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OVERVIEW

Tensor networks and quantum field theories

MERA: quantum circuits, renormalization, wavelets

One-dimensional Dirac fermions

Fermi surface: Non-relativistic two-dimensional fermions

Rigorous approximation result

Outlook and extensions



TENSOR NETWORKS …

Diagrammatic notation
vector:
matrix:
matrix product:
Yang-Baxter equation:
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‘approximate’ with  
a tensor network 
decomposition



TENSOR NETWORKS …

Variational families of states for quantum many body systems,  
motivated by the structure of entanglement in low energy 
states (area law) ……

� =
(MPS)

(PEPS)
(MERA)

|0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i

⇒ classical simulation
⇒ Complexity scaling (MPS): Hastings; Arad, Kitaev, Landau, Vazirani, Vidick, …



… AND QUANTUM FIELD THEORY (1)

Variational approach to lattice gauge theory (Hamiltonians)

Very successful for (1+1)d QFT, e.g. Schwinger model  
TMR Byrnes et al, B Buyens et al,  MC Bañuls et al, S Montangero et al, …

(Partial) string breaking for heavy probe charges:
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… AND QUANTUM FIELD THEORY (1)

Variational approach to lattice gauge theory (Hamiltonians)

Very successful for (1+1)d QFT, e.g. Schwinger model  
TMR Byrnes et al, B Buyens et al,  MC Bañuls et al, S Montangero et al, …

Real time evolution: quenches, onset of thermalization?

Boye Buyens, Jutho Haegeman, Florian Hebenstreit, Frank Verstraete, Karel Van Acoleyen, arXiv:1612.00739
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… AND QUANTUM FIELD THEORY (1)

Variational approach to lattice gauge theory (Hamiltonians)

Very successful for (1+1)d QFT, e.g. Schwinger model  
TMR Byrnes et al, B Buyens et al,  MC Bañuls et al, S Montangero et al, …

Can be extended to (2+1)d (and (3+1)d?):  
first explorations by L Tagliacozzo, E Zohar, …



Tensor networks for continuous systems:

Continuous MPS: (Verstraete & Cirac, 2010)
Chiral condensate in the Gross-Neveu model (N→∞)

Continuous MERA:
So far: only Gaussians
Interesting analytical tool to investigate relation with 
holography

⇒ Advertisement: PhD & PostDoc positions available @UGent

… AND QUANTUM FIELD THEORY (2)
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Multiscale entanglement renormalization ansatz (G Vidal) 

 

Captures power law decay of correlations, logarithmic violation of area 
law in (1+1)d, …
Possible relation with holography (AdS/CFT correspondence)

MERA, RENORMALIZATION & WAVELETS

|0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i

Coarse-grain 
quantum state

Disentangle 
high energy 
degrees of 
freedom

Variational  
ansatz

Quantum  
circuit that  

prepares state



Tensor network renormalization interpretation:  
(G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen)

 

MERA, RENORMALIZATION & WAVELETS
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Tensor network renormalization interpretation:  
(G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen)
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Tensor network renormalization interpretation:  
(G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen)
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Tensor network renormalization interpretation:  
(G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen)

 

For classical stat mech systems: can also be done using non-negative 
matrix factorization → M. Bal et al, PRL 118, 250602 (2017)
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MERA, RENORMALIZATION & WAVELETS

Wavelets and renormalization: multiscale analysis
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MERA, RENORMALIZATION & WAVELETS

Wavelets and MERA: G Evenbly & S White, PRL 116, 140403 (2016)

A free fermion MERA (unitaries generated by quadratic 
operators) implements a wavelet transform at the single 
particle level.

|0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i|1i

|0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i|1i

scaling coefficients

wavelet coefficients



MERA, RENORMALIZATION & WAVELETS

Wavelets and MERA: G Evenbly & S White, PRL 116, 140403 (2016)

A free fermion MERA (unitaries generated by quadratic 
operators) implements a wavelet transform at the single 
particle level.

 

Free fermion ground state: fill all negative energy modes 
→ fill set of modes that span the negative energy subspace (Fermi/Dirac sea)

→ construct wavelets that are completely supported in either positive or 
negative energy subspace

|0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i|1i

wavelet coefficients



Massless Dirac fermions on the lattice: staggering (Kogut-Susskind)

 

1+1 DIRAC FERMIONS
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1+1 DIRAC FERMIONS
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A pair of wavelet transforms such that wavelet filters in Fourier 
domain                    have equal magnitude and a relative phase 
difference                   .

Scaling filters                   should have phase difference  
(half shift or half delay condition) → same phase difference for 
wavelets from higher levels of the transform (scale invariance).

Impossible with filters of finite support ⇒ approximation?

�isign(k)eik/2
(gw(k), hw(k))

(gs(k), hs(k)) eik/2



1+1 DIRAC FERMIONS

K = 4

L = 6

Problem considered by Selesnick et al: a family of solutions, 
satisfying                         ,  in terms of two parameters K and L, 
leading to filters of width 2(K+L):

hs(k) = ei✓(k)gs(k)



FERMI SURFACES

Non-relativistic fermions hopping at half filling:
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FERMI SURFACES

Branching MERA (Evenbly & Vidal)
R Shankar, RG approach to interacting fermions (RMP 66,  129)



FERMI SURFACES

S(R)  c2R+ 2(R/2)S1d MERA(R/2) + S(R/2)

 . . .

 2c1R log2 R+O(R)

11

where

N tr
z̄ ≡

z̄−1
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z=0

Rz

(

(lz + 2)D − (lz)
D
)

(41)

≈ 2D(l0)
D−1

z̄−1
∑

z=0

Rz

(

1

2D−1

)z

(42)

= 2D(l0)
D−1f(l0) (43)

where in Eq. 42 we have only kept leading order in l0,
and where

f(l0) ≡
z̄−1
∑

z=0

Rz

(

1

2D−1

)z

. (44)

Thus we see that N tr
z̄ scales as the boundary law (l0)

D−1

times a multiplicative correction f(l0) that depends on
the branching structure of the underlying holographic
tree through Rz. It follows that the entanglement en-
tropy S(ρ0) is bounded above by

S(ρ0) ! kD(l0)
D−1f (l0) , (45)

where the constant kD depends on χ and D (but is in-
dependent of l0). Here we have used that the first term
on the rhs of Eq. 40, which also depends on l0 through
Rz̄, can be seen to be of subleading order in l0, when
compared to (l0)D−1f(l0), for any relevant choice of Rz.
Next we evaluate function f(l0) for two classes of holo-

graphic trees.

C. Regular holographic trees

Let us evaluate the above upper bound on entangle-
ment entropy for branching MERA with a regular holo-
graphic tree with branching ratio b, where each node of
the tree has exactly b child nodes. Notice that for this
family of trees the number of branches at depth z scales
as Rz = bz. Then the function f(l0) of Eq.44, which
describes the multiplicative correction to the boundary
law, becomes

f (l0) =
z̄−1
∑

z=0

(

b

2D−1

)z

. (46)

Notice that this is a geometric series with common ratio
r = b21−D and, as such, can be summed explicitly. This
sum takes has a different functional dependance on l0
contingent on whether the branching b is such that the
common ratio is greater than, equal to or less-than unity.
In these three cases, to leading order in l0 the function
f(l0) reads

f (l0) ≈

⎧

⎪

⎨

⎪

⎩

c1 b < 2D−1

c2log2(l0) b = 2D−1

c3(l0)
(1−D+log

2
(b)) b > 2D−1

(47)

FIG. 9. (a) A depiction of part of a branching MERA in
D = 2 dimensions. The density matrix ρz is obtained by
combining two copies of ρz+1 with isometries/decouplers w
and disentanglers u, and then tracing out ntr

z = 20 indices.
(b-e) A branch of the branching MERA in D = 2 dimensions
can split into b = 1, 2, 3, 4 sub-branches at each level. Diagram
(a) corresponds to the case of b = 2.

for some constants c1, c2, and c3 that depend on D and
b (but are independent of l0). These, together with Eq.
45, lead to the following upper bounds for the scaling
of entanglement in the branching MERA with a regular
holographic tree

Sl ≤

⎧

⎪

⎨

⎪

⎩

c̃1 lD−1 b < 2D−1

c̃2 lD−1 log2(l) b = 2D−1

c̃3 llog2(b) b > 2D−1

(48)

for some constants c̃α = cαkD that depend on D, b, and
χ. A subset of these results can be found on table III.
Notice in particular that for b = 2D−1 we obtain a loga-
rithmic correction to the boundary law for all dimensions
D, whereas b = 2D produces a bulk law.

[

˜S(R)  c2R+ 2

˜S(R/2)  · · ·  c2R log2(R) +O(R)]

S1d MERA(R)  c1 + S1d MERA(R/2)  . . .  c1 log2(R) +O(1)

S2d MERA(R)  c2R+ S2d MERA(R/2)  . . .  2c2R+O(1)



RIGOROUS APPROXIMATION RESULT

f 2 `2(Z) : a(f) =
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Given pair of scaling filters:
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RIGOROUS APPROXIMATION RESULT

K=L=1 K=L=3



OUTLOOK AND EXTENSIONS

Extensions 

Massive theories 

Pairing term:  
fermion number → fermion parity conservation 

Outlook 

Dirac cones, topological insulators,…? 

Relevance for interacting theories?  
(e.g. with asymptotic freedom)



QUESTIONS?


