne ≈ 235 kev, Nc = 2, Np ≈ 90k
(DAVIS346), NZ = 100, Nk = 25 (5 × 5), Ns = 2 for Alg. 2
(here, At ◦Hc). Time is given in ms.

EMVS [10] Alg. 1 Alg. 2

DSI creation 233.96 520.01
DSI fusion – 51.09 98.01
arg max 36.34 35.62
AGT 0.28 0.28

complexity, i.e., without handling them by pairs, as prior
works do.

4.9 Runtime

Complementing the complexity analysis in Section 3.7, Ta-
ble 6 presents the average time taken in each step (DSI
creation, DSI fusion, argmax and AGT thresholding) over
100 sample runs, on a laptop with an Intel i7-10510U 8-core
CPU. We consider typical numbers from a stereo DAVIS346
configuration [74]. For comparison, we also report the num-
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Fig. 15: Effect of the sensor’s spatial resolution. Output of Alg. 1 on events simulated with different camera resolutions. The
scene –flying room– is shown on the top right. Depth maps are colored from red (near) to blue (far) in the range 1.3–4 m.
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Fig. 16: (a) Depth errors across various camera resolutions for monocular [10] and stereo Alg. 1 methods. Maximum scene
depth is 2.70 m. (b)-(d) Precision, recall and F1-score for depth estimated using Alg. 1 on scenes of different resolutions.

bers obtained with only one of the cameras (monocular
setup [10]). DSI creation takes the longest time as it is a
complex transformation and depends on the number of
input events. We did not find major runtime differences in
our implementation of the fusion functions tested (6)–(11).

The numbers in Table 6 agree with complexity formulas
(17)–(19). The DSI creation runtime of the stereo methods is
roughly twice (Nc = 2) that of the monocular method (520
vs. 234 ms). The temporal fusion step with Ns = 2 sub-
intervals is twice as expensive as that with one interval (98
vs. 51 ms). The arg max and AGT steps are the same for all
methods, thus no major runtime differences are observed.

4.10 Effect of Varying the Contrast Sensitivity

Due to the sparse nature of event data, which is largely
controlled in the camera by the contrast sensitivity thresh-
old, it is interesting to analyze the performance of our 3D
reconstruction method for various sparsity levels. To this
end, we ran Alg. 1 on stereo events simulated using ESIM
[60] with five levels of event generation contrast threshold
θ = {0.05, 0.1, 0.2, 0.4, 0.8}. A small contrast threshold
implies that a small change in brightness is sufficient to
trigger events, and thus leads to the generation of many
events from edges and textures in the scene (i.e., high sensor

sensitivity). Figure 18 illustrates the 3D reconstruction qual-
ity across varying contrast thresholds for the flying room
sequence. In general, we observe stable reconstructions as
the contrast threshold increases, except for the fact that
fewer points are recovered (e.g., on the floor) and more
noisy points (i.e., outliers) appear. This is also observed
quantitatively in Figure 19a, where the mean error increases
for high contrast thresholds (the larger number of outliers
distort the mean error) while the median error remains
fairly constant (a sign of “stability” if outliers are removed).
Figures 19b–19d depict the precision, recall and F1-score
curves for depth predicted using data from different con-
trast thresholds. We observe that low contrast thresholds
provide better precision and recall since they have fewer
noisy outliers and recover more 3D points respectively. The
increase in precision as well as recall comes at the cost of
increased computational overhead as more events need to
be processed at lower contrast thresholds.

In summary, the synthetic experiments suggest that in-
creasing the event count either by decreasing the contrast
threshold or increasing the spatial resolution of the camera
improves 3D reconstruction accuracy. This comes at the cost
of increased computational effort needed to process more
input data.
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(a) Trinocular rig from EVIMO2v1.
Used with permission [71], 2019.
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Fig. 17: Trinocular event-camera fusion. Output of Stereo
Alg. 1 on the SFM sequence 03 00 from the EVIMO2 dataset
[71]. The first row shows an RGB image of the scene and
the events (from the Samsung DVS [72]) over a short time
duration, displayed in red/blue according to polarity. The
following rows show the output of our stereo method using
the three event cameras in the dataset.

While event cameras are dominated by those that com-
pute temporal contrast [4] (DVS), an “event” could have a
broader interpretation, such as any meaningful information
that decreases demands on bandwidth, memory, and power
for data transmission, storage and processing. This work has
analyzed the advantages that event cameras offer for stereo
depth estimation. Varying more than the temporal contrast
is possible with different prototype vision sensors, such as
Parallel Processor Arrays (PPAs). These sensors embed a
processor within each pixel and are thus programmable,

enabling a richer family of operations (at the expense of
larger pixel sizes or more transistor layers) [75].

4.11 Discussion

Let us summarize some of our findings. In the UZH dataset
(Figure 8, top three rows), our method achieves best results
compared to the state of the art (SOTA). Figure 8 also
shows that our stereo method, in its different variations,
recovers depth at more fine-detailed structures than SOTA
method ESVO.

In the indoor MVSEC dataset, Table 3 shows that our
stereo method outperforms SOTA quantitatively across mul-
tiple standard metrics. We also show that the effect of
time fusion, while being significant because it speeds up
structure convergence and cleans up depth maps, has a
smaller effect than that of fusion induced by parallax from
an additional sensor (i.e., switching from monocular to
stereo) (Tables 3 and 4). Remarkably, both strategies are
unified in the same theory of fusion of refocused events that
we propose.

The outdoor driving MVSEC sequences have very small
stereo baseline, which makes them poor for 3D reconstruc-
tion [76], hence we test on the recent DSEC dataset. Here,
our method also outperforms the SOTA method ESVO
(Table 5).

The TUM-VIE dataset allowed us to demonstrate ex-
periments on high event camera resolution (1Mpix) and
robustness to errors in the camera poses. The EVIMO2
dataset allowed us to establish multi-camera (trinocular)
depth estimation and during high-speed motion (which
blurs regular frames).

Throughout the experiments (MVSEC, DSEC, TUM-VIE,
time fusion, etc.), we have shown the gains with respect to
the monocular method; the main advantages of stereo are:
higher accuracy, outlier rejection, and faster convergence
(due to the additional parallax).

Additionally, we have analyzed the sensitivity with re-
spect to the camera’s spatial resolution and contrast thresh-
old: the higher the resolution or the lower the threshold,
the more accurate our method becomes, at the expense of
computational burden due to the larger number of input
events. We also analyzed the computational performance,
showing the agreement between complexity (theory) and
runtime (practice).

Most interestingly, we have analyzed the effect of shuf-
fling events: our method does not need event simultaneity.
It can fuse DSIs even if they are built from events well
separated in time. The best results are obtained fusing
identical intervals.

4.12 Limitations

Our method assumes, like multi-view 3D reconstruction
methods for standard cameras, accurate calibration and
camera poses. These assumptions allowed us to concen-
trate our efforts on investigating fusion functions for event-
based 3D reconstruction under good multi-view alignment
conditions. Calibration is today of good quality using the
DAVIS frames or image reconstruction [62] if frames are not
available. In a full SLAM system, noise in the poses can
propagate to the 3D reconstruction module. The TUM-VIE
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Fig. 18: Effect of varying the camera’s contrast threshold. Output of stereo Alg. 1 on simulated events generated with varying
contrast threshold θ. As θ increases, the sparsity of recovered points increases and the quality of depth errors decreases.
Depth maps are colored from red (near) to blue (far) in the range 1.3–4 m.
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Fig. 19: (a) Sensitivity of depth errors with respect to the sensor’s contrast threshold. Maximum scene depth is 2.70 m. (b)-
(d) Precision, recall and F1-score for depth estimated using Alg. 1 using events simulated with different contrast thresholds.

experiments, with different pose sources (mocap vs. VIO
algorithm), showed the robustness of our method to realistic
poses (i.e., noisy as produced by a VIO algorithm). This
is encouraging, as future research on event-based camera
tracking could achieve such accuracy and be combined with
our stereo method. Recent results on the monocular case [77]
suggests that such accuracy and robustness is achievable
combining events and frames.

Another assumption of our method is that events are
dominantly triggered by moving edges (brightness con-
stancy). Hence, it may fail to estimate depth accurately from
events that are not due to motion, such as those caused by
flickering lights. Such events may be removed during pre-
processing [78].

5 CONCLUSION

We presented simple and effective state-of-the-art algo-
rithms for event-based multi-camera 3D reconstruction
in SLAM, combining across-camera and temporal fusion.
Thanks to the availability of accurate camera poses, match-
ing within and across event cameras happens implicitly in
DSI space, which removes the need for event simultaneity
(explicit data association). We investigated DSI space fusion
methods, and showed how the same technique unifies tem-
poral and camera fusion. We proposed a spectrum of fusion
functions, including summing event rays in multi-camera

settings, and objectively analyzed the results they produced.
Our theoretical design was supported by a comprehensive
set of experiments: testing on five established datasets and
a simulator on a variety of scenarios, on millions of input
events, while outperforming state of the art methods. Fusion
functions like the H-mean are beneficial for fusion because
they have strong concavity, are bounded and smooth. The
effect of the parallax given by an additional camera is
stronger than the effect of temporal fusion. Our method
works well regardless of the spatial resolution, which is
interesting given the increasingly high spatial resolution of
event cameras (see the comparisons with ESVO on DSEC
and TUM-VIE datasets in the accompanying video).

Future research may look into combining the proposed
method with an appropriately designed camera tracking
algorithm to yield a full event-based stereo visual SLAM
pipeline. The results on the driving datasets open the door
to applying the proposed technique for creating HDR edge
maps of a vehicle’s surroundings and using it for later pro-
cessing stages of Spatial AI and mobile intelligent systems
[79], such as spatial awareness or extraction of semantic
information.

APPENDIX

Tables 7 to 9 report depth estimation metrics on individual
sequences of the MVSEC dataset. Table 3 is the average of
these per-sequence tables.
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Algorithm Mean Err Median Err bad-pix SILog Err AErrR log RMSE δ < 1.25 δ < 1.252 δ < 1.253 #Points
[cm] ↓ [cm] ↓ [%] ↓ ×100 ↓ [%] ↓ ×100 ↓ [%] ↑ [%] ↑ [%] ↑ [million]↑

S
O

T
A

EMVS [10] (monocular) 39.37 14.95 3.05 4.72 13.25 22.10 82.03 93.43 97.62 1.21
ESVO [15] 24.04 10.21 2.54 2.94 9.76 17.17 91.43 96.53 98.55 1.95
ESVO indep. 1s 23.39 10.03 2.18 2.79 9.78 16.72 91.57 96.84 98.79 1.41
SGM indep. 1s 35.45 13.61 5.54 7.35 15.03 27.46 85.96 93.51 96.40 11.64
GTS indep. 1s 700.37 38.39 32.51 79.26 111.21 91.44 54.27 67.16 73.39 0.03

O
u

rs

Hc ◦At (Alg 1) 22.53 9.72 1.30 1.94 7.91 14.11 93.49 97.50 99.17 0.96
Hc ◦At (Alg 1) + MF 23.33 9.90 1.39 2.08 8.12 14.61 93.16 97.28 99.05 3.48
Hc ◦Ht 24.38 10.81 1.40 2.11 8.59 14.71 92.53 97.38 99.15 1.24
Ht ◦Ac 23.78 10.37 1.26 2.03 8.36 14.41 92.72 97.54 99.21 1.02
Ac ◦Ht 24.48 10.78 1.39 2.14 8.62 14.81 92.48 97.34 99.13 1.20
Ac ◦At 21.93 9.35 1.22 1.87 7.75 13.85 93.65 97.65 99.23 0.87
At ◦Hc 22.32 9.63 1.31 1.92 7.85 14.02 93.62 97.51 99.17 1.03
At ◦Hc + shuffling 23.92 10.60 1.28 2.01 8.40 14.36 92.76 97.55 99.21 1.11

TABLE 7: Quantitative comparison of the proposed methods with the state of the art. MVSEC flying1. See Table 3.

Algorithm Mean Err Median Err bad-pix SILog Err AErrR log RMSE δ < 1.25 δ < 1.252 δ < 1.253 #Points
[cm] ↓ [cm] ↓ [%] ↓ ×100 ↓ [%] ↓ ×100 ↓ [%] ↑ [%] ↑ [%] ↑ [million]↑

S
O

T
A

EMVS [10] (monocular) 31.42 13.01 6.15 4.56 13.37 21.80 84.07 94.72 97.88 1.17
ESVO [15] 21.34 8.97 3.75 3.48 9.32 19.14 91.60 95.88 97.86 1.89
ESVO indep. 1s 20.42 8.63 3.50 3.24 9.14 18.35 92.03 96.19 98.19 1.41
SGM indep. 1s 32.94 8.75 8.29 9.50 15.82 31.54 84.40 92.33 95.48 16.95
GTS indep. 1s 167.14 37.23 43.08 71.91 94.78 86.93 49.36 60.54 67.76 0.07

O
u

rs

Hc ◦At (Alg 1) 18.20 8.49 1.77 1.78 8.13 13.59 95.53 98.13 99.08 0.65
Hc ◦At (Alg 1) + MF 18.58 8.68 1.86 1.81 8.19 13.71 95.27 98.07 99.09 2.42
Hc ◦Ht 22.47 10.13 2.92 2.46 9.41 16.07 92.66 97.19 98.79 1.39
Ht ◦Ac 21.37 9.86 2.50 2.26 9.13 15.41 93.41 97.60 98.92 1.18
Ac ◦Ht 22.28 10.06 2.81 2.40 9.35 15.88 92.80 97.28 98.82 1.34
Ac ◦At 19.04 8.76 2.24 1.99 8.44 14.40 94.68 97.89 99.02 1.01
At ◦Hc 19.82 8.91 2.55 2.09 8.60 14.77 94.16 97.55 98.94 1.17
At ◦Hc + shuffling 21.66 9.91 2.60 2.22 9.16 15.27 93.14 97.53 98.92 1.22

TABLE 8: Quantitative comparison of the proposed methods with the state of the art. MVSEC flying2. See Table 3.

Algorithm Mean Err Median Err bad-pix SILog Err AErrR log RMSE δ < 1.25 δ < 1.252 δ < 1.253 #Points
[cm] ↓ [cm] ↓ [%] ↓ ×100 ↓ [%] ↓ ×100 ↓ [%] ↑ [%] ↑ [%] ↑ [million]↑

S
O

T
A

EMVS [10] (monocular) 30.54 15.09 2.31 3.33 11.59 18.27 88.16 96.45 98.47 1.42
ESVO [15] 29.62 12.61 3.78 4.02 11.50 20.20 88.28 94.88 97.52 2.29
ESVO indep. 1s 24.29 10.84 2.81 3.05 9.84 17.54 91.87 96.46 98.16 1.86
SGM indep. 1s 37.86 14.69 5.33 8.52 17.65 29.46 85.67 93.31 96.21 14.81
GTS indep. 1s 299.48 60.66 39.75 72.24 102.77 88.87 45.04 58.86 66.94 0.08

O
u

rs

Hc ◦At (Alg 1) 19.49 10.38 0.99 1.43 7.35 12.01 96.09 98.60 99.38 0.82
Hc ◦At (Alg 1) + MF 20.02 10.59 1.02 1.50 7.50 12.30 95.79 98.51 99.36 3.11
Hc ◦Ht 23.48 11.99 1.36 1.95 8.58 14.01 93.79 97.90 99.14 1.79
Ht ◦Ac 22.68 11.83 1.24 1.81 8.35 13.50 94.33 98.14 99.24 1.55
Ac ◦Ht 23.29 11.97 1.32 1.91 8.52 13.86 93.94 97.97 99.17 1.72
Ac ◦At 20.17 10.68 1.06 1.53 7.59 12.40 95.67 98.48 99.36 1.09
At ◦Hc 20.61 10.74 1.13 1.59 7.68 12.64 95.40 98.35 99.30 1.23
At ◦Hc + shuffling 22.24 11.60 1.17 1.73 8.17 13.20 94.58 98.21 99.27 1.39

TABLE 9: Quantitative comparison of the proposed methods with the state of the art. MVSEC flying3. See Table 3.
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