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OUTLINE

QUANTUM SIMULATION
COLD ATOMS IN OPTICAL LATTICES
HAMILTONIAN LATTICE GAUGE THEORY (LGT)

ANALOG SIMULATION: LGT
— REQUIREMENTS
— EXACT AND EFFECTIVE LOCAL GAUGE INVARIANCE
— LINKS AND PLAQUETTES — Examples: cQED, SU(2)
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QUANTUM SIMULATION
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COLD ATOMS

o Control: External fields

Trapping: Cooling:
lasers Magnetic fields lasers  evaporation
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Internal manipulation Interactions
- — — tune scattering length
lasers purification _ .
RF fields coherence L4 .:" :’/f’ ",‘:"\:/*
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COLD ATOMS

o Many-body phenomena

« Degeneracy: bosons and fermions (BE/FD statistics)

« Coherence: interference, atom lasers, four-wave mixing, ...
« Superfluidity: vortices

« Disorder: Anderson localization

« Fermions: BCS-BEC + many other phenomena

Magnetic field [G]
730 813 935
1 X 2

6 Q0 7
‘— BFC Interaction parameter 1/k,a ans >




COLD ATOMS
OPTICAL LATTICES

o Laser standing waves: dipole-trapping

VOLUME 81. NUMBER 15 PHYSICAL REVIEW LETTERS 12 OCTOBER 1998

Cold Bosonic Atoms in Optical Lattices

D. Jaksch.'? €. Bruder.'? 1.1 Cirac.'? C. W. Gardiner."* and P. Zoller'?
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COLD ATOMS
OPTICAL LATTICES

Atom o

Cige —
s T

In the presence E(r,t) the atoms has a time dependent dipole moment
d(t) = a(w) E(r,t) of some non resonant excited states.
Stark effect:

V(r) = AE(r) = a(w){ E(r,t) E(r,t))/6



COLD ATOMS
OPTICAL LATTICES
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(@) 2d array of effective 1d traps
(b) 3d square lattice

M. Lewenstein et. al, Advances in Physics, 2010.



COLD ATOMS
OPTICAL LATTICES

o Laser standing waves: dipole-trapping

H=[¥L(-V2+V(")¥, +u, [¥] W] ¥, ¥,

Lattice theory: Bose/Fermi-Hubbard model
H=-tY (ala,.+ h.c) +U> a)’a,

Quantum phase transition from a T
superfluid to a Mott insulator in
a gas of ultracold atoms

Narkus Grower', laf Mandel *, Tiiman Esshinger', Theodor W, Hansch® & immanuol Bloch*

Gemag
1 Quermadcitrecs), BT Jundy, #1083 Zurxck, Swromolosd




COLD ATOMS
QUANTUM SIMULATIONS

- BosonS/FermionS: H:— Z (raaana ma +]l(’)+z o-o-anaa:aanaana

<n,m>

o Spins: H= Z (J.SrSs+J,S)S) +J.S:S5)+ > B,S;

BE)  CONDENSED MATTER PHYSICS



COLD ATOMS
QUANTUM SIMULATIONS

HIGH ENERGY PHYSICS?
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LONG RANGE FORCES?



LONG RANGE FORCES?



REQUIRE FORCE CARRIER
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‘NEW FIELD’



REQUIRE FORCE CARRIER
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[ ‘GAUGE FIELD’
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THE STANDARD MODEL

e Matter:= fermions

(Quarks and Leptons w.

mass, spin 1/2, flavor, charge)

Interactions mediators := YM gauge fields

(spin 1 bosons) .

Electromagnetic: massless chargeless photon, (1), U(1)

Weak interaction: massive, charged Z, W’s, (3), SU(2)
Strong interaction : massless Gluons, (8), SU(3)



GAUGE FIELDS

Abelian Fields Non-Abelian fields
Maxwell Yang-Mills

Massless Massless
Long-range forces Confinement
Chargeless Carry charge

Linear dynamics Self interacting & NL




QED
1
aQED << 1, VQED(r) X ;

We (ordinarily) don’t need QFT quantum field theory to
understand the structure of atoms:

2 ~ 2 2
mecC >> ERydberg — aQED mec

But also higher energies effects are well described using
perturbation theory - (Feynman diagrams) works well.



QCD: AT HIGH ENERGY
ASYMPTOTIC FREEDOM

 Quantum Chromodynamics asymptotic freedom:

at high energies, coupling constant ‘goes’ to zero.

* The nucleus, are seen
as built of ‘free’ point-like

particles= quarks.

Vir)

ﬂStrong Coulomb potential”



QCD: AT LOW ENERGIES
ASYMPTOTIC FREEDOM

aQCD > 1 , VQCD (T) X7Tr

Non-perturbative confinement effect

No free quarks! they construct Hadrons:

(Q)——Qa

Vir) Confinement

Baryons (three quarks), Static pot.
for a pair
ves of heavy

. quarks
Color Electric flux-tubes:

Mesons (two quarks),

“a non-abelian Meissner effect”. T r




(some) OPEN PROBLEMS

—Mass gap of Yang-Mills (pure gauge) theories.
—Phases of non-Abelian theories with fermionic matter
—Color superconductivity?

— Quark-gluon Plasma.

— Confinement/deconfinement of dynamical charges

—High-Tc superconductivity ?



LATTICE GAUGE THEORIES



We are all Wilsonians now

Posted on June 18, 2013 by preskKill

Ken Wilson passed away on June
PR o B T i e T
15 at age 77. He changed how we [ B S L 3

think about physics.

Renormalization theory, first
formulated systematically by
Freeman Dyson in 1949, cured the
flaws of quantum electrodynamics
and tumed it into a precise
computational tool. But the subject
seemed magical and mysterious.
Many physicists, Dirac prominently
among them, questioned whether
renormalization rests on a sound

foundation.
Wilson changed that.

The renormalization group concept
arose in an extraordinary paper by

Wilson also formulated the strong-coupling expansion of lattice gauge theory, and soon after
pioneered the Euclidean Monte Carlo method for computing the quantitative non-perturbative
predictions of quantum chromodynamics, which remains today an exiremely active and
successful program. But of the papers by Wilson | read while in graduate school, the most
exciting by far was this one about the renormalization group. Toward the end of the paper
Wilson discussed how to formulate the notion of the “continuum limit" of a field theory with a



LATTICE GAUGE THEORIES
HAMILTONIAN FORMULATION

PHYSICAL REVIEW D VOLUME 11, NUMBER 2 15 JANUARY 1975

Hamiltonian formulation of Wilson’s lattice gauge theories

John Kogut*
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

Leonard Susskind'
Belfer Graduate School of Science, Yeshiva University, New York, New York
and Tel Aviv University, Ramat Aviv, Israel
and Laboratory of Nuclear Studies, Cornell University, Ithaca, New York
(Received 9 July 1974)

Wilson’s lattice gauge model is presented as a canonical Hamiltonian theory. The structure of the
model is reduced to the interactions of an_infinite collection of coupled rigid rotators. The
gauge-invariant configuration space consists of a collection of strings with quarks at their ends. The
strings are lines of non-Abelian electric flux. In the strong-coupling limit the dynamics is best described
in terms of these strings. Quark confinement is a result of the inability to break a string without
producing a pair.




LATTICE GAUGE THEORY

Un : ‘wn+R




LATTICE GAUGE THEORIES
HAMILTONIAN FORMULATION

Gauge group elements:

U’ is an element of the gauge group (in the representation r), nti

on each link N
n n+k

Left and right generators:

Lo,UT| =TTU" © [Ra,U"| = U'TT
[La- Lb] — _‘ifabch : [Ra,- Rb] — ifabcRc ; [La,Rb] =0
S Lala = Y RoRa = Y EoEa

Gauge transformation:
T rrrT ir
Un,k — V5 Un’kVn”{
Generators:

(Gn), =divpnEq = Z ((Ln,k)a - (Rn—f(,k>a>

k



LATTICE GAUGE THEORIES
HAMILTONIAN FORMULATION

Matter:

n+1

wn,l
Yn = (U’/’n,a) = 7#"n,2
_In

n+R

Gauge transformation:

Un — Vaibn




LATTICE GAUGE THEORIES
HAMILTONIAN FORMULATION

Gauge field dynamics (Kogut-Susskind Hamiltonian):
2 ~
g n+1
Hp = — Enik) (Enk
E 9 nzk:a ( n,k)a ( n,k)a A
1' : _In n+k
Hp=-— Y (T (0tativ]) +he)
plaquettes
Strong coupling limit: g >> 1
Weak coupling limit: g << 1
Matter dynamics: ST

mUn k¥ kT h.c.
W

HM = Z]an;;d)n / \ \ R

Hint ZEZ (UI]UH kvn—i—f( + hC)
n.k



TOY EXAMPLE: U(1)

lpn 1/’n+1

H=Y My, +ey (Vhni+hc)

n



TOY EXAMPLE: U(1)

H=2% M, +€y (Vi1 + h.c.)

n

H is invariant under global transformations:

wn — e_iAwn , w;& — w;&@i/\



TOY EXAMPLE: U(1)

Promote the transformation to be local:

wn — € ! wn 9 W; — ¢;LL€@
Add a on the links:
U, = elPn

l/)n lpn+1



TOY EXAMPLE: U(1)

H = ZMWJ;% T EZ (wo];,UnwnJrl T h.C.)

n

Invariance under a local gauge transformations:

by —> e by, — gl

gbn — an _I'An—l—l T An



TOY EXAMPLE: U(1)

Gauge field dynamics:
92 2
Hp = 7;1;”
L ‘m> — m |m> KS: “U(1) Rigid rotatator”

um (¢) = (@lm) = e




TOY EXAMPLE: U(1)

Gauge field dynamics: PLAQUETTES

1

Hp = ——
B 2

—
_|

plaquettes

Z U UsUIUT + h.c. = I

1
— (/—2 g cos (@1 + @9 — O3 — O4)

plaquettes

In the continuum limit, this REDUCES to (V' xA)? . the magnetic
energy density.



COMPACT QED (cQED)

Unk: e €i¢n,k‘

[El‘l,ka C,bm.,l] — —iénmékl

Electricenergy + Magnetic energy + Gauge-Matter interaction

2
g 2 1 l I J {
7 E En’k—? E CcOs ((Dn,l + Pn+i2 — Pnyd.1 — @n,?)

n.k n



QUANTUM SIMULATIONS



Simulating Physics with Computers
Richard P. Feynman
Depariment of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

1. INTRODUCTION

On the program it says this is a keynote speech—and I don’t know
what a keynote speech is. I do not intend in any way to suggest what should
be in this meeting as a keynote of the subjects or anything like that. T have

be understood very well in analyzing the situation. And I'm not happy with
all the analyses that go with just the classical theory, because nature isn’t
classical, dammit, and if you want to make a simulation of nature, you'd
better make 1t quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy. Thank you.

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982



REQUIREMENTS: HEP models

Fields

Fermion Matter fields

Bosonic gauge fields

Local gauge invariance

Exact, or low energy, effective

Relativistic invariance

Causal structure, in the continuum limit



QUANTUM SIMULATION
COLD ATOMS

@® Fermion matter fields

Bosonic gauge fields

Superlattices:

e e s
RYaRVaVanVs

d"n,l
Yn = (Yna) = (’d/‘n,a) —> Atom internal levels



1) EFFECTIVE GAUGE INVARIANCE

Gauss’s law is added as a constraint. Leaving the gauge invariant sector of
Hilbert space costs too much Energy.

Low energy sector with a effective gauge invariant Hamiltonian.

Not Gauge invariant

Gauge invariant sector

E. Zohar, B. Reznik, Phys. Rev. Lett. 107, 275301 (2011)



2) EXACT GAUGE INVARIANCE

* Atomic Symmetries <> Local Gauge Invariance

ABELIAN CASE:
E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. A 88 023617 (2013)

NON-ABELIAN CASE:
E. Zohar, J. I. Cirac, B. Reznik, Rep. Prog. Phys. 79, 014401 (2016)



LINKS

n+i

n n -+ R




cQED LINK

F-B Scattering




Fermion

cQED LINK

iz

b, Dy

Yy



cQED LINK

L,—>L,-1 Fermion

O FJ

D, D

lpc l/)d
\ 4
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cQED LINK

Fermion

Yy



cQED LINK

Fermion L,—>L,+1

D, D

lpc l/)d

/



cQED LINK

D, D
l/)c lpd

1/Jc-IL CIDaT CI)bl.ljd + lpdT CI)b]L CI)al!)c

m, (a)

me (d)

m (b)

m; (c)



cQED LINK

D, D
l/)c l/)d

) 4

l/JC-I- CDa1L CI)bl:bd + wdT CI)bT CI)cﬂwljc

m, (a)

-

me (d)

m; (c)



cQED LINK

D, D
l/)c lpd

/

1/Jch CI)a-r CI)bl,bd + lpdT CI)b]L CI)cﬂwljc

me (d)

I m, (a)
J m¢(b)

m; (c)



cQED LINK

L.=o, o, ;L_=0d,Td,

L,

1 1
E(Na —Np) ;1= E(Na + Np)

D,



cQED LINK

L.=o, o, ;L_=0d,Td,
1 1
L, :E(Na_Nb) ;1 :E(Na'l'Nb)

and thus what we have is

lpgq)aT CI)bl.l)d + w;¢bT CI)alpc

WIL Py ~lety,

where forlarge | ,m < [

L+~ei(¢1_¢2) = ele




DYNAMICAL FERMIONS

[ 28, S8 29 S8 58, 28 0

r——— ' r——— — —— -
) ) ) ) ' ) ' 1

- . — —

Hy = MY (—1)"¢len

Staggered Fermions”
L. Susskind Phys. Rev. D 16, 3031 (1977)

Internal states

- ! 2m

{Cn > CI } = {dn > d:} =1



DYNAMICAL FERMIONS
SHWINGER MODEL

internal states

o) "= ) $ 2M

WV,

Q- QP QOB P P Gr O

VY (; + 1) Z (¢LL+,n¢n+1 + h.c.)



NON-ABELIAN LINK

® U, @

¥n,1
n = (Un a) — (yn 2) U" =element of the gauge group

Hint :62 ('L)' Ull kz")ll-i—k —|— h C. )
n.k



NON-ABELIAN LINKS
“NON-ABELIAN
‘7 L CHARGE” R 4‘

Himk = {ljym,m")} = @j UL @ jrlmaxe

Lo Ry =0

Lo, U] =TIU" : [Ry, U™ =U"T"

La Lb] — _l'fabch . [Ra Rb] — "fa.bc]?c .
S Lala = Y RaRa = Y EJE,



SU(2) EXACT

1 1
Hijink =06 (§®§)

(a) s Energy

my = +3/2

a -_ ! my=11/2

mp=0,+1,

(b) 1

, Energy

V(82 + ()
%(£2,— £2)

o
-3/2

- %(Ql + Qz)
—%a(42— (2))

F=3/2



SU(2) EFFECTIVE

Ancillary “constraint” Fermion

“color” fermions

U=U_,Ug

On each link —a, , bosons on the left, b, , bosons on the right



PLAQUETTES




PLAQUETTES

1d elementary link interactions — already gauge invariant
building blocks of effective plaquettes

Auxiliary fermions := @ ¢




PLAQUETTES

1d elementary link interactions — already gauge invariant
building blocks of effective plaquettes

Auxiliary fermions := @ ¢




PLAQUETTES

1d elementary link interactions — already gauge invariant
building blocks of effective plaquettes

Auxiliary fermions ®
— virtual processes




PLAQUETTES

1d elementary link interactions — already gauge invariant
building blocks of effective plaquettes

Auxiliary fermions ®
— virtual processes




PLAQUETTES

1d elementary link interactions — already gauge invariant
building blocks of effective plaquettes

Auxiliary fermions ®
— virtual processes
- plaquettes.

> (T (noufv]) +he)

plaquettes -




PLAQUETTES

1d elementary link interactions — already gauge invariant
building blocks of effective plaquettes

Auxiliary fermions ®
— virtual processes

- plaquettes.
Y (Tr (U1 U.UlU} ) + h..c.) [:I
plaquettes ®

OKAY for: discrete, abelian
& non-abelian groups




DIGITAL SIMULATION

Three atomic layers w. movable control atoms
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—3>—0—0 9

E. Zohar, A. Farace, B. Reznik, J. I. Cirac, PRA 2017. (0,0,0)
E. Zohar, A. Farace, B. Reznik, J. . Cirac, PRL 2017.
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Lattice Gauge Theory with Stators

Matter Fermions
Link (Gauge) degrees of freedom
Control degrees of freedom

M
N

o0 ©
M
¢

® O ® 00

® © 6 O ©
OC?QO

9

M
N

E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Phys. Rev. A 2017.
E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Phys. Rev. Lett. 2017.



Digital Lattice Gauge Theories

The Z, example:
D o 0
- Plaguette interactions
‘ ‘ ‘ 0o (%, 1) 0, (x+1.2) 0, (x+2,1) 0,(x.
O O—0—@
- Link interactions
O O O Ot (%) 0a(x, k)Y (x + k)
D Q00 O

)



Plaquettes: Four-body Interactions

Stators: two-body interactions = four-body interactions

O—0-00—O =)
® O 6 00 ¢ uf i) = 55 ([F) +oto 1))
oo O oo
@90 00
O—0-00O




Plaquettes: Four-body Interactions

Stators: two-body interactions = four-body interactions

O>0-0 8O =)
® O 6 0 ¢ uf i) = =5 ([F) +oto 1))
00 00 Wil g() el
o@e o @

>0 00O




Plaquettes: Four-body Interactions

Stators: two-body interactions = four-body interactions

O o 0 0O
® OO0 0 o
e o 0O o @
0@ 90 o
>0 0 0O
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Plaquettes: Four-body Interactions

Stators: two-body interactions = four-body interactions

O - e ¢ O
®O0 00
* o0 O 0o
00 0 O o
0@/ 0 @ O

Ui,
UstI U]

U UUS U




Plaquettes: Four-body Interactions

Stators: two-body interactions = four-body interactions

O8O0 0O
® O 6 0 ¢
o 606 00
O 0 6 O ©
000 O

) = 3 () + 0 1)
ujuj [in) = LZ ([7) + o5ot0 1))
] | i) = i2 ([7) + ogototall))
bty i) = LQ ([7) + otozosoie 1))




Plaquettes: Four-body Interactions

Stators: two-body interactions = four-body interactions

D0 0 0O o
0= 75 (i) +ote D))
® O 6 & ¢ 7St = Sno
B—A}FJ‘TSD _ Sme—uaaT
‘ 9 <) ‘ . U4U3U§UfG_MEI/TUNJQU:@LUJ ‘?72> = ’z7z> e~ 0T
O 06 6 O ©
000




DIGITAL SIMULATION

A bipartite single time step
Trotterized time evolution, of already gauge invariants elements

—iX H it 1 —iH,; -t \M
J )T = . J
e =limp/— oo (H] e a7
1 2 3 4 \ 5
° < L l ) o /‘ z
o © GE—ge— fb—:—¢é>
6 7 9
e < » °
v v . v
N 121\ (]i i 1‘@ | 15*
16% .1(7_ 8__). ) 19 20
v
- . ’24 ‘ /25
% V|| |

26 27 28 A

0

w
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.I
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QUANTUM SIMULATIONS
COLD ATOMS — EXPERIMENTS

week ending

PRL 103, 080404 (2009) PHYSICAL REVIEW LETTERS 21 AUGUST 2009

S

Experimental Demonstration of Single-Site Addressability in a Two-Dimensional Optical Lattice

.. . . . . . 2.5
Peter Wiirtz,' Tim Langen,' Tatjana Gericke,' Andreas Koglbauer,' and Herwig Ott"
'Institut fiir Physik, Johannes Gutenberg-Universitit, 55099 Mainz, Germany
2 . - B . . o S . y
“Research Center OPTIMAS, Technische Universitdt Kaiserslautern, 67663 Kaiserslautern, Germany
(Received 18 March 2009; published 21 August 2009)

FIG. 1 (color online). Electron microscope image of a Bose- FIG. 2 (color online). Patterning a Bose-Einstein condensate in
Einstein condensate in a 2D optical lattice with 600 nm lattice a 2D optical lattice with a spacing of 600 nm. Every emptied site
spacing (sum obtained from 260 individual experimental real- was illuminated with the electron beam (7 nA beam current,
izations). Each site has a tubelike shape with an extension of 100 nm FWHM beam diameter) for (a).(b) 3, (c).(d) 2, and

(e) 1.5 ms, respectively. The imaging time was 45 ms. Between
150 and 250 images from individual experimental realizations
have been summed for each pattern.

6 um perpendicular to the plane of projection. The central
lattice sites contain about 80 atoms.




QUANTUM SIMULATIONS
COLD ATOMS — EXPERIMENTS

nature Vol 462|5 November 2009 | doi:10.1038/nature08482

A quantum gas microscope for detecting single atoms
in a Hubbard-regime optical lattice

Waseem S. Bakr', Jonathon I. Gillen', Amy Pengl, Simon Fc'iIIing1 & Markus Greiner'

mined through preparation and measurement. By implementing a
high-resolution optical imaging system, single atoms are detected
with near-unity fidelity on individual sites of a Hubbard-regime
optical lattice. The lattice itself is generated by projecting a holo-
graphic mask through the imaging system. It has an arbitrary geo-
metry, chosen to support both strong tunnel coupling between
lattice sites and strong on-site confinement. Our approach can be

Figure 3 | Site-resolved imaging of single atoms on a 640-nm-period
optical lattice, loaded with a high density Bose-Einstein condensate. Inset,
magnified view of the central section of the picture. The lattice structure and
the discrete atoms are clearly visible. Owing to light-assisted collisions and
molecule formation on multiply occupied sites during imaging, only empty
and singly occupied sites can be seen in the image.



QUANTUM SIMULATIONS
COLD ATOMS — EXPERIMENTS

doi:10.1038/nature09827

Single-spin addressing in an atomic Mott
insulator

Christof Weitenberg', Manuel Endres’, Jacob F. Sherson't, Marc Cheneau', Peter Schauf}’, Takeshi Fukuhara', Immanuel Bloch'*
& Stefan Kuhr'

a Addressing laser beam Microwave
6.8 GHz

y -
i —
|] . “a,=532nm
Atoms in two-dimensional optical lattice
b
@
El
£
<
Figure 2 | Single-site addressing. a, Top, experimentally obtained and |1), such that only the addressed atoms were observed. Bottom, the 3
fluorescence image of a Mott insulator with unity filling in which the spin of  reconstructed atom number distribution shows 14 atoms on neighbouring g
selected atoms was flipped from |0) to | 1) using our single-site addressing sites. c-f, As for b, but omitting the atom number distribution. The images
scheme. Atoms in state | 1) were removed by a resonant laser pulse before contain 29 (c), 35 (d), 18 (e) and 23 (f) atoms. The single isolated atoms in
detection. Bottom, the reconstructed atom number distribution on the lattice. b, eand f were placed intentionally to allow for the correct determination of the o
Each filled circle indicates a single atom; the points mark the lattice sites. b, Top,  lattice phase for the feedback on the addressing beam position. -05 0 0.5 1

as for a except that a global microwave sweep exchanged the population in |0) X Position (um)

17 MARCH 2011 VOL 471 NATURE



QUANTUM SIMULATIONS
IONS — EXPERIMENTS

LETTER

doi:10.1038/nature18318

Real-time dynamics of lattice gauge theories with a
few -qubit quantum computer

Esteban A. Martinez'*, Christine A. Muschik?>*, Philipp Schindler', Daniel Nigg', Alexander Erhard', Markus Heyl*#,
Philipp Hauke??, Marcello Dalmonte®3, Thomas Monz!, Peter Zoller?* & Rainer Blatt!?

Figure 1: Quantum simulation of the Schwinger mechanism.

systems. In contrast, quantum simulations aim at the long-term goal
of solving the specific yet fundamental class of problems that currently
cannot be tackled by these classical techniques. The digital approach
we employ here is based on the Hamiltonian formulation of gauge
theories’, and enables direct access to the system wavefunction. As
we show below, this allows us to investigate entanglement generation
during particle-antiparticle production, emphasizing a novel perspec-

tive on the dynamics of the Schwinger mfef:ha_nismz.

wnnoep

a, The instability of the vacuum due to quantum fluctuations is one of the most fundamental effects in gauge theories.
We simulate the coherent real-time dynamics of particle-antiparticle creation by realizing the Schwinger model (one-

a



QUANTUM SIMULATIONS
COLD ATOMS — EXPERIMENTS

New]. Phys. 19 (2017) 023030 https: //doi.org/10.1088 /1367-2630/aa54¢e0
- i ]
New Journal of Physics . Dore | Deusche Prysial
_ ' with: Deutsche Physikalische
The open access journal at the forefront of physics JOP lnstitute of Physics g::s;:;’;aﬁ and the Institute

~ PAPER

~ Implementing quantum electrodynamics with ultracold atomic
systems

V Kasper"*, F Hebenstreit”, F Jendrzejewski‘, M K Oberthaler’ and ] Berges'

Oberthaler group




QUANTUM SIMULATIONS
COLD ATOMS — EXPERIMENTS

New . Phys. 19 (2017) 023030 V Kasper etal

F 1/; S \f\/\ /\/\o/

I')n'1 L’n 1

Figure 4. The selection procedure results in the correlated bosonic spin exchange with a fermionic hoppingin the superlattice. Note
thatthe inverse process is allowed as well.

4. Microscopic parameters

At this point, we are now able to determine the accessible parameters for an experimental implementation of the
Schwinger model viaa mixture of bosonic *Na and fermionic °Li atoms [30], which is determined by the
parameters Xpp, Xpp> A and the occupation numbers of the links.



CONFINEMENT
TOY MODELS

1+1D: Schwinger’s model.

cQED: 2+1D: no phase transition

Instantons give rise to confinement at g < 1 (Polyakov).
(For T > 0: there is a phase transition also in 2+1D.)

cQED: 3+1D: phase transition between a strong coupling
confining phase, and a weak coupling coulomb phase.

Z(N): for N = N,.: Three phases: electric confinement,
magnetic confinement, and non confinement.
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