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Cosmological constant problem and the landscape

According to the Standard Model of particle physics,
the energy density of the vacuum receives multiple contributions
whose order of magnitude vastly exceeds the observed value
Λ ≈ 1.5 × 10−123M4

P;1
consistency with well-established cosmological history severely
constrains large classes of approaches to this problem.2

In a landscape model,
the universe can form large regions with different values of Λ;
there are exponentially many ways of constructing a “vacuum;”
observers necessarily find themselves in a highly atypical region
that allows for a larger cosmological horizon.

Consistent with standard cosmological history if neighboring vacua
have very different energies.3

1Perlmutter, et al., Astrophys. J., 1999; Riess, et al., Astro. J., 1998; Ade, et al., Astron. Astrophys., 2016.
2Polchinski, hep-th/0603249; Bousso, Gen. Rel. Grav., 2008.
3Bousso, Polchinski, J. High Energy Physics,, 2000. 4 of 27



Introduction Model/Problem Algorithms Experiments

Models of the landscape
Two simplified models of the landscape capture essential features:

Arkani-Hamed-Dimopolous-Kachru (ADK) model4, and
Bousso-Polchinski (BP) model5.

Here we focus on a simplification of the ADK model:
the cosmological constant is obtained by summing the energy
contributions from a large number of fields;
each field is subject to a double-well potential;
the two minima of each field to be a random number with mean
zero and deviation of of order 1 in Planck units.

Given n such fields where vacuum energies E(j)0 and E(j)1 , there are 2n

vacua, specified by s ∈ {0, 1}n:

Λ[s(j)] �
n∑

j�1
E(j)s(j).

4Arkani-Hamed, Dimopolous, Kachru, hep-th/0501082
5Bousso, Polchinski, ibid. 5 of 27
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Complexity

The ADK model is a variant of the number partitioning problem.
This class of problems in NP-complete.

What cosmological dynamics solved the “hard” problem?
The universe is exponentially expanding, creating new regions;
gravity supplies resources for solving the problem;
observers necessarily find themselves in the regions where a
large problem has been solved.

Or, a local viewpoint trades the multiverse for “many worlds”
one considers the different decay chains through the landscape;
a patch decoheres rapidly when a vacuum transition takes place;
observers find themselves in a branch that produced a vacuum
with small Λ.

6 of 27
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Computational censorship

Computational Censorship Hypothesis:
a physical measurements should not access the solution to a
problem that could not have been solved by the physical
resources in the observable universe.

Possible definition of “resources” include:
the Einstein-Hilbert-matter action,6
the energy of the universe times its age7;
the maximum entropy of the visible universe;8
the amount of entropy produced in our past light-cone.9

All given a number of gates Λ−1 ≈ 10122 (or slightly lower).

6Brown, Roberts, Susskind, Swingle, Zhao, Phys. Rev. D, 2016.
7Lloyd, Phys. Rev. Lett., 2002
8Bousso, JHEP, 1999.
9Bousso, Harnik, Kribs, Perez, Phys. Rev. D, 2007. 7 of 27
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Resolution

This leads to an “apparent paradox” in the ADK model.
Resources available are ≈ Λ−1.
Brute force search of the landscape scales as ∼ Λ−1

(
log2Λ

−1)3/2.
However this assumes n (number of fields in the ADK model) is such
that Λ is an optimal solution to number partitioning.

For very large n, there are polynomial time (in n) heuristics.
1 There is no known way to bound how large n could be.
2 Karmarkar-Karp (specialized to number partitioning) can find

“residues” of size Λ in time ∼ exp
√

logΛ−1.
3 Sieve algorithms (while exponential) are also very efficient and

can be generalized past the ADK toy model.

8 of 27
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ADK reduction to number partitioning

The number partitioning problem is:
given positive integers δ1 , . . . , δn to find sj ∈ {+1,−1} so that������ n∑

j�1
sjδj

������ ≤ 1.

Finding ADK vacua is very similar. Define

δj � (E(j)1 − E(j)0 )/2

Then

Λ �

n∑
j�1

sjδj.

So the numbers involved are real rather than integral.
10 of 27
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Random instances of number partitioning

Random instances have been well studied using statistical mechanics.
set some magnitude parameter B;
sample n independent numbers δj ∼ Uniform{1, 2, . . . , B};
define a perfect partition as sj � ±1 so that

n∑
j�1

sjδj � 0 if
n∑

j�1
δj even

n∑
j�1

sjδj � 1 if
n∑

j�1
δj odd.

Note for a random problem in the limit of large n,
if B > 2n+O(log n) will will likely be no perfect partitions,
if B < 2n+O(log n) there will be exponentially many partitions.

Note that if B � maxj δj is only polynomially large, dynamic
programming efficiently solves the number partitioning problem.

11 of 27
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Cost of brute force search
Consider the number partitioning problem on real numbers.

An instance is n numbers independently ∼ Uniform[0, 1].
It is known that the median optimal residue is Θ(

√
n2−n).

Thus, for a solution with residueΛ to exist, one needs
√

n2−n < Λ.
This gives problems with

n ∼ log2Λ
−1

+
1
2 log2 log2Λ

−1 with

b ∼ log2Λ
−1 bits of precision.

Naively, the total complexity of enumeration is O(nb2n). Instead:
order tuples (sj)nj�1 according to a binary reflective Gray code;
consecutive tuples only differ in one index;
use the residue from the previous step and add or subtract 2δj;
the total complexity of the algorithm is O(b2n) elementary gates.

This yields a total complexity of order Λ−1
(
log2Λ

−1)3/2. 12 of 27
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Karmarkar-Karp

The Karmarkar-Karp heuristic is that the largest numbers should be
given opposite sign to maximize (relative) cancellation.10

extract the two largest numbers from the list;
compute their (positive) difference;
insert the difference back into the list of numbers.

This reduces the problem to a new instance of number partitioning
with one fewer number.

The work to perform Karmarkar-Karp goes as
sorting the initial list has complexity O(n log n);
using a heap allows inserting numbers with complexity O(log n);
there as exactly n − 1 differencing-and-insertion steps.

Thus the total complexity of the algorithm is O(n log n).

10Karmarkar, Karp, FOCS, 1982. 14 of 27
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Karmarkar-Karp
to find the cosmological constant

Note that if n � log2Λ
−1 then Λ−1 � b2n.

Even the best known exact algorithm scales as ∼ 20.241n.

Karmarkar-Karp scales as n log(n), however will not generally find a
perfect partition.

The K-K residue has smaller size by a factor of ≈ e−c log2 n.
Asymptotically as n→∞, we have c � 1√

2
.11

For the ADK model, for K-K to find a residue of size Λ

n ∼ exp
[√

logΛ−1
c

]
,

11Yakir, Math. Operations Research, 1996 15 of 27
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Exact algorithms

Number partitioning, subset sum, and knapsack problems are
basically the same.

Exact algorithm exists that run in O(2αn).
A straightforward meet-in-the-middle tree search is ≈ 20.5n.12
The best known classical algorithm takes O(20.291n).13
The best known quantum algorithm takes O(20.241n).14
The adiabatic algorithm has unknown runtime, but appears to
scale as 20.8n.15

We can use exact algorithms “locally” to produce a sieve heuristic.
We need to understand the statistics of optimal solutions.

12Horowitz, Sahni, Journ. ACM, 1974.
13Becker, Coron and Joux, EUROCRYPT, 2011.
14Bernstein, Jeffery, Lange, Meurer, Post-Quantum Cryptography, 2013.
15Johnson, Aragon, McGeoch, Schevron, Operations Research, 1991. 16 of 27
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Statistics of the optimal residue (mean)
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exponential input
uniform input

The optimal residue scales as Θ(
√

b2b).
Ordinate = mean relative optimal residue size.
Abscissa = input size for number partitioning problem.
1000 instances solved for each b ∈ {10, . . . , 48}.
Computed with least square error estimator (exponential model).

The model s � 5.0b0.372−b was generated by linear regression. 17 of 27
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Statistics of the optimal residue (distribution)

Distribution of the optimal residue for NPP sizes b � 20, 30, 40.
Ordinate = cumulative probability distribution.
Abscissa = log2 optimal residue size.
1000 data points per plot.

The model is the exponential distribution with mean computed by
least squares estimator on data.

−25 −20 −15

0

0.2

0.4

0.6

0.8

1

log2 Size

b � 20

−35 −30 −25

0

0.2

0.4

0.6

0.8

1

log2 Size

b � 30

−55 −50 −45 −40 −35

0

0.2

0.4

0.6

0.8

1

log2 Size

b � 40

model (exponential) data (exponential) model (exponential) data (exponential)

18 of 27



Introduction Model/Problem Algorithms Experiments

A sieve for number partitioning

Here we explore a very simple sieve mechanism.
”Lattice sieves” add lattice vectors to produce smaller vectors.
The simple sieve here is similar in spirit to “tuple” sieve.16

In general, a sieve consists of several stages.
Partition in the input in to small problems.
Use an exact algorithm to solve the subproblem.
The results form the input for the next stage of the sieve.

For number partitioning problems,
we partition all the numbers into blocks of size b,
we use one the exact methods above, taking work 2αb+o(b).

Residues are exponentially distributed with expected size 2−b+o(b).

16Bai, Laarhoven, Stehlé, ANTS, 2016. 19 of 27
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A sieve for number partitioning

First stage of the sieve:
Input: n fields of mean energy differences δ ≈ 1.
Solve: n/b1 number partition problems, each of size b1.
Output: n

b1 residues with mean size ≈ 2−b1 .

Work: ≈ n
b1 2

αb1 .
Second stage of the sieve:

Input: n/b1 residues with mean size ≈ 2−b1 .
Solve: n/(b1b2) number partition problems, each of size b2.
Output: n

b1b2 residues with mean size ≈ 2−(b1+b2).

Work: ≈ n
b1b2 2

αb2 .
And so on. After k stages:

Output: single residue of expected length 2−t ≈ 2−(b1+···+bk)

Work: ≈
(

n
b1 2

αb1 + n
b1b2 2

αb2 + · · · + n
b1b2 ···bk

2αbk
)
.

20 of 27
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A sieve for number partitioning
The optimal work is given by an “equipartition principle:”

balance the amount of work done on each sieve stage.
Specifically, for stage j and j − 1 we want

n
b1 · · · bj

2αbj ≈ n
b1 · · · bj−1

2αbj−1 so we take bj − 1
α log2(bj) ≈ bj−1.

This table was generated with α � 0.5:

k n t log2(Work) (b1 , b2 , . . . )
2 4.22 × 104 400.0 107.62 (198, 213)
3 2.65 × 106 400.8 78.32 (124, 139, 154)
4 1.19 × 108 400.8 65.07 (85, 98, 113, 126)
5 3.96 × 109 400.0 58.14 (59, 72, 85, 98, 112)
6 1.03 × 1011 400.3 54.53 (41, 53, 65, 77, 91, 104)
7 1.97 × 1012 400.8 52.70 (27, 38, 49, 61, 74, 87, 100)
8 2.54 × 1013 400.5 51.88 (16, 26, 36, 48, 59, 72, 85, 98)

(Karmarkar-Karp takes n ≈ 7.8 × 108 and runs in w ≈ 36.5.) 21 of 27
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Experiment: Karmarkar-Karp

To empirically test the Karmarkar-Karp algorithm in a regime relevant
to the cosmological constant problem within the ADK model:

one starts with real numbers of order 1, and seeks to find a
residue of order ∼ 10−120 ≈ 2400;
scale by a factor of 2430 to represented these as integers;
defined success as achieving residue less than 230.

The 30 bits of precision deal with “numerical noise.”

Therefore an experiment was:
take n independent ∼ Uniform{0, 1, 2, . . . , 2430 − 1},
test if Karmarkar-Karp achieves a residue less than 230.

We performed 200 trials for a variety of n around the prediced
threshold.

23 of 27
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Experiment: Karmarkar-Karp
Predictions

Theory predicts the size of the final residue as exponentially
distributed:

Pr{y < Y < y + dy} � λe−λydy,

the key parameter is modeled as λ � e−c log2 n,
asymptotically c→ 1/

√
2 (smaller c are consistently observed).

For a reduction factor of ε � 2−400, we obtain success probability

P �

∫ ε

0
λe−λydy

� 1 − exp
[
−e−c log2 nε

]
.

We can use this to fit c to empirical data.

24 of 27
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Experiment: Karmarkar-Karp
Numerical results

Plots for a Karmarkar-Karp experiment.
Ordinate = likelihood in 200 trials of a residue < 230.
Abscissa = number of samples ∼ Uniform{0, . . . , 2430 − 1}.
Theory curve � 1 − exp

(
−ec log(n)2/2400

)
.

Parameter c � 0.6615 is fitted. (Asymptotic prediction: 1√
2
.)

25 of 27
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Experiment: a toy NPP sieve

As a simple proof of concept, we tackle a toy sieve:
four stages;
block sizes (b1 , b2 , b3 , b4) � (20, 30, 40, 50);
a simple meet-in-the-middle algorithm (α � 0.5).

Stage b #Inputs Distribution #NPPs Work E[s]
One 20 1200000 Uniform 60000 225.9 2−16.1
Two 30 60000 Exponential 2000 226.0 2−41.3

Three 40 2000 Exponential 50 225.6 2−76.4
Four 50 50 Exponential 1 225.0 2−121.3

Work quote is for the entire sieve stage.
Expected residue size is based on distributional model.

26 of 27
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Experiment: a toy NPP sieve
Numerical results
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Plots for a four state sieve.
Ordinate = cumulative likelihood of observing the value.
Abscissa = (log) size of the optimal residue obtained.
This final residue was 6.54 × 10−38 . 2−121.3.
The sieve took 152 seconds on my Mac Pro. 27 of 27
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