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Cosmological constant problem and the landscape

According to the Standard Model of particle physics,

@ the energy density of the vacuum receives multiple contributions
whose order of magnitude vastly exceeds the observed value
A~ 15x10713M};

@ consistency with well-established cosmological history severely
constrains large classes of approaches to this problem.2

In a landscape model,
@ the universe can form large regions with different values of A;
@ there are exponentially many ways of constructing a “vacuum;”
@ observers necessarily find themselves in a highly atypical region
that allows for a larger cosmological horizon.

Consistent with standard cosmological history if neighboring vacua
have very different energies.?

1Pcrlmuttcr, etal., Astrophys. ]., 1999; Riess, et al., Astro. J., 1998; Ade, et al., Astron. Astrophys., 2016.
2polchinski, hep-th/0603249; Bousso, Gen. Rel. Grav., 2008.
3Bousso, Polchinski, J. High Energy Physics,, 2000. 4 Of27



Introduction

Models of the landscape

Two simplified models of the landscape capture essential features:
@ Arkani-Hamed-Dimopolous-Kachru (ADK) model*, and
@ Bousso-Polchinski (BP) model®.

Here we focus on a simplification of the ADK model:

@ the cosmological constant is obtained by summing the energy
contributions from a large number of fields;

@ each field is subject to a double-well potential;

@ the two minima of each field to be a random number with mean
zero and deviation of of order 1 in Planck units.

Given n such fields where vacuum energies Eg) and Ey), there are 2"
vacua, specified by s € {0, 1}

AL = DBy
j=1

4 Arkani-Hamed, Dimopolous, Kachru, hep-th/0501082
5Bousso, Polchinski, ibid. 5 Of27



Introduction

Complexity

The ADK model is a variant of the number partitioning problem.
@ This class of problems in NP-complete.

What cosmological dynamics solved the “hard” problem?
@ The universe is exponentially expanding, creating new regions;
@ gravity supplies resources for solving the problem;

@ observers necessarily find themselves in the regions where a
large problem has been solved.

Or, a local viewpoint trades the multiverse for “many worlds”
@ one considers the different decay chains through the landscape;
@ a patch decoheres rapidly when a vacuum transition takes place;
@ observers find themselves in a branch that produced a vacuum
with small A.

60f27



Introduction

Computational censorship

Computational Censorship Hypothesis:

@ a physical measurements should not access the solution to a
problem that could not have been solved by the physical
resources in the observable universe.

Possible definition of “resources” include:

@ the Einstein-Hilbert-matter action,®

@ the energy of the universe times its age’;

@ the maximum entropy of the visible universe;?

@ the amount of entropy produced in our past light-cone.®
All given a number of gates A™! ~ 10?2 (or slightly lower).

6Brown, Roberts, Susskind, Swingle, Zhao, Phys. Rev. D, 2016.

7Lloyd, Phys. Rev. Lett., 2002

8Bousso, JHEP, 1999.

9Bousso, Harnik, Kribs, Perez, Phys. Rev. D, 2007. 7 Of27



Introduction

Resolution

This leads to an “apparent paradox” in the ADK model.
@ Resources available are ~ A™L.
@ Brute force search of the landscape scales as ~ A (log, A‘l)?’/ 2

However this assumes n (number of fields in the ADK model) is such
that A is an optimal solution to number partitioning.

For very large n, there are polynomial time (in 7) heuristics.
@ There is no known way to bound how large n could be.
@ Karmarkar-Karp (specialized to number partitioning) can find
“residues” of size A in time ~ exp 4/log A~1.

@ Sieve algorithms (while exponential) are also very efficient and
can be generalized past the ADK toy model.

8of27
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Model/Problem

ADK reduction to number partitioning

The number partitioning problem is:
@ given positive integers 01, ..., 0, to find s; € {+1, -1} so that

n
Z S]‘(Sj < 1.
=1
Finding ADK vacua is very similar. Define
5= (E” —ED) 2

Then
n
A= Z 5]6]
=1

So the numbers involved are real rather than integral. y
10 of 27



Model/Problem

Random instances of number partitioning

Random instances have been well studied using statistical mechanics.
@ set some magnitude parameter B;
@ sample # independent numbers 6; ~ Uniform{1,2,...,B};
@ define a perfect partition as s; = +1 so that

n

Z S]'(Sj =0if Zn: 6]' even i S]'(S]' =1if i 6j odd.

=1 j=1 j=1 j=1

Note for a random problem in the limit of large n,
e if B > 20008 will will likely be no perfect partitions,
e if B < 20098 there will be exponentially many partitions.

Note that if B = max; 6; is only polynomially large, dynamic
programming efficiently solves the number partitioning problem.

110f 27



Model/Problem

Cost of brute force search

Consider the number partitioning problem on real numbers.

@ An instance is n numbers independently ~ Uniform[0, 1].

o It is known that the median optimal residue is @(1/n27").

@ Thus, for a solution with residue A to exist, one needs Vn2™" < A.
This gives problems with

1
n ~log, A+ 7 log, log, A1 with
b ~ log, A™! bits of precision.

Naively, the total complexity of enumeration is O(nb2"). Instead:
@ order tuples (sj)]?‘:1 according to a binary reflective Gray code;

@ consecutive tuples only differ in one index;
@ use the residue from the previous step and add or subtract 26;;

@ the total complexity of the algorithm is O(b2") elementary gates.

3/2

This yields a total complexity of order A™! (log, A™) 120f27
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Algorithms

Karmarkar-Karp

The Karmarkar-Karp heuristic is that the largest numbers should be
given opposite sign to maximize (relative) cancellation.®

@ extract the two largest numbers from the list;
@ compute their (positive) difference;
@ insert the difference back into the list of numbers.

This reduces the problem to a new instance of number partitioning
with one fewer number.

The work to perform Karmarkar-Karp goes as
@ sorting the initial list has complexity O(n log n);
@ using a heap allows inserting numbers with complexity O(log n);
@ there as exactly n — 1 differencing-and-insertion steps.

Thus the total complexity of the algorithm is O(n log n).

10Karmarkar, Karp, FOCS, 1982. 14 of 27



Algorithms

Karmarkar-Karp

to find the cosmological constant

Note that if n > log, A~ then A™! < b2".
@ Even the best known exact algorithm scales as ~ 20-241,

Karmarkar-Karp scales as nlog(n), however will not generally find a
perfect partition.

@ The K-K residue has smaller size by a factor of ~ e™* log*n,

@ Asymptotically as n — oo, we have ¢ = %-11

For the ADK model, for K-K to find a residue of size A

log A1
@ 1 ~exp -

7

11Y:akir, Math. Operations Research, 1996 15 0f27



Algorithms

Exact algorithms

Number partitioning, subset sum, and knapsack problems are
basically the same.

Exact algorithm exists that run in O(2%").
@ A straightforward meet-in-the-middle tree search is ~ 20->.12
@ The best known classical algorithm takes O(20-2717).13
@ The best known quantum algorithm takes O(20-2417),14

@ The adiabatic algorithm has unknown runtime, but appears to
scale as 208715

We can use exact algorithms “locally” to produce a sieve heuristic.
@ We need to understand the statistics of optimal solutions.

1ZHmrowitz, Sahni, Journ. ACM, 1974.

13Becker, Coron and Joux, EUROCRYPT, 2011.

M Bernstein, Jeffery, Lange, Meurer, Post-Quantum Cryptography, 2013.

15Iol’mson, Aragon, McGeoch, Schevron, Operations Research, 1991. 16 Of 27



Algorithms

Statistics of the optimal residue (mean)

T
s =5.00097270
—— exponential input ||
—— uniform input

log, s (Residue size)

10 20 30 40 50
b (Block size)

The optimal residue scales as O(Vh2b).
@ Ordinate = mean relative optimal residue size.
@ Abscissa = input size for number partitioning problem.
@ 1000 instances solved for each b € {10, ...,48}.
o Computed with least square error estimator (exponential model).
The model s = 5.0b°%72" was generated by linear regression. 17027



Algorithms

Statistics of the optimal residue (distribution)

Distribution of the optimal residue for NPP sizes b = 20, 30, 40.
@ Ordinate = cumulative probability distribution.
@ Abscissa = log, optimal residue size.
@ 1000 data points per plot.

The model is the exponential distribution with mean computed by
least squares estimator on data.

T T
1h 1 1p 41t
b=20 b=30 b=40
0.8 0.8 08
0.6 0.6 0.6
0.4 1041 0.4
0.2 402+ 0.2
of 1 of H{ o}
I I I I I I I I I I
=25 =20 =15 =35 =30 =25 55 =50 —45 —40 =35
log, Size log, Size log, Size
—— model (exponential) ——— data (exponential) ——— model (exponential) data (exponential)
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Algorithms

A sieve for number partitioning

Here we explore a very simple sieve mechanism.
@ ”"Lattice sieves” add lattice vectors to produce smaller vectors.

@ The simple sieve here is similar in spirit to “tuple” sieve.

In general, a sieve consists of several stages.
@ Partition in the input in to small problems.
@ Use an exact algorithm to solve the subproblem.
@ The results form the input for the next stage of the sieve.

For number partitioning problems,
@ we partition all the numbers into blocks of size b,
@ we use one the exact methods above, taking work 220+°(®),

Residues are exponentially distributed with expected size 270+°®).

16Bai, Laarhoven, Stehlé, ANTS, 2016. 19 of 27



A sieve for number partitioning

First stage of the sieve:
Input: 7 fields of mean energy differences 6 = 1.
Solve: n/b; number partition problems, each of size b;.
Output: {- residues with mean size ~ 271.
Work: = ;—12’*%.

Second stage of the sieve:
Input: 1/b; residues with mean size ~ 271,
Solve: n/(b1by) number partition problems, each of size b;.
Output: ;2 residues with mean size ~ 271+%2),
Work: = F”bZZ“bZ.

And so on. After k stages:
Output: single residue of expected length 27! ~

.~ [ noab; _n_naby aby
Work: =~ (#2001 + 200 4 oo gt p el

~ 2~ (O1++by)

20 0f 27



Algorithms

A sieve for number partitioning

The optimal work is given by an “equipartition principle:”
@ balance the amount of work done on each sieve stage.
Specifically, for stage j and j — 1 we want

n n

20(17]‘ ~

bj— ~
b b b p s Sowetaked - 7 1ogy () ~ bja.

This table was generated with & = 0.5:

k n t log,(Work) (b1, by,...)

4.22x10*  400.0 107.62 (198, 213)

2.65x10° 400.8 78.32 (124, 139, 154)

1.19x 108 400.8 65.07 (85,98, 113, 126)

3.96 x 10°  400.0 58.14 (59,72, 85,98, 112)

1.03 x 101 400.3 54.53 (41, 53, 65,77,91,104)

1.97 x 102 400.8 52.70 (27,38, 49, 61, 74, 87, 100)
2.54x 10 400.5 51.88 (16, 26, 36, 48,59, 72, 85, 98)

NG WN

armarkar-Karp takes n = 7.8 x and runs in w ~ 36.5. 210f27
(K kar-Karp tak 7.8 x 10% and 36.5.) f
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Experiments

Experiment: Karmarkar-Karp

To empirically test the Karmarkar-Karp algorithm in a regime relevant
to the cosmological constant problem within the ADK model:

@ one starts with real numbers of order 1, and seeks to find a
residue of order ~ 107120 » 2400,

@ scale by a factor of 243 to represented these as integers;
@ defined success as achieving residue less than 2%.
The 30 bits of precision deal with “numerical noise.”

Therefore an experiment was:
e take 1 independent ~ Uniform{0,1,2,...,24% -1},
@ test if Karmarkar-Karp achieves a residue less than 2%.

We performed 200 trials for a variety of n around the prediced
threshold.

230f27



Experiment: Karmarkar-Karp

Predictions

Theory predicts the size of the final residue as exponentially
distributed:

o Pr{y <Y <y+dy} = AeNdy,
@ the key parameter is modeled as A = e~ log*n,

@ asymptotically ¢ — 1/v2 (smaller c are consistently observed).

For a reduction factor of ¢ = 27400

€
/ Ae~Mdy
0

1-exp [—e_“"gzne] .

, we obtain success probability

P

We can use this to fit ¢ to empirical data.

24 0f 27



Experiment: Karmarkar-Karp

Numerical results

70x16° 75x10° 80x10° 85x1F "

Plots for a Karmarkar-Karp experiment.
@ Ordinate = likelihood in 200 trials of a residue < 2.
@ Abscissa = number of samples ~ Uniform{0, ..., 24" — 1}.

@ Theory curve = 1 —exp (—e‘: log(n)? /2400).

@ Parameter ¢ = 0.6615 is fitted. (Asymptotic prediction: %.) 2527



Experiments

Experiment: a toy NPP sieve

As a simple proof of concept, we tackle a toy sieve:
o four stages;
@ block sizes (b1, by, b3, by) = (20, 30, 40, 50);
@ a simple meet-in-the-middle algorithm (o = 0.5).

Stage | b | #Inputs Distribution | #NPPs | Work | [E[s]
One | 20 | 1200000 Uniform 60000 | 229 | 27161
Two | 30 60000 Exponential | 2000 | 2260 | 27413

Three | 40 2000 Exponential 50 2256 | 7764

Four | 50 50 Exponential 1 2250 | p-1213

@ Work quote is for the entire sieve stage.
@ Expected residue size is based on distributional model.

26 0f 27



Experiment: a toy NPP sieve

Numerical results

Stage 1 output Stage 2 output Stage 3 output

14 ‘ Modx‘al Mod‘el ‘ Mo‘del 11
Data Data Data
0.5} 10.5
oL ] | | ] | | | L 10
-25 =20 -15 =50 —-45 -40 -80 =75

log, s (Residue size) log, s (Residue size) log, s (Residue size)

Plots for a four state sieve.
@ Ordinate = cumulative likelihood of observing the value.

@ Abscissa = (log) size of the optimal residue obtained.

@ This final residue was 6.54 x 10738 < 271213,
@ The sieve took 152 seconds on my Mac Pro. 27027
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