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Introduction

Our Favorite Theory of Quantum Gravity

The Anti de Sitter/Conformal Field Theory (AdS/CFT)
correspondence, our best-understood toy theory of quantum gravity,
is now twenty years old!

Until recently, most of the follow-up work has used classical gravity
on the bulk side to learn about strongly-coupled QFT on the
boundary side.

This has been a reasonably successful approach (strongly-coupled
plasmas, new understanding of transport in CMT, hydrodynamic
anomalies, etc), but it is unlikely to tell us anything interesting about
the deep puzzles of quantum gravity.

To phrase that differently, we will never be able explain AdS/CFT to
computer scientists this way!
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Introduction

Now one might say that is their problem, after all for the most part
computer scientists don’t know anything about gravity, relativity, or
quantum field theory: how can they understand 21st century physics
without first understanding 20th century physics?

An interesting realization for many of us physicists over the last few
years (or earlier for a few wise sages like John) is that in fact there is
something to be gained by learning how to translate “our” problems
into “their” language.

The problem I will study today, characterizing the holographic map
that tells us which states and operators in the bulk AdS get mapped
to which states and operators in the boundary CFT , turns out to be
just such a problem.

I’ll describe three features of this map which are quite surprising from
the traditional boundary QFT point of view, but which we’ll see are
quite natural once we learn to re-interpret the holographic map as
encoding a quantum error-correcting code.Almheiri/Dong/Harlow 14, Dong/Harlow/Wall

16, Harlow 16, Harlow/Ooguri 17
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Introduction

AdS/CFT Review

AdS/CFT says that quantum gravity in asymptotically AdS space is
equivalent to conformal field theory on its boundary:

t
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Introduction

This correspondence is a quantum correspondence:

|ψbulk〉 ←→ |ψboundary 〉
H, J, . . .←→ H, J, . . .

limr→∞ r∆φ(r , t,Ω)←→ O(t,Ω).

Vacuum perturbations ←→ low-energy states

Black holes ←→ high-energy states
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Surprising Features

Radial Commutativity

In quantum field theory, causality is enforced by locality:

[O(X ),O(Y )] = 0 (X − Y )2 > 0.

We can consider this in the bulk as well:

x and X are spacelike-separated in the bulk, so we might expect that

[φ(x),O(X )] = 0.
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Surprising Features

This however is impossible in the boundary quantum field theory!
The problem is that in a quantum field theory, such as the boundary CFT,
any operator that commutes with all local operators at a fixed time must
be trivial. Streater/Wightman

For example consider a chain of Pauli spins:

The set of products of Pauli operators, eg

Z1X4Y7 . . . ,

gives a basis for all operators, so an operator which commutes with all of
the individual Pauli operators must be proportional to the identity.
This is a basic expression of the local structure of the Hilbert space in a
QFT. But then how can we get an extra dimension to emerge?
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Surprising Features

Ryu-Takayanagi Formula

Given a boundary subregion R we can define the (H)RT surface γR and
entanglement wedge WR such that in “good” states ρ we have:

S(ρR) = Tr (ρLR) + S (ρWR
)

LR =
Area (γR)

4G
+ . . .
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Surprising Features

In other words, the entropy of a boundary region R is equal to the
expectation value of the area of γR in Planck units plus the bulk entropy
in WR !
Although checked many times, this formula has some surprising features as
well:

Given that states are dual to states, why isn’t entropy just dual to
entropy?

To the extent that the first term is dominant, how is this consistent
with the linearity of QM? Papadodimas/Raju, Almheiri/Dong/Swingle

What are the “good” states?
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Surprising Features

Subregion duality

Evidence has gradually accumulated for the following proposal: given a
bulk operator φ with in WR , there exists a CFT operator φR with support
only in R which represents φ in the CFT. Let’s think about it from above:

R

The operator φ(x) can be represented on R, but the operator φ(y) cannot.
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Surprising Features

This again leads to some surprising situations:

A B

C

The operator in the center has no representation on A, B, or C , but it
does have a representation either on AB, AC , or BC !
Where is the information?
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Surprising Features

Each of these puzzles arises from trying to understand how the bulk
physics can be consistent with spatial locality in the CFT: how can the
same theory be local with two different spacetime dimensionalities?

The key point is that the picture we have been using of the bulk,
based in semiclassical effective field theory, is not valid throughout
the Hilbert space of the CFT for any particular bulk observable.

If we go to high enough energy states, any given observable will
always end up far behind the horizon of a black hole, and become
operationally inaccessible.

We will now see that by asking for radial commutativity, the RT
formula, and subregion duality to hold only in a subspace of the CFT
Hilbert space, we can naturally realize all of them.

Since this is a short talk, we will mostly do this in the context of a
simple model of holography: the three-qutrit code.
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Surprising Features

Three Qutrits

The three qutrit code embeds a single “logical” qutrit into three
“physical” qutrits as follows: Cleve/Gottesman/Lo

|0̃〉 =
1√
3

(|000〉+ |111〉+ |222〉)

|1̃〉 =
1√
3

(|012〉+ |120〉+ |201〉)

|2̃〉 =
1√
3

(|021〉+ |102〉+ |210〉) .

This subspace is symmetric under cyclic permutations of the physical
qutrits, and there is clearly a lot of entanglement in all three states.
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Surprising Features

One way of understanding this code is to note that there is a unitary on
the first two physical qutrits, U12, such that

|ĩ〉 = U†
12 (|i〉1 ⊗ |χ〉23) ,

where

|χ〉 ≡ 1√
3

(|00〉+ |11〉+ |22〉) .

Explicitly
|00〉 → |00〉 |11〉 → |01〉 |22〉 → |02〉
|01〉 → |12〉 |12〉 → |10〉 |20〉 → |11〉
|02〉 → |21〉 |10〉 → |22〉 |21〉 → |20〉

.

This means that we can recover any logical state |ψ̃〉 from just the first
two qutrits:

U12|ψ̃〉 = |ψ〉1 ⊗ |χ〉23.

By symmetry there is also a U13 and U23.
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Surprising Features

In additional to logical states, we also have logical operators

Õ|ĩ〉 =
∑
j

(O)ji |j̃〉.

In general we expect these to act nontrivially on all three qutrits, but given
our U12 we can do something clever: if we define

O12 ≡ U†
12O1U12,

then we have

O12|ψ̃〉 = Õ|ψ̃〉

O†
12|ψ̃〉 = Õ†|ψ̃〉.

Now using the symmetry, we see that any logical operator can be
represented on any two of the physical qutrits. This is reminiscent of
subregion duality!
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Surprising Features

Let’s now make the analogy precise:

Three “physical” qutrits are local CFT degrees of freedom on the
boundary

One “logical” qutrit is a field in the center of the bulk

The correctability we just discussed ensures that subregion duality
holds provided we say that our bulk point lies in the entanglement
wedge of any two boundary qutrits.
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Surprising Features

We can now see radial commutativity:

Consider

〈ψ̃|[Õ,X3]|φ̃〉,

where X3 is some operator on the third qutrit and |φ̃〉, |ψ̃〉 are
arbitrary states in the code subspace.

Since Õ always acts either to the left on a state in the code subspace,
we can replace it by O12. But then the commutator is zero! This
would have worked for X1 or X2 as well, so we see that on the code
subspace Õ commutes with all “local” operators.

It is because we are working only in the code subspace that we are
able to circumvent the algebraic puzzle we discussed before.
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Surprising Features

Finally we can study the RT formula in this model.
We first note that any logical mixed state is of the form

ρ̃ = U†
12

(
ρ1 ⊗ |χ〉〈χ|23

)
U12

We may then compute

S (ρ̃3) = log 3

S (ρ̃12) = log 3 + S (ρ̃) .

If we define
LR ≡ log 3,

then we see that the RT formula indeed holds!
Note the “area term” comes from the entanglement in |χ〉, which we
needed to be nonzero to have a good code.
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Surprising Features

But what about the rest of the states? There is a a 24-dimensional
subspace orthogonal to the code subspace, what about bulk locality in
those states?
This is where gravity comes to the rescue: these states are the microstates
of a black hole that has swallowed our bulk point!
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Conclusion

Conclusion

One can pursue this further, using the general theory of error correcting
codes and the physics of the bulk to learn more about what kind of error
correcting code AdS/CFT realizes.
I do not have time to discuss this in detail today, but I’ll mention some of
the highlights.

The code in general has the property that quantum information
located further from the boundary is better protected in the CFT:
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Conclusion

We can also consider the question of how large the code subspace can
be; on how many states can we realize the bulk algebra of operators?
It turns out that the answer, which is given by a general theorem in
quantum error correction, can be matched directly onto the bulk
regime where we make a black hole:
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Conclusion

There is a nice generalization of the three-qutrit code to a larger code
with a volume’s worth of degrees of freedom in the bulk:
Pastawski/Yoshida/Harlow/Preskill, Hayden/Nezami/Qi/Thomas/Walter/Yang

New codes!
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Conclusion

One can prove a general algebraic theorem that subregion duality and
the Ryu-Takayanagi formula are mathematically equivalent: any
quantum error correcting code has a version of the RT formula! Harlow

This theorem clarifies the regime of validity of the RT formula: it
explains how the formula can hold in superpositions of geometries,
and gives some guidance on to what extent it holds in the presence of
black holes.

This has led to a new focus on “operator algebra quantum error
correction”, see in particular Cotler/Hayden/Salton/Swingle/Walter,Pastawski/Preskill.

Finally I’ll close by sketching a new proof using subregion duality of
the old conjecture that there are no global symmetries in quantum
gravity, for simplicity specializing to continuous symmetries although
our proof works in general.Harlow/Ooguri
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Conclusion

Say there were a bulk global symmetry. By definition, there is some object
in the bulk which is charged under it. Consider the algebra of an operator
that creates this object in the center of the bulk with the symmetry
operator U(g):

By Noether’s theorem we have

U(g) = U(g ,R1)U(g ,R2)U(g ,R3).

Since each U(g ,Ri ) is localized in the boundary, it can only affect the bulk
within the entanglement wedge of Ri . Since our charged operator is not in
the entanglement wedge for any Ri , it must commute with all the
U(g ,Ri ). But then it must also commute with U(g), which contradicts
the assumption that the object is charged!
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Conclusion

Clearly there is much that a coding perspective on holography still has to
teach us! More examples?

New QFT theorems? (QNEC)

New GR theorems? Myers/Ooguri/et al

More new codes? Brehm/Richter

Thanks!
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