Optimization algorithms and the cosmological constant

Ning Bao Raphael Bousso Stephen Jordan Brad Lackey*

arXiv:1706.08503

1 August 2017
Outline

1. Introduction
2. Model/Problem
3. Algorithms
4. Experiments
Outline

1. Introduction
2. Model/Problem
3. Algorithms
4. Experiments
Cosmological constant problem and the landscape

According to the Standard Model of particle physics,

- the energy density of the vacuum receives multiple contributions whose order of magnitude vastly exceeds the observed value \(\Lambda \approx 1.5 \times 10^{-123} M_P \);\(^1\)

- consistency with well-established cosmological history severely constrains large classes of approaches to this problem.\(^2\)

In a landscape model,

- the universe can form large regions with different values of \(\Lambda \);
- there are exponentially many ways of constructing a “vacuum;”
- observers necessarily find themselves in a highly atypical region that allows for a larger cosmological horizon.

Consistent with standard cosmological history if neighboring vacua have very different energies.\(^3\)

Models of the landscape

Two simplified models of the landscape capture essential features:
- Arkani-Hamed-Dimopolous-Kachru (ADK) model\(^4\), and
- Bousso-Polchinski (BP) model\(^5\).

Here we focus on a simplification of the ADK model:
- the cosmological constant is obtained by summing the energy contributions from a large number of fields;
- each field is subject to a double-well potential;
- the two minima of each field to be a random number with mean zero and deviation of of order 1 in Planck units.

Given \(n \) such fields where vacuum energies \(E_0^{(j)} \) and \(E_1^{(j)} \), there are \(2^n \) vacua, specified by \(s \in \{0, 1\}^n \):

\[
\Lambda[s(j)] = \sum_{j=1}^{n} E_s^{(j)}.
\]

\(^4\) Arkani-Hamed, Dimopolous, Kachru, hep-th/0501082
\(^5\) Bousso, Polchinski, ibid.
Complexity

The ADK model is a variant of the number partitioning problem.
- This class of problems is NP-complete.

What cosmological dynamics solved the “hard” problem?
- The universe is exponentially expanding, creating new regions;
- gravity supplies resources for solving the problem;
- observers necessarily find themselves in the regions where a large problem has been solved.

Or, a local viewpoint trades the multiverse for “many worlds”
- one considers the different decay chains through the landscape;
- a patch decoheres rapidly when a vacuum transition takes place;
- observers find themselves in a branch that produced a vacuum with small Λ.
Computational censorship

Computational Censorship Hypothesis:
- a physical measurements should not access the solution to a problem that could not have been solved by the physical resources in the observable universe.

Possible definition of “resources” include:
- the Einstein-Hilbert-matter action,\(^6\)
- the energy of the universe times its age\(^7\);
- the maximum entropy of the visible universe;\(^8\)
- the amount of entropy produced in our past light-cone.\(^9\)

All given a number of gates \(\Lambda^{-1} \approx 10^{122}\) (or slightly lower).

Resolution

This leads to an “apparent paradox” in the ADK model.
- Resources available are $\approx \Lambda^{-1}$.
- Brute force search of the landscape scales as $\sim \Lambda^{-1} (\log_2 \Lambda^{-1})^{3/2}$.

However this assumes n (number of fields in the ADK model) is such that Λ is an optimal solution to number partitioning.

For very large n, there are polynomial time (in n) heuristics.
1. There is no known way to bound how large n could be.
2. Karmarkar-Karp (specialized to number partitioning) can find “residues” of size Λ in time $\sim \exp \sqrt{\log \Lambda^{-1}}$.
3. Sieve algorithms (while exponential) are also very efficient and can be generalized past the ADK toy model.
ADK reduction to number partitioning

The number partitioning problem is:
- given positive integers $\delta_1, \ldots, \delta_n$ to find $s_j \in \{+1, -1\}$ so that

\[
\left| \sum_{j=1}^{n} s_j \delta_j \right| \leq 1.
\]

Finding ADK vacua is very similar. Define

\[
\delta_j = (E_1^{(j)} - E_0^{(j)}) / 2
\]

Then

\[
\Lambda = \sum_{j=1}^{n} s_j \delta_j.
\]

So the numbers involved are real rather than integral.
Random instances of number partitioning

Random instances have been well studied using statistical mechanics.

- set some magnitude parameter B;
- sample n independent numbers $\delta_j \sim \text{Uniform}\{1, 2, \ldots, B\}$;
- define a perfect partition as $s_j = \pm 1$ so that

$$\sum_{j=1}^{n} s_j \delta_j = 0 \text{ if } \sum_{j=1}^{n} \delta_j \text{ even} \quad \sum_{j=1}^{n} s_j \delta_j = 1 \text{ if } \sum_{j=1}^{n} \delta_j \text{ odd.}$$

Note for a random problem in the limit of large n,

- if $B > 2^{n+O(\log n)}$ will likely be no perfect partitions,
- if $B < 2^{n+O(\log n)}$ there will be exponentially many partitions.

Note that if $B = \max_j \delta_j$ is only polynomially large, dynamic programming efficiently solves the number partitioning problem.
Consider the number partitioning problem on real numbers.

- An instance is \(n \) numbers independently \(\sim \) Uniform\([0, 1]\).
- It is known that the median optimal residue is \(\Theta(\sqrt{n2^{-n}}) \).
- Thus, for a solution with residue \(\Lambda \) to exist, one needs \(\sqrt{n2^{-n}} < \Lambda \).

This gives problems with

\[
 n \sim \log_2 \Lambda^{-1} + \frac{1}{2} \log_2 \log_2 \Lambda^{-1} \text{ with }
 b \sim \log_2 \Lambda^{-1} \text{ bits of precision.}
\]

Naively, the total complexity of enumeration is \(O(nb2^n) \). Instead:

- order tuples \((s_j)_{j=1}^n\) according to a binary reflective Gray code;
- consecutive tuples only differ in one index;
- use the residue from the previous step and add or subtract \(2\delta_j \);
- the total complexity of the algorithm is \(O(b2^n) \) elementary gates.

This yields a total complexity of order \(\Lambda^{-1} \left(\log_2 \Lambda^{-1} \right)^{3/2} \).
Outline

1. Introduction
2. Model/Problem
3. Algorithms
4. Experiments
The Karmarkar-Karp heuristic is that the largest numbers should be given opposite sign to maximize (relative) cancellation.\(^{10}\)

- extract the two largest numbers from the list;
- compute their (positive) difference;
- insert the difference back into the list of numbers.

This reduces the problem to a new instance of number partitioning with one fewer number.

The work to perform Karmarkar-Karp goes as

- sorting the initial list has complexity \(O(n \log n)\);
- using a heap allows inserting numbers with complexity \(O(\log n)\);
- there are exactly \(n - 1\) differencing-and-insertion steps.

Thus the total complexity of the algorithm is \(O(n \log n)\).

\(^{10}\)Karmarkar, Karp, FOCS, 1982.
Karmarkar-Karp

to find the cosmological constant

Note that if \(n \gg \log_2 \Lambda^{-1} \) then \(\Lambda^{-1} \ll b2^n \).

- Even the best known exact algorithm scales as \(\sim 2^{0.241n} \).

Karmarkar-Karp scales as \(n \log(n) \), however will not generally find a perfect partition.

- The K-K residue has smaller size by a factor of \(\approx e^{-c \log^2 n} \).
- Asymptotically as \(n \to \infty \), we have \(c = \frac{1}{\sqrt{2}} \).\(^{11}\)

For the ADK model, for K-K to find a residue of size \(\Lambda \)

- \(n \sim \exp \left[\sqrt{\frac{\log \Lambda^{-1}}{c}} \right] \).

Exact algorithms

Number partitioning, subset sum, and knapsack problems are basically the same.

Exact algorithm exists that run in $O(2^{\alpha n})$.

- A straightforward meet-in-the-middle tree search is $\approx 2^{0.5n}$. \(^{12}\)
- The best known classical algorithm takes $O(2^{0.291n})$. \(^{13}\)
- The best known quantum algorithm takes $O(2^{0.241n})$. \(^{14}\)
- The adiabatic algorithm has unknown runtime, but appears to scale as $2^{0.8n}$. \(^{15}\)

We can use exact algorithms “locally” to produce a sieve heuristic.

- We need to understand the statistics of optimal solutions.

\(^{13}\) Becker, Coron and Joux, *EUROCRYPT*, 2011.

Statistics of the optimal residue (mean)

The optimal residue scales as $\Theta(\sqrt{b}2^b)$.

- Ordinate = mean relative optimal residue size.
- Abscissa = input size for number partitioning problem.
- 1000 instances solved for each $b \in \{10, \ldots, 48\}$.
- Computed with least square error estimator (exponential model).

The model $s = 5.0b^{0.37}2^{-b}$ was generated by linear regression.
Statistics of the optimal residue (distribution)

Distribution of the optimal residue for NPP sizes $b = 20, 30, 40$.
- Ordinate = cumulative probability distribution.
- Abscissa = \log_2 optimal residue size.
- 1000 data points per plot.

The model is the exponential distribution with mean computed by least squares estimator on data.
A sieve for number partitioning

Here we explore a very simple sieve mechanism.
- "Lattice sieves" add lattice vectors to produce smaller vectors.
- The simple sieve here is similar in spirit to "tuple" sieve.16

In general, a sieve consists of several stages.
- Partition in the input in to small problems.
- Use an exact algorithm to solve the subproblem.
- The results form the input for the next stage of the sieve.

For number partitioning problems,
- we partition all the numbers into blocks of size b,
- we use one the exact methods above, taking work $2^{\alpha b + o(b)}$.

Residues are exponentially distributed with expected size $2^{-b + o(b)}$.

16Bai, Laarhoven, Stehlé, ANTS, 2016.
A sieve for number partitioning

First stage of the sieve:

Input: n fields of mean energy differences $\delta \approx 1$.

Solve: n/b_1 number partition problems, each of size b_1.

Output: $\frac{n}{b_1}$ residues with mean size $\approx 2^{-b_1}$.

Work: $\approx \frac{n}{b_1} 2^{\alpha b_1}$.

Second stage of the sieve:

Input: n/b_1 residues with mean size $\approx 2^{-b_1}$.

Solve: $n/(b_1 b_2)$ number partition problems, each of size b_2.

Output: $\frac{n}{b_1 b_2}$ residues with mean size $\approx 2^{-(b_1+b_2)}$.

Work: $\approx \frac{n}{b_1 b_2} 2^{\alpha b_2}$.

And so on. After k stages:

Output: single residue of expected length $2^{-t} \approx 2^{-(b_1+\cdots+b_k)}$

Work: $\approx \left(\frac{n}{b_1} 2^{\alpha b_1} + \frac{n}{b_1 b_2} 2^{\alpha b_2} + \cdots + \frac{n}{b_1 b_2 \cdots b_k} 2^{\alpha b_k} \right)$.
A sieve for number partitioning

The optimal work is given by an “equipartition principle:”

- balance the amount of work done on each sieve stage.

Specifically, for stage \(j \) and \(j - 1 \) we want

\[
\frac{n}{b_1 \cdots b_j} 2^{\alpha b_j} \approx \frac{n}{b_1 \cdots b_{j-1}} 2^{\alpha b_{j-1}} \quad \text{so we take} \quad b_{j} - \frac{1}{\alpha} \log_2(b_j) \approx b_{j-1}.
\]

This table was generated with \(\alpha = 0.5 \):

<table>
<thead>
<tr>
<th>(k)</th>
<th>(n)</th>
<th>(t)</th>
<th>(\log_2(\text{Work}))</th>
<th>((b_1, b_2, \ldots))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(4.22 \times 10^4)</td>
<td>400.0</td>
<td>107.62</td>
<td>(198, 213)</td>
</tr>
<tr>
<td>3</td>
<td>(2.65 \times 10^6)</td>
<td>400.8</td>
<td>78.32</td>
<td>(124, 139, 154)</td>
</tr>
<tr>
<td>4</td>
<td>(1.19 \times 10^8)</td>
<td>400.8</td>
<td>65.07</td>
<td>(85, 98, 113, 126)</td>
</tr>
<tr>
<td>5</td>
<td>(3.96 \times 10^9)</td>
<td>400.0</td>
<td>58.14</td>
<td>(59, 72, 85, 98, 112)</td>
</tr>
<tr>
<td>6</td>
<td>(1.03 \times 10^{11})</td>
<td>400.3</td>
<td>54.53</td>
<td>(41, 53, 65, 77, 91, 104)</td>
</tr>
<tr>
<td>7</td>
<td>(1.97 \times 10^{12})</td>
<td>400.8</td>
<td>52.70</td>
<td>(27, 38, 49, 61, 74, 87, 100)</td>
</tr>
<tr>
<td>8</td>
<td>(2.54 \times 10^{13})</td>
<td>400.5</td>
<td>51.88</td>
<td>(16, 26, 36, 48, 59, 72, 85, 98)</td>
</tr>
</tbody>
</table>

(Karmarkar-Karp takes \(n \approx 7.8 \times 10^8 \) and runs in \(w \approx 36.5 \).)
Experiment: Karmarkar-Karp

To empirically test the Karmarkar-Karp algorithm in a regime relevant to the cosmological constant problem within the ADK model:

- one starts with real numbers of order 1, and seeks to find a residue of order $\sim 10^{-120} \approx 2^{400}$;
- scale by a factor of 2^{430} to represent these as integers;
- defined success as achieving residue less than 2^{30}.

The 30 bits of precision deal with “numerical noise.”

Therefore an experiment was:

- take n independent \sim Uniform$\{0, 1, 2, \ldots, 2^{430} - 1\}$,
- test if Karmarkar-Karp achieves a residue less than 2^{30}.

We performed 200 trials for a variety of n around the predicted threshold.
Experiment: Karmarkar-Karp

Predictions

Theory predicts the size of the final residue as exponentially distributed:

- \(\Pr\{y < Y < y + dy\} = \lambda e^{-\lambda y} dy, \)
- the key parameter is modeled as \(\lambda = e^{-c \log^2 n}, \)
- asymptotically \(c \to 1/\sqrt{2} \) (smaller \(c \) are consistently observed).

For a reduction factor of \(\epsilon = 2^{-400} \), we obtain success probability

\[
P = \int_{0}^{\epsilon} \lambda e^{-\lambda y} dy
\]

\[
= 1 - \exp \left[-e^{-c \log^2 n \epsilon} \right].
\]

We can use this to fit \(c \) to empirical data.
Experiment: Karmarkar-Karp

Numerical results

Plots for a Karmarkar-Karp experiment.

- Ordinate = likelihood in 200 trials of a residue < 2^{30}.
- Abscissa = number of samples \sim Uniform\{0, \ldots, $2^{430} - 1$\}.
- Theory curve $= 1 - \exp \left(-e^{c \log(n)^2 / 2^{400}} \right)$.
- Parameter $c = 0.6615$ is fitted. (Asymptotic prediction: $\frac{1}{\sqrt{2}}$.)
Experiment: a toy NPP sieve

As a simple proof of concept, we tackle a toy sieve:

- four stages;
- block sizes \((b_1, b_2, b_3, b_4) = (20, 30, 40, 50)\);
- a simple meet-in-the-middle algorithm \((\alpha = 0.5)\).

<table>
<thead>
<tr>
<th>Stage</th>
<th>(b)</th>
<th>#Inputs</th>
<th>Distribution</th>
<th>#NPPs</th>
<th>Work</th>
<th>(E[s])</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>20</td>
<td>1200000</td>
<td>Uniform</td>
<td>60000</td>
<td>(2^{25.9})</td>
<td>(2^{-16.1})</td>
</tr>
<tr>
<td>Two</td>
<td>30</td>
<td>60000</td>
<td>Exponential</td>
<td>2000</td>
<td>(2^{26.0})</td>
<td>(2^{-41.3})</td>
</tr>
<tr>
<td>Three</td>
<td>40</td>
<td>2000</td>
<td>Exponential</td>
<td>50</td>
<td>(2^{25.6})</td>
<td>(2^{-76.4})</td>
</tr>
<tr>
<td>Four</td>
<td>50</td>
<td>50</td>
<td>Exponential</td>
<td>1</td>
<td>(2^{25.0})</td>
<td>(2^{-121.3})</td>
</tr>
</tbody>
</table>

- Work quote is for the entire sieve stage.
- Expected residue size is based on distributional model.
Experiment: a toy NPP sieve

Numerical results

Plots for a four state sieve.

- Ordinate = cumulative likelihood of observing the value.
- Abscissa = (log) size of the optimal residue obtained.
- This final residue was $6.54 \times 10^{-38} \lesssim 2^{-121.3}$.
- The sieve took 152 seconds on my Mac Pro.