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Abstract— Vision-based end-to-end driving suffers from do-
main gaps between simulation data and real-world data. In the
application of autonomous driving, diverse real-world data is
costly to collect, even more so for edge cases, such as collisions
or unpredictable behavior. Models trained on real-world data
can benefit from simulated data through transfer learning, but a
domain gap stands in the way of high-level generalization, even
among real world datasets. Research on vision transformers has
shown in recent years that attention-based architectures have
better generalization capabilities than CNN-based counterparts.
Ideally, vehicles that have learned to drive in one domain should
generalize well to unseen domains regardless of differences in
lighting, distortions, and coloring; we characterize this task as
single-source or limited-source domain generalization. In this
paper, we present a novel video augmentation and contrastive
learning routine for the behavioral cloning vehicle steering task
which takes advantage of vision transformers’ invariance to
patch order, as well as similar label spaces of control sequences
across domains.

I. INTRODUCTION

Autonomous driving is an application where meaningful
learning is crucial for generalizing learned behaviors across
domains. Learning across domains is a common problem,
useful to current infrastructure and resources, and necessary
for utilizing datasets collected from all kinds of environments
in the real world. Difficult edge cases such as dangerous
driving, adverse weather behavior, or vehicle accidents are
easily collected in simulation. Thus, behaviors learned in
the simulated domain should also be both meaningful and
generalizable to the real world.

In this work, we focus on the task of purely vision-based
behavioral cloning steering angle prediction for autonomous
vehicles, with the goal being single or limited-source domain
generalization. Single or limited-source domain generalization
is crucial to driving models for efficient fine-tuning and
is indicative of meaningful behavior learning from source
data. Domain generalization is most traditionally achieved
by involving a mixed bag of data from several domains in
training. Driving environments across the world along with
small differences in sensors (such as camera distortion) are too
diverse to account for in every dataset, but are also inherently
similar in dynamics and structure in many ways.

Given the setting of autonomous driving, spatio-temporal
visual learning is natural and does not require additional
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sensors with regard to physical hardware. The temporal
dimension should be highly informative for networks to
predict steering angle, as the trajectory of previous data can
greatly affect the steering decision given two similar images.

Virtually all driving datasets share high-level visual el-
ements, including lane markings, a horizon and sky, and
complex scenes with cars, signs, lights, and trees. An effective
machine learning system should benefit from the fact that
the co-occurrence of these objects is nearly the same across
datasets, even if the pixel representations are different. From
this observation, we hypothesize that augmenting input video
sequences should improve learning generalization specifically
for driving applications, and that common label spaces can
be leveraged with contrastive learning to further improve
cross-domain finetuning.

We propose an improved learning scheme which enforces
learning of out-of-distribution data by grouping samples based
on common control sequence labels and diversifying input
image sequences through patch-based augmentation. Patch-
based augmentation involves randomly changing brightness,
saturation, contrast, and hue across frame-level patches in
a single image sequence. This augmentation leverages the
property that vision transformers tokenize input into patches
before passing it into the network, and that learning is
invariant to the order of patches. In contrast, convolution-
based networks may require perturbation continuity on the
frame level.

Our model shows similar or improved performance com-
pared to other methods involving data beyond the source
domain. In contrast to alternatives in distillation or domain
adaptation, our contrastive training routine for robot behav-
ioral cloning requires data from only one domain at minimum,
and also does not require another network for adversarial
feature learning. Our method is also simple to implement,
with no added complexity to existing models, and only a
fraction amount of added wall-time on training compared
to adversarial methods. Unseen test domains include other
simulation data with visual differences and real-world data,
which are not involved during phase one training. We also
show the effect of spatial and temporal transfer in an ablation
study.

Since spatio-temporal transformers have not been explored
in end-to-end driving, to the best of our knowledge, we also
provide results on video-input architectures on the end-to-end
driving task to provide performance baselines for our method.

In summary, the main contributions of this paper include:
1) A modified supervised contrastive learning scheme for

behavioral cloning robot learning applications such as



Fig. 1. Contrastive Loss for Steering. Contrastive loss for behavioral cloning differs from supervised contrastive learning [1] in that positive samples are
defined on a continuous similarity metric rather than dicretely "positive" or "negative". "Positiveness" is determined by cosine similarity between steering
label vectors. This can be extended to behavioral cloning problem in general, where a temporal sequence of control labels is accessible.

learn-to-steer, which leverages continuous similarity
between samples via control sequence labels.

2) A patch-based video augmentation scheme for vision
transformer network architectures, which introduces
different coloration perturbation combinations in one
sample more efficiently in training than sample-level
perturbations.

3) Results and ablation study on the performance of
transformer-based end-to-end driving models, which
had previously not been tested

II. RELATED WORKS

Spatio-temporal Vision Transformers.
A natural extension of vision transformers is transformers

modeling spatio-temporal dependencies from 3-dimensional
image data [2]–[6]. The self-attention mechanism in trans-
formers, which has an O(N2) computational complexity for
n tokens, becomes more pronounced with an extra temporal
dimension. Thus works exploring transformers in spatio-
temporal settings are faced with mitigating computational
complexity as well as achieving higher performance [7].
Arnab et al. propose a video vision transformer (ViViT)
which, similarly to traditional vision transformers, uses vanilla
transformer-based architecture on video data and explores
different methods of modeling efficient space-time relation-
ships through attention schemes or factorized architectures [8].
Around the same time, Bertasius et al. proposed TimeSformer,
which captures spatio-temporal dependencies within data
via different attention schemes [9]. Similarly, XViT also
explores different attention schemes across the temporal
dimension [10]. We benchmark these architectures for the
end-to-end steering task, which is relatively unexplored and
fundamentally different from perception tasks in that the label
describes a more abstract notion of control.

Video Augmentation. While image augmentation become
a practical standard for spatial recognition tasks, sophisticated

video-based augmentation is much less explored due to
challenges introduced by temporal continuity. Augmentations
changing the pixel position of objects in the scene must be
consistent across all frames, and label manipulation is not
as straightforward as in image classification tasks. Video
augmentation can be performed naively via popular image
augmentation methods such as MixUp, Cutout, CutMix,
RandAug, and AugMix [11]–[15] by extending augmentations
to every frame in one sample and keeping the mixing of
samples consistent to frame index.

CutMix was extended to videos in VideoMix [16] in
this fashion, where video samples were mixed similarly to
CutMix, except video cuboids were inserted into samples
instead of 2-dimensional image patches. Budvytis et al.
introduced a large-scale method for video augmentation on
segmentation tasks for driving [17], in which hand-labeled
samples at certain keyframes were used to infer pixel-level
labels for in-between frames for video. In contrast, our work
handles a more simple and generalizable problem for data
augmentation such that label inference is not necessary. Sun
et al. [18] also leverages video augmentation in the context
of contrastive learning, but does so by explicitly providing
augmentation parameterizations to the learner. Our method
involves augmentation on the sample level, where additional
augmentation encoders are not involved. Our method also
aims to address domain generalization, whereas the goal in
this work is same-domain generalization.

Contrastive Learning for Spatio-temporal Control
Contrastive learning is a popular method first introduced in
[19] which, based on some grouping criteria, "pulls“ similar
samples in the feature space closer and "pushes“ different
samples farther apart, creating distinctive decision boundaries.
Khosla et al. extended this to leverage class labels as grouping
criteria, making contrastive learning supervised and explicit to
label class [1]. This had further been extended to video [20],



Fig. 2. Patch augmentation visualization. An example of patch augmentation on a 224x224 image sequence with patch size 16 on a sample from
Waymo dataset. Top row: augmented sample. Bottom row: original sample.

[21], where sample similarity is generated via mixing of
videos or by quantifying optical flow across images. While
these works explore video augmentation without labels, we
leverage temporal control labels for our sample similarity
criterion, and focus specifically on control tasks. Sermanet et
al. [22] explore contrastive learning for control by leveraging
features which do not change across viewpoint, but do change
across time. These features are then used as part of the
reward function in reinforcement learning. In contrast, our
paper formulates contrastive learning for behavioral cloning
methods.

III. METHOD

Transfer learning is most commonly achieved via fine tun-
ing of a pre-trained model. Applications such as autonomous
driving can benefit from transfer learning for cross-domain
learning. Our method can be considered an enhanced fine-
tuning method which involves iterative optimization in the
target domain as well as a contrastive objective for behavioral
cloning settings.

For backbone, we primarily use the architecture design from
model 2 of the Video Vision Transformer (ViViT) by Arnab et
al.[8], where spatial and temporal encoders are factorized and
showed better performance against factorized self-attention
and factorized dot-product on video-related tasks. To motivate
the need for such transfer learning, we formally define the
Simulation-to-Real World (Sim2Real problem for autonomous
driving tasks.

A. Cross-domain Learning Use Case: Sim2Real

Sim2Real describes the problem of resolving gaps in
learning between a simulated environment versus the real
world. Zhao et al. describe the limitations of collecting real-
world data in their survey [23] for deep reinforcement learning
in robotics; the same problems apply to imitation learning
problems with deep neural networks, where simulated data
may be cheap and accessible and real-world data may be
costly or unrealistic to obtain. For example, while there is an
abundance of real-world driving data, many datasets describe
proper driving in suburban, non-congested scenarios and lack
substantial representation of scenarios requiring aggressive

maneuvers, defensive driving, or avoiding collisions and
pedestrians. It is worth noting that while representation in
driving data is a challenge, this paper addresses a technique
which improves understanding across domains at no additional
cost to model complexity or extra data.

Image-based driving data typically represents the front
dashboard view of a vehicle. While other methods for au-
tonomous driving may consider different views and modalities,
we consider the problem of single image modality for end-
to-end driving. For front-view images, the distributions of
spatial embeddings learned by the model may be substantially
different between simulated and real domains. However, the
optical flow, or motion of individual pixels in images, will
be similar across both domains, as the vehicle holding the
object perform similar movements across the same degrees
of freedom.

B. Training Procedure

We take advantage of this intuition for our method, where
visually observed data such as images may be different
across domains, but the labels representing control sequences
are within the same space across domains. We present
enhancements to finetuning for transformer-based spatio-
temporal models through 1) an additional contrastive objective
based on spatio-temporal steering angle labels, and 2) patch-
level data augmentation. For our experiments, the source
model is identical in architecture to the target model, and
no layers are frozen. First, the source model is trained
on simulated data in a straightforward manner. Then, the
target model is initialized with the source model weights,
and resumes training on real-world data. This method is
generalizable to fine-tuning independent of the source model,
as long as weight initialization is possible.

C. Contrastive Learning for Behavioral Cloning

We implement supervised contrastive learning [24] for
the end-to-end driving setting to drive samples with similar
label sequences closer together in the model’s feature space.
Similarly to the motivations from [24], we use label infor-
mation with contrastive learning to capture vehicle motion
across frames. We take advantage of the fact that vehicles



TABLE I
COMPARISON ACROSS TRANSFER METHODS. WE COMPARE SEVERAL KNOWLEDGE TRANSFER METHODS AGAINST OUR METHOD ACROSS SEVERAL

STYLES OF SPATIO-TEMPORAL LEARNING BACKBONES. "VANILLA" DENOTES STRAIGHTFORWARD WEIGHT TRANSFER FOR FINE TUNING. OVERALL,
OUR METHOD SHOWS TO HAVE SIMILAR IMPROVEMENT TO EXISTING KNOWLEDGE TRANSFER METHODS WITHOUT THE NEED FOR ADVERSARIAL

LEARNING, ADDITIONAL PARAMETERS, OR ACCESS TO BOTH SOURCE AND TARGET DATA. ALL EXPERIMENTS ARE TRAINED IN THE TARGET DOMAIN.
THE "DATASETS" COLUMN DENOTES THE DATASETS INVOLVED IN TRAINING, WHERE "S" DENOTES "SOURCE / CARLA" AND "T" DENOTES "TARGET /

WAYMO".

Method Datasets Waymo Audi SullyChen Udacity CARLA

ViViT T 88.8 75.9 88.8 50.0 66.2
ViViT+Vanilla S,T 92.2 79.2 94.8 52.4 69.8
ViViT+KD S,T 92.2 79.9 97.1 52.1 70.2
ViViT+ADDA S,T 92.2 79.7 97.4 52.6 70.4
ViViT+Ours T 91.7 78.9 96.1 51.9 70.5
ViViT+Vanilla+Ours S,T 92.1 79.6 97.1 52.4 69.8

TimeS T 93.8 79.8 93.5 48.6 68.6
TimeS+Vanilla S,T 92.4 80.3 92.2 50.7 67.8
TimeS+KD S,T 92.9 79.2 93.7 52.9 69.4
TimeS+ADDA S,T 92.2 79.7 95.6 52.4 70.2
TimeS+Ours T 93.8 79.3 91.8 51.0 67.9
TimeS+Vanilla+Ours S,T 93.5 80.2 93.2 50.5 68.5

TABLE II
COMPARISON OF NETWORK PERFORMANCE ON LEARN-TO-STEER. WE COMPARE BACKBONE ARCHITECTURE PERFORMANCE ON THE

LEARN-TO-STEER SPATIO-TEMPORAL PREDICTION TASK. FOR EACH NETWORK, WE CONDUCT TRAINING ON THE WAYMO DATASET AND COMPARE

PERFORMANCE ACROSS SEVERAL TEST DATASETS. IN TERMS OF PERFORMANCE, CNN-BASED ARCHITECTURES SEEM TO GENERALIZE THE BEST FOR

LEARN-TO-STEER, AS WELL AS BEING EXTREMELY EFFICIENT COMPARED TO TRANSFORMER MODELS.

Network Type Waymo Audi SullyChen Udacity CARLA

NVIDIA+LSTM 3D CNN 92.3 79.9 96.2 51.9 70.3
ViT 2D Transformer 90.4 77.9 89.1 51.2 68.0
ViViT (Model 2) 3D Transformer 88.8 75.9 88.8 50.0 66.2
TimeSformer 3D Transformer 93.8 79.8 93.5 48.6 68.6
SWin 3D Transformer 88.2 79.8 94.9 51.7 66.5

will move in similar ways regardless of visual domain. For
example, a vehicle turning right in simulation will have the
similar labels as a vehicle turning right in the real world,
given they are going the same speed. Intuitively, the steering
labels from both simulation and the real world will have the
similar properties and distributions. We reiterate the original
supervised contrastive loss below:

L =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp)/τ∑

a∈A(i) exp(zi · za)/τ
(1)

where index i is the anchor, index p is a positive sample,
z is a feature vector, and P (i) ≡ {p ∈ A(i) : ỹp = ỹi} is the
set of indices of all positives in the batch besides i. In this
case, a positive index p is defined when the class label of
that sample is equivalent to that of the anchor.

Another thing consider is that "positives" and "negatives"
here are binary, and can be defined on the output features
using a binary mask; such mask results in the definition of
P . Instead of considering a mask of purely 1’s and 0’s, we
consider a weight matrix instead of values between 0 and 1.
This weight matrix is determined by the pairwise dot product
of output features for each sample in the batch. Thus, instead
of having a set of positives P , we define "positiveness" in

contrast with vector similarity between temporal labels. Our
temporally-supervised contrastive loss function is defined
below:

wi,a = cos(ỹi, ỹa) =
yi · ya

||yi|| ||ya||
(2)

L =
∑
i∈I

−1

|A(i)|
∑

a∈A(i)

wi,alog
exp(zi · za)/τ∑

a′∈A(i) exp(zi · za′)/τ

(3)

D. Patch Augmentation of Video Input

In architectures derivative of Vision Transformers
(ViT) [25], images are generally split into fixed-sized patches,
are linearly embedded, summed with positional embeddings,
then fed to the rest of the network. Within the transformer
network, pairwise relationships between patches are char-
acterized by self-attention. The self-attention mechanism,
along with the rest of the Transformer network, should be
invariant to minor changes in coloration at the patch level.
Because of this patching mechanism, inherent discontinuities
for learning exist at pixels along patch borders. We leverage
this to increase the unique perturbations per sample on the
patch level to increase diversity of samples in one training
iteration.



TABLE III
ABLATION RESULTS. WE SHOW THE EFFECTS OF EACH CONTRIBUTIONS ON PERFORMANCE COMPARED TO A BASELINE MODEL TRAINED ON TARGET

DATA (WAYMO). WHILE CONTRASTIVE LEARNING SEEMED TO BENEFIT THE VIVIT MODEL MORE, PATCH AUGMENTATION SEEMED BENEFIT

TIMESFORMER. SIMILARLY TO THE PREVIOUS TABLE, THE DATASETS WHICH EACH MODEL IS TRAINED ON IS DENOTED BY "T" FOR "TARGET" AND "S"
FOR "SOURCE".

Method Datasets Waymo* Audi SullyChen Udacity CARLA*

ViViT T 88.8 75.9 88.8 50.0 66.2
ViViT+Contrastive T 91.9 79.8 96.6 52.1 69.6
ViViT+PatchAug T 89.9 76.2 83.6 47.6 67.8
ViViT+Ours T 91.7 78.9 96.1 51.9 70.5
ViViT+Vanilla S,T 92.2 79.2 94.8 52.4 69.8

TimeS T 93.8 79.8 93.5 48.6 68.6
TimeS+Contrastive T 93.1 79.1 91.0 50.2 67.8
TimeS+PatchAug T 93.7 80.1 93.4 51.7 68.3
TimeS+Ours T 93.8 79.3 91.8 51.0 67.9
TimeS+Vanilla S,T 92.4 80.3 92.2 50.7 67.8

Patch augmentation is applied similarly to traditional image
augmentations, but instead on the patch-level. Patch size
for augmentation is equal to the patch size hyperparameter
defined for the transformer model. Given an RGB image
which is of dimension H ×W × 3 with square patch size
P , let N = H/P and M = W/P . Then, an image sample
will have NM patches. For video input of t frames, the
number of patches then becomes tNM . One range parameter
between 0 and 1 inclusive is defined for brightness, contrast,
saturation, and hue (rb, rc, rs, rh respectively). Then, for a
probability p ∈ [0, 1], a patch’s brightness, contrast, saturation,
and hue are altered by a factor between max(0, 1− r) and
1 + r. This is most commonly known as color jitter. Patch
augmentation across frames are independent of each other;
one patch at one timestep may have a different perturbation
than the same patch at the next timestep. While this may
seem to degrade learning initially, perturbing patches at same
locations with different parameters may encourage learning
of meaningful and higher-level semantic features over time,
rather than learning domain-specific pixel values.

We choose to limit patch augmentation to coloration to
preserve semantic continuity across frames; rotation and
cropping by patch can obviously lead to issues in preserving
semantic meaning to images.

Compared to traditional data augmentation where one
sample produces one perturbed sample, patch augmentation
produces more color perturbations per sample by a factor of
tNM , or the number of patches. For each training iteration,
the learner is then exposed to a more diverse variety of
perturbation parameters, which can improve robustness more
efficiently.

IV. EXPERIMENTS

Hardware specs. Every experiment is conducted with one
Intel(R) Xeon(R) W-2255 CPU, one NVIDIA RTX A4000
GPU, and 16 GB RAM.

Task. For end-to-end driving, we set our task to "learn to
steer", similar to that in [26], except in the spatio-temporal
setting, where a model learns the mapping f : X → Y
for a temporal sequence of T images X ∈ RT×H×W×3

and a steering angle label Y ∈ R. We calculate regression
accuracy for this task similarly to that of Shen et al. [27],
where accuracy is considered w.r.t a threshold τ as accτ =
count(|vpredicted − vactual| < τ)/n, where n denotes the
number of test cases and vpredicted and vactual indicate the
predicted and ground-truth value, respectively.

Specifically, we focus on the setting for Sim2Real transfer
learning, where a source network is pre-trained on a simulated
domain, then trained on a real-world domain.

Datasets. For all experiments, we set the source and target
domain to data from CARLA simulator [28] and Waymo [29],
respectively. Since our goal is to achieve transfer learning
of more generalizable features, we test performance of each
network on several datasets in both real world and simulated
domains in addition to test sets from CARLA and Waymo,
which include Audi’s A2D2 [30], Honda’s HRI Driving
Dataset [31], SullyChen’s Driving Dataset [32], and Udacity
Driving Simulator [33].

Backbones. Our method is generalizable to different kinds
of spatio-temporal architectures. We experiment on two
different kinds of spatio-temporal Vision Transformer designs:
Video Vision Transformer (ViViT) [8], where spatial and
temporal information is encoded separately on the encoder
level, and TimeSformer [9], where spatial and temporal
information is encoded on the attention level within a single
encoder block. To the best of our knowledge, since the learn-
to-steer task has not been thoroughly explored with spatio-
temporal Vision Transformers, we also include baseline results
directly comparing performance on different architectures
trained on the target Waymo dataset in Table II.

Training hyperparameters. Learning rate for both dis-
criminator MLPs and vision-based Transformers are set to
0.000001. We use the AdamW optimizer [34] with a weight
decay of 0.01 for Transformers, and stochastic gradient
descent optimizer (SGD) for the discriminator head. In
addition, we use a hyperbolic-tangent decay learning rate
scheduler [35] during training for the transformer networks.
Each network is trained with a maximum of 400 epochs;
most experiments required less than 100 epochs. We also
used early stopping to prevent overfitting, where training was



halted when validation accuracy began to increase or became
stagnant.

Performance compared to other methods. We run exper-
iments comparing our method to various other methods for
transfer learning, including domain adaptation and knowledge
distillation. While each method serves different purposes, all
learn from two different domains in the Sim2Real problem
setting. Results for this experiment can be found in Table I. In
addition, because learn-to-steer has not yet been benchmarked
for transformer networks, we show results of training each
model from scratch in Table II. An ablation study was also
conducted to show the empirical effects on performance for
each contribution in Table III.

Complexity Tradeoff. In general, our results show similar
generalization results to other methods for knowledge transfer,
such as distillation and domain adaptation. While almost all
methods showed improvement beyond the baseline ViViT
model, there are stark differences in model complexity. Our
contributions were able to achieve similar or better results on
vision transformer architectures with little added complexity
or walltime compared to the direct baseline training. A
visualization of model complexity and walltime for each
method in Table I can be found in Figure 3.

Fig. 3. Model size vs. Walltime plot. We plot the number of trainable
parameters in each model from Tables I and II, and their respective training
wall-time in seconds per epoch. Knowledge transfer methods are marked in
blue, while baseline architectures are denoted with red X’s. Our method is
shown in green.

V. CONCLUSION AND DISCUSSION

Our work explores and improves the generalizability and
performance of transfer learning for spatio-temporal Vision
Transformers on the learn-to-steer task for autonomous
driving. Although simple and direct pre-training achieves
the highest performance in the target domain, it performs
most poorly in unseen datasets in testing. Our method, which
optimizes contrastive loss modified for behavioral cloning
settings along with patch-wise augmentation, takes advantage
of the temporal steering sequence to describe the semantic
action being performed in a sample as well as properties of
vision transformers. It is also simple to implement beyond
standard pre-training compared to knowledge distillation
and domain adaptation methods, which involve adding extra

tokens or the training of an external discriminator network,
and offers similar boosts in performance.

One downside of end-to-end steering is that the task is
relatively new compared to others for autonomous driving.
Additionally, many datasets currently available offer steering
angles as an added bonus annotation, rather than being
optimized for use with steering angle labels. Many datasets
we used had a disproportionate distribution of steering angles,
where over 90% of samples represented "straight" steering.
Balancing these datasets drastically reduced the number
of samples. To the best of our knowledge, datasets which
prioritize diversity of steering actions do not exist yet, and
would greatly benefit works for end-to-end steering. Another
interesting path for future work could be using temporal
control actions in multi-task settings, where control sequence
labels can be used to characterize samples to improve
performance of other tasks.
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