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Abstract— This paper presents a framework to generate
in real-time autonomous parking maneuvers for generic and
unstructured parking scenarios. Our method is based on
the solution of minimum-time optimal control problems by
means of an indirect approach. In a single optimization, the
framework computes parking maneuvers composed of two or
more segments of forward and reverse driving. The trajectory
planning tasks are solved in real-time, and a fine grid is
used to discretize the domain of the optimal control problems,
resulting in accurate and collision-free solutions. Moreover,
we introduce a novel method to deal with static obstacles in
the optimal control problems, using penalty functions defined
as regularized three-dimensional clip functions. The results
show the effectiveness of our approach in various scenarios
with narrow parking spots. A video demonstration made
with the CARLA simulator is available at the following link:
https://youtu.be/Khob5QWEE-k.

I. INTRODUCTION

Current developments in intelligent vehicle technology
focus on several aspects of autonomous driving, including
autonomous parking and valet parking. Valet parking is the
ability to autonomously cruise for a free parking spot, while
autonomous parking refers more specifically to the execution
of a parking maneuver. This paper focuses on the generation
of autonomous parking maneuvers.

The expected benefits of autonomous parking and valet
parking are several. There are technical advantages, such as
the ability to move and park in narrower spaces compared to
human-driven parking. Moreover, an autonomous system can
find the fastest and shortest parking path, and it can minimize
the search time for parking spot—which is anything but a
minor matter. In the New York City region alone, vehicles
cruising for a free parking space travel more than 70,000
miles every day. This equals to a daily emission of 29
metric tons of CO2 [1]. Hence, autonomous parking systems
can considerably impact greenhouse emissions. There are
also advantages related to passenger comfort: for example, a
passenger can exit the vehicle and let it look for a parking
spot by itself.

To the best of the authors’ knowledge, an autonomous
framework able to plan in real-time complex parking
maneuvers in generic scenarios (e.g., both parallel and
reverse parking, or partially unstructured scenarios) is
not present in the literature. Moreover, most of the
optimal-control-based literature papers use direct collocation
approaches, while indirect optimal control methods — based
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on the Pontryagin’s Maximum Principle (PMP) — are still
unexplored in the field of autonomous parking.

The contributions of this paper are the following.
1) We present a novel autonomous parking framework

that solves minimum-time optimal control problems
(OCPs) by means of an indirect method. The
presented framework is able to deal with generic
non-structured parking scenarios and narrow parking
spots. In comparison with the more widespread
direct collocation methods used in the literature, low
computational times are obtained through the use of an
indirect method and the software suite PINS. We use
a dense time grid to discretize the domain of the OCP,
which yields accurate solutions, also in the proximity
of the obstacles.

2) The framework is able to compute complex parking
maneuvers, composed of two or more forward and
reverse driving segments in a single optimization, i.e.
without the need for an iterative algorithm.

3) In order to define a generic parking environment, we
devise a novel method to deal with static obstacles
in the optimal control problems, using penalty
functions described as smooth three-dimensional clip
functions. The presented formulation allows us to
create an arbitrary environment by combining multiple
rectangular obstacles of different sizes.

4) We present a novel solution guess-generation
scheme, combining a Hybrid A∗ algorithm and an
optimal-control tracking problem to provide robust
guess solutions for the motion planning problem.

II. RELATED WORK

In recent years, several authors used optimal control (OC)
to solve motion planning problems for autonomous parking.
The authors of [2] used optimal control and direct collocation
to compute minimum-time parking maneuvers in generic
scenarios with multiple obstacles; however, they admitted
that the computational times were far from real-time. The
previous work was then extended in [3], in which a
look-up table of pre-computed OC solutions was created
and provided as guess for the minimum-time optimal control
problem. The framework was successfully tested on narrow
parking spots; however, only the parallel parking scenario
was studied, and the computational times were in the order of
40-180 seconds, thus far-fetched for a real-time application.
In [4], the authors obtained the parking maneuvers from the
solution of a combined minimum-time and minimum-space
optimal control problem. The OCP was initialized by means
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of standard maneuvers from a look-up table. They tuned
and tested their framework on reverse parking only, and
the computational times were in the order of 100 seconds.
The authors of [5] presented an iterative framework for
autonomous parking, based on the direct optimal control
method. They reported promising real-time computational
times lower than 1 second; however, the framework was
validated on quite trivial scenarios, that were closer to a
navigation problem than to a parking one. The authors
of [6] developed a machine learning (ML) framework
based on a Monte Carlo tree search, able to learn optimal
parking maneuvers. The ML algorithm was trained with the
solutions of minimum-time optimal control problems solved
with direct collocation, which were computed offline; the
computational time for the offline solution of the OCPs is
not provided by the authors, and the framework was tested
only on parallel parking scenarios. Finally, a remarkable
application of optimal control for autonomous parking is
[7], where the authors solved a minimum-time OCP with
a convexification technique, in order to obtain an exact and
smooth formulation of the original, non-convex OCP. They
employed the Hybrid A∗ algorithm [8] to compute solution
guesses for the optimal control problem, obtaining average
computational times lower than 2-3 seconds, and testing their
framework on both reverse and parallel parking scenarios.
Nevertheless, the parking spots were relatively large, and
the resulting parking maneuvers were quite simple, being
always composed of only two driving segments, the first
in the forward direction, and the second in the rearward
direction. Moreover, in order to reduce the computational
time, the discretization grid of the OCP was quite coarse: as
pointed out by the authors, some collisions with the obstacles
are visible in the plotted OCP solutions, in the time frame
between two consecutive discretization grid points.

III. METHODOLOGY
A. Vehicle Model

We adopt the following system of ordinary differential
equations to model the vehicle motion:

ẋ (t) = V (t) cos (θ (t))

ẏ (t) = V (t) sin (θ (t))

θ̇ (t) =
V (t) tan (δ (t))

L
V̇ (t) = a (t)

τδ δ̇ (t) = δdot (t) ,

(1)

where {x, y, θ} are the cartesian coordinates of the vehicle
reference point (center of the rear axle) and the orientation
of the vehicle on the 2D plane, respectively. V is the
vehicle forward velocity, while δ is the steering angle. The
model states are x = {x, y, θ, V, δ}, while the controls are
u = {a, δdot}, where a is the vehicle forward acceleration
and δdot is the steering velocity. Finally, L is the vehicle
wheelbase. The notation Ȧ denotes the derivative of the
quantity A with respect to the time t. The vehicle model
is based on the geometry of a generic C-segment car, and

Fig. 1: Obstacle penalty: three-dimensional function based
on smooth clip functions. The arguments of each penalty are
the coordinates of a collision-control point. The value of the
penalty is zero when the collision-control point is outside
the obstacle bounding-box, and greater than zero when the
collision-control point is inside the obstacle area.

it takes into account the front and rear overhangs from the
wheel axles.

B. Obstacle Formulation

The obstacles are taken into account in the optimal control
problem by means of a novel penalty function formulation.
Such a penalty function is built by multiplying two smooth
clip functions, each one representing the size of the obstacle
in the lateral and longitudinal direction:

P (x, y) = Clip(fx(x,W, x0)) Clip(fy(y, L, y0)) (2)

where fx(·) and fy(·) are two functions that enforce the
chosen width W and length L of the obstacle, and its
absolute position (x0, y0) in the 2D plane. A representation
of a generic obstacle penalty function obtained with (2) is
shown in Fig. 1. For collision checking, we define 12 points
on the rectangular bounding box of the ego vehicle: the
4 corners of the box, 3 points equally spaced along the
right and left sides of the vehicle, and the 2 middle-points
of the front and rear edges of the box. We augment the
cost function of the OCP (Section III-C) with the sum of
the values of the penalty P (x, y), evaluated in the (x, y)
coordinates of each of the 12 points. The choice of 12 points
for collision checking assures that the bounding box of the
ego car does not collide with the obstacles at any point
of its perimeter. Local collisions of the bounding box with
obstacles could still happen on the box perimeter between
control points; however, in our results we never encountered
this event. Indeed, we started our experiments with only 4
control points: the number of 12 control points represents
the lower bound for which we did not obtain collisions in
the test scenarios employed in this paper.



C. Optimal Control Problem Formulation

We solve the following optimal control problem:

min
u∈ U

J = M
(
x(T )

)
+

∫ T

0

l
(
x(t),u(t), t

)
dt

(3)
subject to ẋ(t) = f(x(t),u(t)) (4)

c(x(t),u(t), t) ≥ 0 (5)
b(x(0),x(T )) = 0, (6)

where the dynamical system (4) is given by the system
(1) transformed in the free-final-time formulation. The
inequalities (5) implement box-constraints on the states
and controls, such as limits on the maximum steering
angle, forward velocity, acceleration and steering rate. The
boundary conditions (6) constrain the vehicle pose at the
starting and finish points, the latter being the target pose
the car must reach at the end of the maneuver. Since we
employ the indirect optimal control method, such boundary
conditions are enforced strictly. In the cost function (3), the
Mayer term M

(
·
)

contains the final time of the maneuver
Tf , while the Lagrange term l

(
·
)

contains the summation of
the penalty function (2) computed on the 12 collision-control
points of the vehicle’s bounding box perimeter.

The optimal control problem is formulated and solved
using the software suite PINS [9], [10], [11], [12], [13].
Starting from the continuous-time OCP (3)-(6), PINS builds a
two-point boundary value problem, which is then discretized.
We select a time grid of 500 points for the discretization.
The indirect optimal control method implemented by PINS
and the proprietary solver allow us to solve the OCPs with
small computations times on the fine mesh grid. The reader
can refer to [14] and [15] for other recent examples of
minimum-time OCPs solved in real-time using PINS.

D. Guess generation

The solution guess for the optimal control problem is
generated by combining the Hybrid A∗ algorithm [8] and an
optimal control tracking problem. First, a parking maneuver
is generated through the Hybrid A∗ algorithm. The path
provided by the Hybrid A∗ is then tracked by solving a
modified version of the OCP (3)-(6). The resulting solution
is then used as a guess for the free-trajectory optimal
control problem. The proposed guess generation method
improves the robustness of the overall framework, leading to
collision-free trajectories and decreasing the computational
times.

IV. RESULTS

The presented autonomous parking framework is tested in
three scenarios and with different starting positions, for a
total of 63 maneuvers. The scenarios are defined as follows:

• Reverse parking scenario (RP): the maneuvers are
solved on a grid of 28 starting positions. The distance
between the two rows of obstacles is slightly larger than
the vehicle length.

• Parallel parking scenario (PP): the maneuvers are solved
on a grid of 21 starting positions. The maneuvering
space on the right side of the vehicle is limited by a
nearby obstacle.

• Generic parking scenario (GP): the maneuvers are
solved on a grid of 14 starting positions. The vehicle
must execute a reverse parking maneuver: the parking
spot is quite distant and an obstacle is interposed
between the starting and final positions.

The optimal control problems are solved on a 2019
MacBook Pro equipped with a 2,6 GHz 6-Core Intel Core
i7 processor. In Fig. 2, 3 and 4 we show the resulting
maneuvers from two different starting points, in each parking
scenario. The vehicle bounding box is plotted every 10
points of the discretization time grid employed in the OCP:
notice that the vehicle exploits all the available space by
navigating very close to the obstacles. The main factors that
enable such accurate and real-time trajectory optimization
are: the fine mesh with which the OCP is discretized, the
use of a large number of collision-control points, the smooth
formulation of the obstacle penalty functions (Section III-B),
the effectiveness of the solution guess and of the PINS solver
itself.

The presented autonomous parking framework is
also able to compute complex maneuvers composed
of three driving segments, as shown in Fig. 2b
(rearward-forward-rearward segments) for the RP scenario
and in Fig. 3a (forward-rearward-forward segments) for the
PP scenario. A video demonstration of the six presented
parking maneuvers was made with the CARLA driving
simulator [16], and it can be found at the following link:
https://youtu.be/Khob5QWEE-k.

For the sake of brevity, the solutions of the other
maneuvers are not plotted in this paper. Nevertheless, the
computational times of the whole 63 parking maneuvers
are reported in Fig. 5, subdivided by parking scenario.
On average, the CPU time required to plan the parking
maneuvers is around 0.6 seconds, and it is below 1 second
for most maneuvers. The obtained results show that the
presented framework is suitable for a real application, where
the computational times should be low enough to avoid
waiting for minutes before an automated parking maneuver is
generated. Indeed, assuming an automotive-grade hardware
5 to 10 times slower than the hardware employed in this
paper, the scaled-up computational times to plan the parking
maneuvers would still be acceptable for a commercial
application.

V. CONCLUSIONS

We presented a framework able to plan real-time
autonomous parking maneuvers in generic and unstructured
scenarios. The maneuvers are obtained as solutions of a
minimum-time optimal control problem, which is solved by
means of an indirect approach embedded in the software
suite PINS. In order to improve the overall robustness of
our framework and reduce the computation times, we also
devised a novel approach to generate guess solutions for
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(a) Starting position before the target parking spot.

(b) Starting position after the target parking spot.

Fig. 2: Reverse parking scenario: the blue line represents the
path of the vehicle reference point (middle point of the rear
axle). The red arrow indicates the vehicle’s forward direction
at the starting point. Frames of the vehicle motion are shown
every 10 discretization grid points of the OCP solution.

the optimal control problem. Obstacles penalties are written
using a novel formulation based on smooth clip functions.

The results showed that the presented framework can
deal with a wide range of maneuvers in different scenarios.
The obtained solutions indicate that our method is able to
navigate extremely close to the obstacles without collisions,
thus exploiting all the available space to complete the
parking maneuver. Moreover, we found that the presented
system can generate complex maneuvers composed of two
or more segments of forward and reverse driving. Finally, the
computational times are significantly low and the framework
is promising for a real-world automotive application.

Future work will be focused on the design of a low-level

(a) Starting position before the target parking spot.

(b) Starting position after the target parking spot.

Fig. 3: Parallel parking scenario: the blue line represents the
path of the vehicle reference point (middle point of the rear
axle). The red arrow indicates the vehicle’s forward direction
at the starting point. Frames of the vehicle motion are shown
every 10 discretization grid points of the OCP solution.

controller, able to track the OCP solutions to control a
high-fidelity vehicle model in a simulation environment.



(a) Starting position before the obstacle.

(b) Starting position after the obstacle.

Fig. 4: Generic parking scenario: the blue line represents the
path of the vehicle reference point (middle point of the rear
axle). The red arrow indicates the vehicle’s forward direction
at the starting point. Frames of the vehicle motion are shown
every 10 discretization grid points of the OCP solution.
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