Optimization algorithms and the cosmological constant

Raphael Bousso Stephen Jordan Ning Bao

Brad Lackey^{*}

arXiv:1706.08503

1 August 2017

OINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

Outline

Outline

2 Model/Problem

Cosmological constant problem and the landscape

According to the Standard Model of particle physics,

- the energy density of the vacuum receives multiple contributions whose order of magnitude vastly exceeds the observed value $\Lambda \approx 1.5 \times 10^{-123} M_{p,1}^{4.1}$
- consistency with well-established cosmological history severely constrains large classes of approaches to this problem.²
- In a landscape model,
 - the universe can form large regions with different values of Λ ;
 - there are exponentially many ways of constructing a "vacuum;"
 - observers necessarily find themselves in a highly atypical region that allows for a larger cosmological horizon.

Consistent with standard cosmological history if neighboring vacua have very different energies.³

¹Perlmutter, et al., Astrophys. J., 1999; Riess, et al., Astro. J., 1998; Ade, et al., Astron. Astrophys., 2016.

²Polchinski, hep-th/0603249; Bousso, Gen. Rel. Grav., 2008.

³Bousso, Polchinski, J. High Energy Physics,, 2000.

Models of the landscape

Two simplified models of the landscape capture essential features:

- Arkani-Hamed-Dimopolous-Kachru (ADK) model⁴, and
- Bousso-Polchinski (BP) model⁵.

Here we focus on a simplification of the ADK model:

- the cosmological constant is obtained by summing the energy contributions from a large number of fields;
- each field is subject to a double-well potential;
- the two minima of each field to be a random number with mean zero and deviation of of order 1 in Planck units.

Given *n* such fields where vacuum energies $E_0^{(j)}$ and $E_1^{(j)}$, there are 2^n vacua, specified by $s \in \{0, 1\}^n$:

$$\Lambda[s(j)] = \sum_{j=1}^{n} E_{s(j)}^{(j)}.$$

⁴Arkani-Hamed, Dimopolous, Kachru, hep-th/0501082

⁵Bousso, Polchinski, ibid.

Complexity

The ADK model is a variant of the number partitioning problem.

• This class of problems in NP-complete.

What cosmological dynamics solved the "hard" problem?

- The universe is exponentially expanding, creating new regions;
- gravity supplies resources for solving the problem;
- observers necessarily find themselves in the regions where a large problem has been solved.

Or, a local viewpoint trades the multiverse for "many worlds"

- one considers the different decay chains through the landscape;
- a patch decoheres rapidly when a vacuum transition takes place;
- observers find themselves in a branch that produced a vacuum with small $\Lambda.$

Computational censorship

Computational Censorship Hypothesis:

• a physical measurements should not access the solution to a problem that could not have been solved by the physical resources in the observable universe.

Possible definition of "resources" include:

- the Einstein-Hilbert-matter action,⁶
- the energy of the universe times its age⁷;
- the maximum entropy of the visible universe;⁸
- the amount of entropy produced in our past light-cone.9

All given a number of gates $\Lambda^{-1} \approx 10^{122}$ (or slightly lower).

⁶Brown, Roberts, Susskind, Swingle, Zhao, Phys. Rev. D, 2016.

⁷ Lloyd, Phys. Rev. Lett., 2002

⁸Bousso, JHEP, 1999.

⁹Bousso, Harnik, Kribs, Perez, Phys. Rev. D, 2007.

Resolution

This leads to an "apparent paradox" in the ADK model.

- Resources available are $\approx \Lambda^{-1}$.
- Brute force search of the landscape scales as ~ $\Lambda^{-1} \left(\log_2 \Lambda^{-1} \right)^{3/2}$.

However this assumes *n* (number of fields in the ADK model) is such that Λ is an optimal solution to number partitioning.

For very large *n*, there are polynomial time (in *n*) heuristics.

- Solution There is no known way to bound how large *n* could be.
- Solution Section 3.2 Section 2.2 Section
- Sieve algorithms (while exponential) are also very efficient and can be generalized past the ADK toy model.

Outline

ADK reduction to number partitioning

The number partitioning problem is:

• given positive integers $\delta_1, \ldots, \delta_n$ to find $s_j \in \{+1, -1\}$ so that

$$\left|\sum_{j=1}^n s_j \delta_j\right| \le 1.$$

Finding ADK vacua is very similar. Define

$$\delta_j = (E_1^{(j)} - E_0^{(j)})/2$$

Then

$$\Lambda = \sum_{j=1}^n s_j \delta_j.$$

So the numbers involved are real rather than integral.

Random instances of number partitioning

Random instances have been well studied using statistical mechanics.

- set some magnitude parameter *B*;
- sample *n* independent numbers $\delta_j \sim \text{Uniform}\{1, 2, \dots, B\}$;
- define a perfect partition as $s_j = \pm 1$ so that

$$\sum_{j=1}^{n} s_j \delta_j = 0 \text{ if } \sum_{j=1}^{n} \delta_j \text{ even } \sum_{j=1}^{n} s_j \delta_j = 1 \text{ if } \sum_{j=1}^{n} \delta_j \text{ odd.}$$

Note for a random problem in the limit of large *n*,

- if $B > 2^{n+O(\log n)}$ will will likely be no perfect partitions,
- if $B < 2^{n+O(\log n)}$ there will be exponentially many partitions.

Note that if $B = \max_j \delta_j$ is only polynomially large, dynamic programming efficiently solves the number partitioning problem.

Cost of brute force search

Consider the number partitioning problem on real numbers.

- An instance is *n* numbers independently ~ Uniform[0, 1].
- It is known that the median optimal residue is $\Theta(\sqrt{n}2^{-n})$.

• Thus, for a solution with residue Λ to exist, one needs $\sqrt{n}2^{-n} < \Lambda$. This gives problems with

$$n \sim \log_2 \Lambda^{-1} + \frac{1}{2} \log_2 \log_2 \Lambda^{-1}$$
 with
 $b \sim \log_2 \Lambda^{-1}$ bits of precision.

Naively, the total complexity of enumeration is $O(nb2^n)$. Instead:

- order tuples $(s_j)_{j=1}^n$ according to a binary reflective Gray code;
- consecutive tuples only differ in one index;
- use the residue from the previous step and add or subtract $2\delta_j$;
- the total complexity of the algorithm is $O(b2^n)$ elementary gates.

This yields a total complexity of order $\Lambda^{-1} \left(\log_2 \Lambda^{-1} \right)^{3/2}$.

	Algorithms	

Outline

Karmarkar-Karp

The Karmarkar-Karp heuristic is that the largest numbers should be given opposite sign to maximize (relative) cancellation.¹⁰

- extract the two largest numbers from the list;
- compute their (positive) difference;
- insert the difference back into the list of numbers.

This reduces the problem to a new instance of number partitioning with one fewer number.

The work to perform Karmarkar-Karp goes as

- sorting the initial list has complexity *O*(*n* log *n*);
- using a heap allows inserting numbers with complexity $O(\log n)$;
- there as exactly n 1 differencing-and-insertion steps.

Thus the total complexity of the algorithm is $O(n \log n)$.

¹⁰Karmarkar, Karp, FOCS, 1982.

Karmarkar-Karp

to find the cosmological constant

Note that if $n \gg \log_2 \Lambda^{-1}$ then $\Lambda^{-1} \ll b2^n$.

• Even the best known exact algorithm scales as $\sim 2^{0.241n}$.

Karmarkar-Karp scales as $n \log(n)$, however will not generally find a perfect partition.

- The K-K residue has smaller size by a factor of $\approx e^{-c \log^2 n}$.
- Asymptotically as $n \to \infty$, we have $c = \frac{1}{\sqrt{2}}$.¹¹

For the ADK model, for K-K to find a residue of size Λ

•
$$n \sim \exp\left[\sqrt{\frac{\log \Lambda^{-1}}{c}}\right]$$
,

Exact algorithms

Number partitioning, subset sum, and knapsack problems are basically the same.

Exact algorithm exists that run in $O(2^{\alpha n})$.

- A straightforward meet-in-the-middle tree search is $\approx 2^{0.5n.12}$
- The best known classical algorithm takes $O(2^{0.291n})$.¹³
- The best known quantum algorithm takes $O(2^{0.241n})$.¹⁴
- The adiabatic algorithm has unknown runtime, but appears to scale as $2^{0.8n}$.¹⁵

We can use exact algorithms "locally" to produce a sieve heuristic.

• We need to understand the statistics of optimal solutions.

¹²Horowitz, Sahni, Journ. ACM, 1974.

¹³ Becker, Coron and Joux, EUROCRYPT, 2011.

¹⁴Bernstein, Jeffery, Lange, Meurer, Post-Quantum Cryptography, 2013.

¹⁵Johnson, Aragon, McGeoch, Schevron, Operations Research, 1991.

Statistics of the optimal residue (mean)

The optimal residue scales as $\Theta(\sqrt{b}2^b)$.

- Ordinate = mean relative optimal residue size.
- Abscissa = input size for number partitioning problem.
- 1000 instances solved for each $b \in \{10, \dots, 48\}$.

• Computed with least square error estimator (exponential model). The model $s = 5.0b^{0.37}2^{-b}$ was generated by linear regression.

Statistics of the optimal residue (distribution)

Distribution of the optimal residue for NPP sizes b = 20, 30, 40.

- Ordinate = cumulative probability distribution.
- Abscissa = \log_2 optimal residue size.
- 1000 data points per plot.

The model is the exponential distribution with mean computed by least squares estimator on data.

A sieve for number partitioning

Here we explore a very simple sieve mechanism.

- "Lattice sieves" add lattice vectors to produce smaller vectors.
- The simple sieve here is similar in spirit to "tuple" sieve.¹⁶

In general, a sieve consists of several stages.

- Partition in the input in to small problems.
- Use an exact algorithm to solve the subproblem.
- The results form the input for the next stage of the sieve.

For number partitioning problems,

- we partition all the numbers into blocks of size *b*,
- we use one the exact methods above, taking work $2^{\alpha b + o(b)}$.

Residues are exponentially distributed with expected size $2^{-b+o(b)}$.

¹⁶Bai, Laarhoven, Stehlé, ANTS, 2016.

A sieve for number partitioning

First stage of the sieve:

Input: *n* fields of mean energy differences $\delta \approx 1$.

Solve: n/b_1 number partition problems, each of size b_1 .

Output: $\frac{n}{b_1}$ residues with mean size $\approx 2^{-b_1}$.

Work: $\approx \frac{n}{b_1} 2^{\alpha b_1}$.

Second stage of the sieve:

Input: n/b_1 residues with mean size $\approx 2^{-b_1}$. **Solve**: $n/(b_1b_2)$ number partition problems, each of size b_2 . **Output**: $\frac{n}{b_1b_2}$ residues with mean size $\approx 2^{-(b_1+b_2)}$. **Work**: $\approx \frac{n}{b_1b_2}2^{\alpha b_2}$. And so on. After *k* stages:

Output: single residue of expected length $2^{-t} \approx 2^{-(b_1 + \dots + b_k)}$

Work:
$$\approx \left(\frac{n}{b_1}2^{\alpha b_1} + \frac{n}{b_1b_2}2^{\alpha b_2} + \cdots + \frac{n}{b_1b_2\cdots b_k}2^{\alpha b_k}\right).$$

A sieve for number partitioning

The optimal work is given by an "equipartition principle:"

• balance the amount of work done on each sieve stage. Specifically, for stage j and j - 1 we want

$$\frac{n}{b_1\cdots b_j}2^{\alpha b_j}\approx \frac{n}{b_1\cdots b_{j-1}}2^{\alpha b_{j-1}} \text{ so we take } b_j-\frac{1}{\alpha}\log_2(b_j)\approx b_{j-1}.$$

This table was generated with $\alpha = 0.5$:

k	п	t	log ₂ (Work)	$(b_1, b_2,)$
2	4.22×10^{4}	400.0	107.62	(198, 213)
3	2.65×10^{6}	400.8	78.32	(124, 139, 154)
4	1.19×10^{8}	400.8	65.07	(85, 98, 113, 126)
5	3.96×10^{9}	400.0	58.14	(59, 72, 85, 98, 112)
6	1.03×10^{11}	400.3	54.53	(41, 53, 65, 77, 91, 104)
7	1.97×10^{12}	400.8	52.70	(27, 38, 49, 61, 74, 87, 100)
8	2.54×10^{13}	400.5	51.88	(16, 26, 36, 48, 59, 72, 85, 98)

(Karmarkar-Karp takes $n \approx 7.8 \times 10^8$ and runs in $w \approx 36.5$.)

Outline

2 Model/Problem

Experiment: Karmarkar-Karp

To empirically test the Karmarkar-Karp algorithm in a regime relevant to the cosmological constant problem within the ADK model:

- one starts with real numbers of order 1, and seeks to find a residue of order $\sim 10^{-120} \approx 2^{400}$;
- scale by a factor of 2⁴³⁰ to represented these as integers;
- defined success as achieving residue less than 2³⁰.

The 30 bits of precision deal with "numerical noise."

Therefore an experiment was:

- take *n* independent ~ Uniform $\{0, 1, 2, ..., 2^{430} 1\}$,
- test if Karmarkar-Karp achieves a residue less than 2³⁰.

We performed 200 trials for a variety of n around the prediced threshold.

Experiment: Karmarkar-Karp

Theory predicts the size of the final residue as exponentially distributed:

- $\Pr\{y < Y < y + dy\} = \lambda e^{-\lambda y} dy$,
- the key parameter is modeled as $\lambda = e^{-c \log^2 n}$,
- asymptotically $c \rightarrow 1/\sqrt{2}$ (smaller *c* are consistently observed).

For a reduction factor of $\epsilon = 2^{-400}$, we obtain success probability

$$P = \int_0^{\epsilon} \lambda e^{-\lambda y} dy$$
$$= 1 - \exp\left[-e^{-c \log^2 n} \epsilon\right].$$

We can use this to fit *c* to empirical data.

Experiment: Karmarkar-Karp

Numerical results

Plots for a Karmarkar-Karp experiment.

- Ordinate = likelihood in 200 trials of a residue $< 2^{30}$.
- Abscissa = number of samples ~ Uniform $\{0, \dots, 2^{430} 1\}$.
- Theory curve = $1 \exp\left(-e^{c \log(n)^2}/2^{400}\right)$.
- Parameter c = 0.6615 is fitted. (Asymptotic prediction: $\frac{1}{\sqrt{2}}$.)

Experiment: a toy NPP sieve

As a simple proof of concept, we tackle a toy sieve:

- four stages;
- block sizes $(b_1, b_2, b_3, b_4) = (20, 30, 40, 50);$
- a simple meet-in-the-middle algorithm ($\alpha = 0.5$).

Stage	b	#Inputs	Distribution	#NPPs	Work	$\mathbb{E}[s]$
One	20	1200000	Uniform	60000	$2^{25.9}$	$2^{-16.1}$
Two	30	60000	Exponential	2000	$2^{26.0}$	$2^{-41.3}$
Three	40	2000	Exponential	50	2 ^{25.6}	$2^{-76.4}$
Four	50	50	Exponential	1	$2^{25.0}$	$2^{-121.3}$

- Work quote is for the entire sieve stage.
- Expected residue size is based on distributional model.

Experiment: a toy NPP sieve

Numerical results

Plots for a four state sieve.

- Ordinate = cumulative likelihood of observing the value.
- Abscissa = (log) size of the optimal residue obtained.
- This final residue was $6.54 \times 10^{-38} \leq 2^{-121.3}$.
- The sieve took 152 seconds on my Mac Pro.