
Multi-Task Learning with Neural Networks for
VoiceQuery Understanding on an Entertainment Platform

Jinfeng Rao,
1,2

Ferhan Ture,
1
and Jimmy Lin

3

1
Comcast Applied AI Research Lab

2
Department of Computer Science, University of Maryland

3
David R. Cheriton School of Computer Science, University of Waterloo

jinfeng@cs.umd.edu,ferhan_ture@comcast.com,jimmylin@uwaterloo.ca

ABSTRACT
We tackle the challenge of understanding voice queries posed

against the Comcast Xfinity X1 entertainment platform, where con-

sumers direct speech input at their “voice remotes”. Such queries

range from specific program navigation (i.e., watch a movie) to re-

quests with vague intents and even queries that have nothing to do

with watching TV. We present successively richer neural network

architectures to tackle this challenge based on two key insights:

The first is that session context can be exploited to disambiguate

queries and recover from ASR errors, which we operationalize with

hierarchical recurrent neural networks. The second insight is that

query understanding requires evidence integration across multiple

related tasks, which we identify as program prediction, intent clas-

sification, and query tagging. We present a novel multi-task neural

architecture that jointly learns to accomplish all three tasks. Our

initial model, already deployed in production, serves millions of

queries daily with an improved customer experience. The novel

multi-task learning model, first described here, is evaluated through

carefully-controlled laboratory experiments, which demonstrates

further gains in effectiveness and increased system capabilities.

ACM Reference Format:
Jinfeng Rao, Ferhan Ture, and Jimmy Lin. 2018. Multi-Task Learning with

Neural Networks for Voice Query Understanding on an Entertainment Plat-

form. InKDD 2018: 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, August 19–23, 2018, London, United Kingdom.ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3219819.3219870

1 INTRODUCTION
In recent years, we have witnessed a proliferation of smart home

gadgets and speech-driven intelligent agents such as Amazon Alexa

and Google Home. It is only natural that viewers should be able

to engage with their home entertainment systems (i.e., TVs) in a

similar manner, via natural speech-based interactions. The Comcast

Xfinity X1 entertainment platform provides this capability.

At a high level, our goal is simple—we want to provide the most

natural speech-based interactions with TVs possible. The viewer

issues a voice query, our platform understands the intent, and then

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD 2018, August 19–23, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00

https://doi.org/10.1145/3219819.3219870

responds appropriately. For example, the viewer simply says “watch

Inception on demand” to switch the television to the proper listing,

which is much simpler than awkwardly going through channel

guides or spelling out the name of the movie on a keypad. Even if

the viewer already knows what channel a program is on, finding

the right channel may still be difficult, since modern entertainment

packages may have hundreds of channels. Our query logs suggest

that the voice query functionality receives significant usage, and

has emerged as an attractive alternative to physical button entry

on remote controls that have gotten too complex over time.

Our first attempt at tackling this challenge focused on directly

identifying the program a viewer intends to watch, what we term

voice query navigation. The key insight is to exploit session con-

text to disambiguate queries and to cope with speech recognition

errors. For example, the query “game of throw” can either refer

to the television series “Game of Thrones” (because of a transcrip-

tion error) or a TV game called “Fish Throw Game". However, if

the viewer just uttered “HBO series” a moment ago, then it is far

more likely that she is looking for the former since we know the

show is playing on HBO. This intuition is operationalized using a

Navigational Hierarchical Recurrent Neural Network (N-HRNN),

previously described in Rao et al. [24].

Our N-HRNN was recently deployed into production to serve

live traffic at the tail end of a cascade architecture, as part of a risk-

averse deployment strategy. At present, the model serves millions of

queries daily for which the previous modules provide no response

(in other words, the most difficult queries). We have substantially

increased end-to-end coverage, reducing the number of unhandled

queries by three quarters. On these queries, the N-HRNN defini-

tively improved the customer experience two thirds of the time and

arguably did not hurt in the other third.

Despite the success of our N-HRNN in production, we noticed

two main shortcomings. First, the model adopts a classification-

based approach, which is unable to predict unseen programs (e.g.,

newly-added content). Furthermore, its formulation has difficulty

handling the long tail of rarely-watched programs. Second, our

analysis of millions of queries [25] reveals that they span the gamut

from program navigation to vague entertainment intents (e.g., look-

ing for kids cartoons) to direct commands (e.g., turning on closed

captioning) to queries that have nothing to do with entertainment

(e.g., checking the weather). In fact, we find that around 40% of

queries are either ambiguous viewing intents or not related to

viewing a program at all. Obviously, a model based on program pre-

diction cannot handle such queries. These two main shortcomings

motivated us to explore a different design.

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

636

https://doi.org/10.1145/3219819.3219870
https://doi.org/10.1145/3219819.3219870

To this end, we propose a novel multi-task neural architecture

for query understanding that jointly performs three distinct tasks:

(1) Program prediction to directly identify the program or chan-

nel referenced in a viewer’s utterance, out of a catalog of tens

of thousands of programs and hundreds of channels.

(2) Intent classification to understand what the viewer wishes

to do. Our system recognizes around one hundred intents, rang-

ing from TV commands (record a particular show) to enter-

tainment intents that vary in specificity to non-entertainment

intents (e.g., how to troubleshoot the wifi connection).

(3) Query tagging of each token in a viewer’s utterance with

domain-specific labels such as “entity”, “channel”, “modifier”,

etc., drawn from a tag set of roughly a dozen.

Program prediction, intent classification, and query tagging work

together in a complementary way. In cases where the decision

overlaps—for example, the system detects that the viewer’s intent

is to switch channels, which is confirmed by the tagging and pro-

gram prediction modules—multiple sources of evidence reinforce

the system’s confidence in the decision. In cases where program

prediction fails, tagged tokens in the query can serve as keywords

for searching the program catalog. For example, given the query

“watch Tom Hanks movies on HBO”, program prediction may fail

since the viewer is not looking for a specific program. The system,

however, can parse the query into a logical form via the query tags:

[person=“Tom Hanks” ∧ category=“movies” ∧ channel=“HBO”] and
return a list of options to the viewer.

We evaluate our multi-task model in a carefully-controlled set-

ting on real data, demonstrating effectiveness gains beyond our

N-HRNN and other competitive baselines. More importantly, the

multi-task problem formulation provides a unified framework for

understanding voice queries that express a multitude of intents.

Contributions. This work makes the following contributions:

• We analyze how well our previous model (N-HRNN) has fared in

production, offering a case study in technology transfer from a re-

search environment. Deployment of the N-HRNN addressed “low

hanging fruit” that in turn revealed shortcomings, motivating

the need for a richer framework.

• We articulate a novel framework for understanding voice queries

posed to an entertainment platform, decomposed into the three

tasks of program prediction, intent classification, and query tag-

ging. In particular, we explain why all three are necessary to

properly understand queries.

• We describe a neural architecture that jointly learns how to per-

form all three tasks, explaining the intuition behind our design

choices. Evaluation on a large voice query log demonstrates

how joint learning of the three tasks improves accuracy on each

task individually. The multi-task model provides the basis of

an end-to-end system for handling queries that can draw from

approximately one hundred different intents.

2 BACKGROUND AND RELATEDWORK
The context of our work is voice search on the Xfinity X1 enter-

tainment platform by Comcast, one of the largest cable companies

in the United States with approximately 22 million subscribers in

40 states. The X1 platform can be controlled via spoken queries

directed at the “voice remote”, which is a remote controller with

an integrated microphone. The platform has been deployed to 17

million customers since around 2015. In 2016 alone, customers have

issued more than 3.4 billion voice commands. This innovative plat-

form was recently awarded an Emmy for technical contributions in

advancing television technologies.
1
The input to the X1 platform is

the one-best transcription from a third-party ASR system. Because

this appears as a black box to the query understanding components,

transcription errors make our problem more difficult.

We are, of course, not the first to tackle voice search [3, 6, 9, 10,

13, 28, 29, 32], although previous studies mostly examine this in a

mobile context. In contrast, we are the first to tackle queries directed

at an entertainment platform (with our previous work [24]). Beyond

obvious differences such as setting (our viewers are typically sitting

in front of their TVs when interacting with the platform), there are

significant differences in input and output modalities. The voice

remote lacks a keyboard, making non-voice interactions awkward

(compared to having a touchscreen). Furthermore, TVs are generally

not optimized for displaying web pages, so backing off to web

search is not feasible in our context (unlike on mobile devices such

as smartphones). This makes proper query understanding more

important, since we can’t rely on web search as a “catch-all”.

Our work takes advantage of recent advances in deep learning [5,

8, 11, 12, 22, 23, 27, 34, 35] and multi-task learning [1, 2, 4, 18, 33].

Multi-task learning (MTL) is a machine learning paradigm where

objectives for multiple related tasks are optimized together. The

main intuition is that whenmultiple tasks are not independent, joint

training reinforces individual tasks and results in better generaliza-

tion across shared parameters. Since its introduction [1], MTL has

been studied for many different problems, including computer vi-

sion [18, 33] as well as text and web applications [2, 4, 36]. Collobert

and Weston used MTL to jointly learn six different NLP tasks [4].

For web search ranking, Chapelle et al. [2] claimed that MTL yields

improvements by allowing implicit data sharing and regularization

across different tasks using different datasets. Deep learning has

recently started to receive more attention from MTL: for exam-

ple, multi-task encoder–decoder architectures were proposed to

improve accuracy in machine translation by jointly training for

parsing and caption generation [18].

3 NAVIGATIONAL VOICE QUERIES
Our first attempt at query understanding focused on the problem of

navigational voice queries, where the viewer specifies the program

they wish to watch, which may be a particular channel, TV show,

movie, sports event, etc. Based on previous log analyses [24, 25], we

realized that we could take advantage of session context (i.e., the

sequence of viewer queries) for disambiguation and error recovery.

For example, “Chicago Fire” could refer to either the television

series or a soccer team. However, if this query occurred in a session

mentioning “ESPN”, for example, then the system can be fairly

confident that the viewer is referring to the sports team.

Formally, given a voice query session [q1, . . . ,qn], a sequence
of queries from a viewer, our task is to predict the program p

1
https://corporate.comcast.com/news-information/news-feed/comcast-wins-emmy-

award-for-x1-voice-remote-technology

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

637

H(; θH)

F(; θF)

Softmax

G(; θG)
c2c1

c3c2c1

v3v2v1

bb
b
b

bb

P (Game of Thrones) = 1.0

q3:“Game of Throne”

Lookup Layer

bb
b
b

bb

P (Game of Thrones) = 0.8

q2:“Game of Throw”

Fully-Connected

Lookup Layer

bb
b
b

bb

P (Game of Thrones) = 0.4

q1:“Watch Game of ”

Fully-Connected

Lookup Layer

e1 e2 e3

Layer Layer
Fully-Connected

Layer

Figure 1: Architecture of the contextual model.

(drawn from a finite set of labels) that the viewer intends to watch—

hence the problem is formulated as multi-way classification. Pre-

diction is performed at each time step t ∈ [1,n] on each succes-

sive voice query qt , exploiting all previous queries in the session

[q1, . . . ,qt−1] as context.
Given the nature of the domain, this problem seemed like obvious

“low hanging fruit” for which a better model would translate into

large customer impact. We begin by summarizing our solution,

which was previously described in Rao et al. [24] and was recently

deployed to production. This model sets the stage for the richer

multi-task architecture we present later.

The idea of capturing session-level information is operational-

ized using hierarchical recurrent neural networks. The main intu-

ition is that across queries, the system can accumulate contextual

signals to better disambiguate later queries in the same session. In

reality, Rao et al. [24] described several model variants, but here we

discuss only the complete N-HRNN model, shown in Figure 1. Each

query in the session is first run through a shared LSTM (blue rect-

angles) to produce a sequence of query embedding vectors. They

are then fed into another LSTM (rectangles with red dots) to learn

the contextual representation of each query in the session, encoded

as contextual query vectors c1, . . . , cn . These allow the LSTM to

find an optimal combination of signals from prior context and the

current query. In some cases, the model can learn “relatedness”

between successive queries to increase confidence in the desired

program. In other cases, the context might actually introduce noise,

particularly if the intent is vague. With sufficient data, the model

can learn to distinguish between these two cases. The final program

prediction is produced by the fully-connected layer, conditioned

on the contextual vector of the current query.

4 INITIAL MODEL DEPLOYMENT
The model presented above was detailed in Rao et al. [24], where

different variants were evaluated retrospectively using query log

data. Under these carefully-controlled experimental conditions, the

benefits of modeling context were clear. We observed gains over

the existing production system, a variety of competitive baselines,

and contrastive configurations of the complete model. On a test

set of 82K real-world queries, the N-HRNN outperformed a strong

neural baseline by 7.5 absolute points in accuracy.

Following these promising laboratory experiments, we packaged

our N-HRNN into a standalone software module that was deployed

into production as part of the X1 software package on January 5,

2018. In this section, we describe deployment details and lessons

learned from the first month of live traffic. Our experience provides

a case study of technology transfer from research into production.

4.1 Implementation Details
To balance efficiency, effectiveness, and coverage, our model was

deployed in production as part of a cascade, where the N-HRNN

module was run after a number of simpler NLP modules (based

on pattern matching and some machine-learned components). A

cascade architecture has several advantages: While it would have

been possible to run the N-HRNN in parallel with the existing

modules, such a setup introduces a new ensemble selection problem

that complicates deployment. Since we are introducing completely

new technology (this is the first neural network model that has

been deployed in production), we adopted a conservative approach

to minimize adverse effects. Because the N-HRNN is placed at the

end of the cascade, it is given queries that would have otherwise

gone unhandled (more details below). Finally, a cascade deployment

allows us to control query latencies and to take advantage of richer

models only when they are needed (e.g., there is no need to run

a deep neural network to respond to the query “CNN”). This is

similar in spirit to cascade architectures for ranking [31].

Implemented in Keras with the TensorFlow backend, our model

has over 17M parameters, 15M of which come from the embedding

matrix. The model is serialized into a 69 MB file and deployed as

part of a Docker image. Inference for a single query takes around

70ms on a GPU server (Tesla M60 GPU, Xeon E5-2643 v4 CPU),

while latency increases to 750ms on a server with a single Xeon

E5-2660 v3 CPU. Since feedforward inference is embarrassingly

parallel, we can scale up easily by load balancing across an arbitrary

number of servers to obtain the desired throughput. At peak load,

we use a small cache to skip model inference for the most frequent

N queries, which lowers average latency considerably.

4.2 Query Coverage
Before we deployed the N-HRNN, the production system was un-

able to produce any response for 8% of all queries—in this case, the

customer sees a special “cannot handle this query” message. Thus,

the queries given to our model are the most difficult queries by con-

struction. A manual analysis revealed numerous challenges: speech

recognition errors, references to brand new programs, ambiguous

intent, or even complete gibberish. By deploying our N-HRNN as

the last step of the cascade, we hoped to handle as many of these

queries as possible without making too many mistakes. As an addi-

tional control mechanism, we implemented a confidence threshold

(output of the softmax layer), below which the N-HRNN does not

return a response. This threshold, which was hand tuned, allowed

us to trade off coverage for precision.

After deployment, we monitored logs in the week from January

27 to February 2, 2018: the complete system received 70.1M queries,

5.7M of which (8%) were sent to our N-HRNN, the last step of the

cascade. Among these 5.7M queries (for which the viewer would

have gotten an error message previously), the model confidence

was above the threshold for 4.2M (6%). In other words, the N-HRNN

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

638

2/10/2018 Search | Splunk 6.5.5

http://splunk.streamsage.com/en-US/app/oiv/search?earliest=1514764800&latest=1516492800&q=search%20index%3Dvrex%20source%3DVREX_TopN_Comman… 1/2

t New Search

from Jan 1 through …

✓ 57,668 events (1/1/18 12:00:00.000 AM to 1/21/18 12:00:00.000 AM) Sampling 1 : 1,000

_time

API.AI
ENLP
EVENT
FullNLP
MOVIE QUOTES
dNLP

Fri Jan 5Tue Jan 2
2018

Mon Jan 8 Thu Jan 11 Sun Jan 14

100

200

300
⊖ Reset Zoom

›‹

_time API.AI ENLP EVENT FullNLP MOVIE QUOTES dNLP

2018-01-01 00:00 2 142 5 69 0 0

2018-01-01 01:00 1 116 2 75 0 0

2018-01-01 02:00 0 144 6 76 0 0

2018-01-01 03:00 0 127 7 77 0 0

2018-01-01 04:00 0 122 3 76 0 0

2018-01-01 05:00 0 111 5 74 0 0

2018-01-01 06:00 0 96 2 53 0 0

2018-01-01 07:00 1 80 2 38 0 0

2018-01-01 08:00 0 65 2 15 0 0

2018-01-01 09:00 1 36 4 17 0 0

2018-01-01 10:00 0 32 0 6 0 0

2018-01-01 11:00 0 28 1 8 0 0

2018-01-01 12:00 0 33 1 14 0 0

2018-01-01 13:00 0 48 1 18 0 0

2018-01-01 14:00 2 78 4 29 0 0

2018-01-01 15:00 0 75 2 34 0 0

2018-01-01 16:00 1 108 3 40 0 0

2018-01-01 17:00 0 103 1 62 0 0

2018-01-01 18:00 1 108 5 51 0 0

2018-01-01 19:00 0 114 6 53 0 0

index=vrex source=VREX_TopN_Commands_Hourly splunk_server=rexsplk-po-03p.sys.comcast.net| where

 (nlpSource="MOVIE QUOTES" OR nlpSource="dNLP" OR nlpSource="EVENT" OR nlpSource="ENLP" OR nlpSource

 ="API.AI" OR nlpSource="FullNLP") | timechart span=1hr count by nlpSource limit=0

Visualization

Figure 2: Production traffic after N-HRNN deployment. The
fraction of queries served by our module (orange) gradually
replaces queries without any responses (purple).

received 8% of the total traffic and responded to 6%; for the remain-

ing 2%, our model chose not to respond, and the platform resorted

to the existing behavior (displaying the error message).

Figure 2 shows the breakdown of per-module query coverage.

The main pattern-based module is shown at the top (yellow) and

the N-HRNN is shown in orange at the bottom. A few other special-

ized modules (sports, events, trivia questions, etc.) can be seen as

small slivers. After the N-HRNN was deployed, unhandled queries

(purple) gradually turned orange. Our N-HRNN quickly became

the second most impactful module in the production system.

Based on this, we can conclude that the coverage of the N-HRNN

module is 74% (4.2M/5.7M). The coverage of the entire end-to-end

system increased from 92% to 98% after deployment. In other words,

our N-HRNN dramatically increased coverage, reducing the number

of unhandled queries by three quarters.

4.3 Quality Evaluation
In addition to coverage, we are also interested in accuracy:When the

model generates a response, how good is it? And more importantly,

what is the impact on the customer experience? Recall that these

queries were previously not handled and the system responded with

an error message. Therefore, any relevant response represents an

improvement. Furthermore, it is unclear if a non-relevant response

is actually worse than an error message.

To formally evaluate output quality, we devised a simple three-

grade relevance scale: 1 means the response was completely not

relevant, 2 means the response was somewhat relevant (i.e., there

might have been a better response, but the system output was

reasonable), and 3 means the response was completely relevant.

Every week, our quality assurance team examines a random

sample of queries for which our N-HRNN provided a response:

During our evaluation period, this resulted in a dataset of 809 an-

notated queries. The annotator listened to the audio and looked at

the final output to determine its relevance. Results showed that 29%

of responses were graded as completely relevant (e.g., query was

“Missoula gumball” and the N-HRNN response was “The Amazing

World of Gumball”), while 38% received a grade of 2, somewhat

relevant (e.g., “Letterman” led to the movie “Dying to Do Letter-

man”). Only 33% were considered non-relevant. However, further

analysis suggested that these non-relevant responses were usually

“interpretable” by viewers, e.g., an erroneous partial match (“Ally

Wong” returned “Austin & Ally”). We did not observe many “wildly

off-base” responses that would perplex the viewer.

In summary, for two thirds of queries that the N-HRNN pro-

vided a response (4.2M queries), the customer experience improved,

since the alternative was an error message. In the remaining third,

where the system provided a non-relevant response, arguably we

haven’t made anything worse. Considering these were the most

difficult questions to begin with, we were extremely pleased with

the coverage and accuracy of our model on live production traffic.

4.4 Lessons Learned and Shortcomings
As a first attempt at a challenging problem, our results were very

promising and our production deployment surpassed expectations.

This encouraged us to pursue additional refinements based on the

lessons learned. We discuss these points here, which naturally leads

to our richer and more ambitious multi-task model in Section 5.

Based on error analysis, we noticed a few systemic problemswith

the N-HRNN. First, the model takes a classification approach with

a fixed set of programs and cannot generalize to new programs: the

dynamic nature of the entertainment business makes this a critical

weakness. On average, 675 new programs are added to our catalog

every day. For example, many of the non-relevant responses were

for queries about ongoing events, such as the Screen Actors Guild

Awards and the Grammys. Queries with an unsupported intent

type (e.g., “recently purchased” refers to a special menu on the

X1 unknown to our model) also generated non-relevant responses.

Since our model was only trained on programs, person references

were likely to produce non-relevant results as well. Finally, the

model tends to predict programs for which there are many training

examples—for example, queries mentioning “music” sometimes

yielded a popular channel called “CMT Music”.

Generally speaking, there are several fundamental limitations in

our problem formulation: First, our assumption that viewers usually

have clear viewing intents is not necessarily correct. Based on our

log analysis [25], we can identify around one hundred distinct

intents, most of which are either non-navigational or not viewing-

related, such as looking for a person or setting reminders. In these

cases, program prediction makes no sense. Second, a classification-

based formulation is unable to handle new programs and also suffers

for tens of thousands of tail programs that have limited training

instances. In addition, the number of parameters increases linearly

with the number of classes in a multi-way classification setting,

which has been shown to be neither effective nor efficient when

scaling to millions of classes [15].

Taking a step back, we realized that query understanding actually

requires three complementary tasks:

(1) Program prediction (the focus of our previous efforts) to di-

rectly identify the program or channel referenced in a viewer’s

utterance, out of a catalog of tens of thousands of programs

and hundreds of channels.

(2) Intent classification tries to understand what the viewer

wishes to accomplish. When program prediction (above) iden-

tifies a program or channel with high confidence—it is likely

that the viewer wishes to watch the program (or channel). How-

ever, in some rare cases, the intent is not to watch the show,

but to set up the DVR to record the show. This explains the

need for program prediction and intent classification to work

in conjunction, and both are necessary to properly understand

complex queries. Another prevalent intent is Browse, where

the viewer is looking for something to watch, but does not

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

639

CHA11(L (29.7%)

M29I((8.8%)

6(5I(6 (18.3%)

(9(17 (8.8%)

AM%IG8286 (9.1%)

%52W6((6.5%)

(17I7Y (1.9%)
5(C25D (1.5%)

81.12W1 (3.9%)

27H(5 (11.6%)

Figure 3: Intent distribution based on log analysis.

have anything specific in mind. In total, our system recognizes

roughly one hundred intents: these range from toggling closed

captioning to issuing play/pause/fast forward commands to

checking the weather and more.

(3) Query taggingworks in conjunction with intent classification
to provide a fine-grained analysis of queries. Here, the problem

is formulated as a sequence labeling task, where we assign a

tag to each token. The tag set contains around a dozen domain-

specific tags, including “person” (e.g., allowing us to identify

names of actors), “categories” (e.g., shows vs. movies), “genre”

(e.g., action vs. drama vs. comedy), and a few others.

As an example, the intent distribution over a dataset comprising

81M real-world queries is shown in Figure 3 (see Rao et al. [25]

for more details). More than half of all traffic is about viewing

a specific show: either a channel, a program, or an event. The

Browse intent, where viewers do not have a specific program in

mind, represents around 6.5% of queries. Examples are “show me

free kids movies” or “HD movies with Julia Roberts”. In these cases,

the viewer has some idea of the desired program but is expecting

suggestions from the system. Beyond View and Browse, our intent

taxonomy includes other less frequent categories, such as Entity

(1.9%), Record (1.5%), and a few dozen intents that are grouped in

Other (11.6%). Although the majority of traffic is about viewing

specific programs, handling the “long tail” of intents is critical

for improving the overall customer experience. To support such a

wide range of capabilities in production, we present a multi-task

architecture that jointly learns the above three related tasks.

At inference time, models for these three tasks can be deployed

to resolve ambiguity and reinforce confidence on clear intents, or

they can be used as increasingly-broad backoff mechanisms to cope

with queries that have vague intents. For example, if we identify

a clear viewing intent and also a specific program, there is a high

degree of confidence that the joint prediction is correct. On the

other hand, if the system identifies a Browse intent, query tagging

results can be used to guide a search-based strategy to narrow

down program choices (see example in the introduction). These

three tasks provide different perspectives to understand a query,

and are both necessary and complimentary in a comprehensive

voice search system. We devote the rest of the paper to articulating

this much richer architecture.

5 MULTI-TASK LEARNING ARCHITECTURE
In this section, we present our multi-task learning architecture with

detailed explanations about model design for program prediction,

intent classification, and query tagging. These three tasks share the

contextual component of the N-HRNN as a base module to convert

an input voice session to a semantic embedding, on top of which

task-specific models are separately built.

Given a voice query session [q1, . . . ,qn], we jointly make three

types of predictions: (1) the program that the viewer intends to

watch for each query, (2) an intent type for each query, and (3) a

tag sequence for each query. The three tasks are performed on each

successive new voice query qt (t ∈ [1,n]), exploiting all previous
queries in the session [q1, . . . ,qt−1] as context. At each time step

t , the model makes all predictions concurrently. To exploit the

benefits of jointly performing these three complimentary tasks, we

adopt a multi-task learning strategy to train the entire network in

an end-to-end manner. The overall model architecture is shown in

Figure 4 and consists of three distinct components:

(1) Query embedding component, shown in the bottom lookup
layer and the blue BiLSTM: the lookup layer converts a raw query

string to a sequence of vectors (through word2vec [19]) and the

BiLSTM learns a semantic embedding for the query. More formally,

given a query qt represented as a sequence of words {wt }, the

output is a sequence of hidden vectors {hbit } learned from the

BiLSTM. The last hidden vector is used as the query embedding

vt , which is passed to the contextual component. The sequence

of hidden vectors {hbit } serves as input to the tagging model to

generate a word-level tag sequence.

(2) Contextual component, shown as the red-dotted rectangles,

is the same as the corresponding LSTM in Section 3. It takes all the

preceding query embeddings {v1, ...,vt } as context to produce a

contextual vector ct that captures both semantic and contextual

features. The contextual vectors {ct } are then fed into the intent

classification and program prediction components.

(3) Task-specific components for query tagging (the yellow rec-

tangle), intent classification (the pink rectangle), and program pre-

diction (the red rectangle). At the top, we weight the losses from the

three tasks and sum them together for unified multi-task learning.

Details of the three task components are provided in Sections 5.1–

5.3, and multi-task optimization in Section 5.4.

5.1 Program Prediction
Our first task-specific component is responsible for program predic-

tion, which models the probability P (p |ct) of generating program
p given the contextual vector ct for an ongoing session {q1, ...,qt }.
Unlike the N-HRNN model that treats program prediction as multi-

way classification (and thus is unable to handle rarely-watched

tail programs and newly-added programs), we model the task as a

ranking problem (i.e., modeling the relevance between a query and

a program). Our model introduces a novel triplet ranking approach

that can directly exploit interactions between training (query, pos-
itive program, negative program) triples and can take advantage

of program embeddings to integrate different sources of evidence

(e.g., program title, viewers’ search and viewing histories) in a flex-

ible manner. The learned program embeddings are paired with the

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

640

Lookup Layer

q1:“Go HBO Channel ”

b b
b
b

b b

Lookup Layer

q2:“Game of Throw”

b b
b
b

b b

Lookup Layer

q3:“Game of Throne”

b b
b
b

b b

Program Embedding

Layer

b b b

b b b

p+ p−1 p
−
2 p−n

bbbbb bbbbbc

q1 q2 q3

Tagging

⊗

Intent Classification

BiLSTM

HierLSTM

b b b

Program Prediction

⊕
Sum(loss)

c1 c2 c3

q3

q1

q2

Figure 4: Our multi-task learning architecture, which contains three distinct components: (1) a query embedding component
at the bottom (blue rectangles) that converts a query string to a learned representation, (2) a contextual component (red dotted
rectangles) that models the context between queries in a session, and (3) task-specific components designed for three tasks:
program prediction (in red), intent classification (in pink), and query tagging (in yellow).

query embeddings in a triplet loss to identify the most relevant

program in a contrastive manner. In our model, a channel (e.g.,

“HBO”) is treated exactly like a program.

Let Φ denote the set of all programs in the training dataset. We

reformulate maximizing the classification probability P (p |ct) as a
ranking objective:

P (rel | ct ,p
+) > P (rel | ct ,p

−), ∀p+,p− ∈ Φ

That is, we wish to assign a higher relevance score to positive

programs from the training data than any negative program. We

propose three ways to learn a program embedding:

(1) Search-based program embeddings. We can define programs

purely based on how viewers search for them. In this representa-

tion, the program embedding layer is a simple lookup layer that

maps a program id (scalar) to a learned embedding vector, which is

randomly initialized and updated during training. Our assumption

is that given enough data, the embeddings will converge to a mean-

ingful representation, reflecting how viewers search for programs.

This is similar to how word2vec [19] is trained from neighboring

word associations; in our case, we use search-based associations

instead. Like word2vec, such representations can overcome lexical

mismatches. For example, viewers may search for a channel by its

number (i.e., “210” → “HBO”), where there is no lexical overlap;

this representation can learn such correspondences from log data.

However, the drawback of this search-based representation is its

dependence on observations; it is unable to handle cases where the

viewer refers to an unseen program.

From this representation, the relevance score between an ongo-

ing session {q1, ...,qt } and a program can be measured by the cosine

similarity between the program embedding p and the contextual

vector ct :

P (rel | p,q1, ...,qt) = P (rel | p, ct) = cosine(p, ct)

(2) Title-based program embeddings. As an alternative, we can

model query–program similarity lexically. To accomplish this, we

copy the query embedding component as our program embedding

layer and apply it to the program title, fromwhichwe obtain another

sequence of BiLSTM vectors representing the program. Let the

query representation be {hbiq } and the program representation be

{hbip }. We adopt an interaction-based method (similar to [26]) to

model the similarity between each word pair in (query, program):

sim(i, j) = cosine(hbiq [i],hbip [j])

From this we obtain a similarity matrix where each entry (i, j)
denotes the cosine similarity between query word i and program

title word j . We apply max pooling along the rows, which returns a

query-sized feature vector. Each feature i denotes the highest simi-

larity between any program title word and query word i . To capture
the relative importance of different query words, we weight this

feature vector (element-wise) by inverse document frequency (IDF).

Similarly, we repeat the same operation along the columns to obtain

a program-sized feature vector, where each element j denotes the
highest similarity between any query word and program title word

j (also IDF-weighted). These two feature vectors are concatenated

and passed to a linear layer, which computes a relevance score for

the query–program pair.

(3) Combination-based program embeddings. To capture the

best of both representations, we stack another linear layer on top

to combine the search-based and title-based relevance scores. This

can be considered a linear learning-to-rank approach with only two

feature inputs.

At this point, we have introduced three approaches for computing

the relevance of a program with respect to the current query in the

session. Given such a relevance scoring function P (rel), we explore

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

641

the interactions between positive and negative programs through

a softmax function:

o[p+] = P (p+ |q1, ...,qt) =
exp(P (rel | p+,q1, ...,qt))∑

p′∈C exp(P (rel | p′,q1, ...,qt))

where p+ is the positively labeled program for session i , o[p+]
denotes the probability of predicting p+, and C denotes the set

of candidate programs to be ranked. Ideally, C should be equal

to the program set Φ; in practice, we approximate this through

negative sampling, by selecting k (e.g., k = 10) programs from the

top ranked results of query qt using a standard retrieval algorithm

(i.e., BM25). Our goal is to maximize the likelihood of generating

positive programs given queries across the dataset, which can be

equivalently formulated as minimizing the program loss function:

Lp = −

|D |∑
i=1

n∑
t=1

logoi [p
+
] = −

|D |∑
i=1

n∑
t=1

log P (p+ |q1, ...,qt)

where the outer sum iterates over all sessions in the dataset D, and
the inner sum iterates over all queries in session i .

5.2 Intent Classification
Similar to program prediction, we also aim to predict the intent

type at for query qt given its contextual vector ct . We model this

task as a classification problem since the vocabulary of intent types

is relatively small and stable. On the top section of Figure 4 (the

pink rectangle labeled “Intent Classification”), a fully-connected

layer followed by a softmax layer defines the classification function.

The fully-connected layer consists of two linear layers with a ReLU

element-wise activation layer in between. The contextual vector ct
is fed into the fully-connected layer first, followed by L1 normaliza-

tion via the softmax function, producing normalized output vector

o. Each output score o[aj] denotes the probability of predicting

intent type aj as output. The intent classification loss is summed

over all queries in the dataset, as follows:

Li = −

|D |∑
i=1

n∑
t=1

log P (at |ct) = −

|D |∑
i=1

n∑
t=1

logot [at]

5.3 Query Tagging
Unlike program prediction and intent classification, which are

query-level predictions, query tagging is a sequence labeling task.

More formally, our query tagging component takes the output vec-

tor sequence {hbit } from the bottom BiLSTM as input and generates

a tag sequence {τt }, where each tag label corresponds to a word in

the query qt .
We use a conditional random field (CRF) [16] as our tagging

model (the yellow rectangle labeled “Tagging” in Figure 4) on top of

the BiLSTM. In addition to capturing the neighboring word context

through the BiLSTM, a CRF can exploit correlations between tag

labels in neighborhoods to jointly decode the best label sequence

for a given query. We use standard maximum likelihood estimation

for training the CRF and the Viterbi algorithm for decoding. We

omit the technical description of CRFs for space reasons, but refer

readers to Lafferty et al. [16] for details.

5.4 Multi-Task Learning
Since the three tasks have their own optimization objectives, we

adopted a multi-task learning strategy to train our entire model end

to end, jointly optimizing all three tasks. This is accomplished in

two stages: Following a commonly adopted strategy [17, 20], in the

first stage, all tasks are jointly trained by summing up their losses

based on a mixing ratio. Let wp , wi , and wt be the contribution

weight to the combined loss from each task (program prediction,

intent classification, and query tagging, respectively). The overall

loss is computed as follows:

L = wp · Lp +wi · Li +wt · Lt

where wp , wi , and wt sum to 1.0. In the second stage, we freeze

the underlying shared layers (the bottom BiLSTM and hierarchical

LSTM layer) and fine-tune the top task-specific layers (including

the program embedding layer) with task-specific losses.

6 EXPERIMENTAL SETUP
6.1 Data Collection
To build a dataset for supervised learning, we need the following

for each session: the program title (one per session), the intent type

(one per query), and query tags (one for each query word). We

use a combination of user logs and human annotations to obtain

such data. The program title is extracted entirely from logs, in a

manner analogous to harvesting clickthroughs in the web domain:

If the viewer began watching program p after the final query in

a session and continued watching it for at least 150 seconds, we

label the session with p (this duration parameter was explored in

Rao et al. [24]). For the intent type and the query tags, we used

a semi-supervised approach to collect ground truth data. Initially,

hand-crafted patterns were manually designed by our annotation

team, which were then applied to parse queries into a logical form,

from which we extracted the intent type and query tags. New pat-

terns were gradually added over time to increase coverage. This

bootstrapping process can be thought of as a simple yet practi-

cal human annotation strategy when exhaustive hand-labeling is

infeasible in a large-scale setting.

Using this process, we extracted a total of 8.8M training instances

(labeled sessions) from 81.4M queries received during the week of

February 22 to 28, 2017, from which we randomly sampled a subset

and split into training, validation, and test sets. The set of intent

types and query tag types were extracted based on a particular set

of hand-crafted patterns at a particular point in time. Basic statistics

are summarized in Table 1. All three sets are sufficiently large to

realistically capture the diversity of viewer queries. The percentage

of single-query vs. multi-query sessions is about 80:20 for all three

sets. The program set contains 26247 distinct programs and 244

channels. About 10% of the queries in the validation and test sets

have program labels that are not seen in the training set. There are

109 intents and 11 tag types in total.

6.2 Model Training
Weused 300-dimensional word2vec [19] embeddings to encode each

word, trained on the Google News dataset and freely available. The

word vocabulary of the training set is 29.3K and 4282 lack word2vec

vectors; these were randomly initialized with values uniformly

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

642

Dataset Sessions Queries Avg. Sess. Len Avg. Q. Len

Train 870,941 1,186,937 1.36 2.24

Validation 623,142 823,565 1.32 2.23

Test 622,959 825,639 1.33 2.23

Table 1: Dataset statistics.

sampled from [−0.05, 0.05]. Words in the validation and test sets

unseen during training were treated as out of vocabulary.

During training, we used stochastic gradient descent together

with the Adam optimizer to iteratively update model parameters.

The learning rate was initially set to 10
−3

and then decreased by

a factor of three when the validation set loss stopped decreasing

for three epochs. The LSTM output size and the size of the linear

layers were set to 150. The batch size was set to 256.

For each task, the model parameters that obtained the lowest

task-specific loss on the validation set was used at evaluation time.

During evaluation, as input candidates for our model to rerank,

we used the top 20 programs retrieved by BM25 on character-level

3-grams from the program titles (see baseline condition below). We

also add all channels into our candidates pool when the detected

viewer intent is to view a channel. This helps cases where the

query and program share no lexical overlap (i.e., the query is a

channel number and the “program” is the channel name). Our

models were implemented using Keras, running on a server with 8

GPUs (GeForce GTX TITAN X) and 256GB RAM.

In order to demonstrate the effectiveness of multi-task learning,

we compared two different approaches for training our models:

Single-Task Learning (STL). Although our architecture is de-

signed for multi-task learning, it can still be trained for a single task.

In this mode, the training process only optimizes the intended task

loss (e.g., intent classification), while ignoring losses from the other

two tasks (by assigning zero to their mixing weights). Typically,

the training process converges in five epochs and each epoch takes

about 1.5 hours.

Multi-Task Learning (MTL). For multi-task learning, we used the

two stage approach described in Section 5.4. For tuning the weights

of the individual task-specific loss, we performed cross-validation

on the validation set to select the best mixing ratio that minimizes

the weighted sum of the three task-specific losses. In practice, we

found amixing ratio of (0.55, 0.05, 0.4) for program prediction, intent

classification, and query tagging, respectively, worked well for the

search-based representation, and (0.1, 0.2, 0.7) worked well for the

title-based and combination-based representations. Compared to

STL, the MTL training process takes much longer, typically 15

epochs per stage.

6.3 Metrics and Baselines
Intent classification and query tagging were evaluated in terms of

accuracy. For program prediction, we used three metrics (averaged

over all queries): precision at one (P@1), precision at five (P@5), and

Mean Reciprocal Rank (MRR). Use of these metrics was motivated

by the precision-oriented nature of television navigation, as limited

input options require our system to satisfy viewers’ queries as

quickly as possible. A number of baselines are described below;

note that some baselines are designed for a particular task, while

others can be extended to all three tasks.

BM25: We built a 3-gram (character-level) inverted index of the

program set Φ. During retrieval, the match score is computed on

3-gram overlaps between the query and program titles using Okapi

BM25 weighting (k1 = 1.2, b = 0.75).

SVMrank
[14]:We reused the learning-to-rank baseline in our previ-

ous work [24], which includes exact and soft-match features (BM25

and embedding-based) as well as popularity priors.

DSSM [12]: This neural ranking model, originally designed for web

search, uses word hashing to model interactions between queries

and programs at the level of character 3-grams. This provides an

appropriate baseline since it can handle noisy ASR output, unlike

neural ranking models based primarily on word matching [8, 21].

DSSM+S: Using the same model as above, we concatenate queries

in one session with a special boundary token between neighbor-

ing queries. Our goal here is to examine whether simple query

concatenation is sufficient to capture context signals in a session.

Stanford CRF Tagger2 [7]: As a standard baseline for sequence

labeling, we trained a linear CRF that combines standard local

and global features, including features based on n-grams, context

windows, etc.

N-HRNN with LSTM/BiLSTM [24]: Our original model, as de-

scribed in Section 3, can be extended to intent classification and

query tagging by adding separate fully-connected layers for each

task. We also tried both a unidirectional and a bidirectional bottom

LSTM layer to examine the effects of bidirectional query modeling.

7 RESULTS
Results for all three tasks are shown in Table 2. Each row repre-

sents an experimental setting (numbered for convenience). The

second column specifies the model, and the remaining columns

show results for program prediction, intent classification, and query

tagging, respectively. MTLA refers to our multi-task learning archi-

tecture, described in Section 5, trained either using the single-task

learning or multi-task learning conditions outlined in Section 6.2.

Results are shown in the two subtables titled “Single-Task Learning”

and “Multi-Task Learning”, respectively.

7.1 Program Prediction
First, we can see that BM25 achieves reasonably-high accuracies

(P@1 of 0.674) on the test set. The SVM
rank

predictor achieves

slightly better accuracy than BM25 by taking advantage of multiple

hand-crafted features in a supervised setting. Taking a closer look

at the learned model weights, we find that these additional fea-

tures are largely dominated by the BM25 feature and provide only

modest benefit to the overall model. DSSM significantly outper-

forms SVM
rank

as well as BM25, whereas DSSM+S performs slightly

worse than DSSM, suggesting that simple query concatenation is

not able to capture context signals in a session.

As expected, the N-HRNN is able to outperform the other base-

lines by quite a bit. We identified two main reasons: (1) There are

about 3% of queries (about 10% of all channel-intent queries) in

which the viewer searched for a particular channel by memorizing

2
https://nlp.stanford.edu/software/CRF-NER.shtml

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

643

https://nlp.stanford.edu/software/CRF-NER.shtml

ID Model Program Intent Tagging
P@1 P@5 MRR Accuracy

1 BM25 0.674 0.750 0.711 - -

2 SVM
rank

0.682 0.758 0.718 - -

3 DSSM 0.703 0.765 0.732 - -

4 DSSM+S 0.699 0.758 0.728 - -

5 Stanford CRF Tagger - - - - 0.821

6 N-HRNN LSTM 0.724 0.783 0.755 0.915 0.884

7 N-HRNN BiLSTM 0.725 0.786 0.753 0.916 0.939

Single-Task Learning
8 MTLA (search-based) 0.715 0.770 0.744

0.917 0.9449 MTLA (title-based) 0.720 0.796 0.754

10 MTLA (comb-based) 0.738 0.802 0.768
Multi-Task Learning

11 MTLA (search-based) 0.721 0.780 0.758 0.923 0.946
12 MTLA (title-based) 0.728 0.803 0.762 0.924 0.945

13 MTLA (comb-based) 0.757 0.812 0.792 0.925 0.945

Table 2: Model effectiveness for different experimental set-
tings. MTLA refers to our multi-task learning architecture,
trained either using the single-task learning or multi-task
learning conditions. Columns show results for program pre-
diction, intent classification, and query tagging.

its channel number; (2) Major ASR errors sometimes result in very

little lexical overlap between the query and the intended program

title (e.g., “Dr. Seuss’s The Lorax” is transcribed as “The Laura”).

In both cases, the query and the program title (or channel) have

minimal 3-grams overlap (or none), so approaches based on lexi-

cal matching (e.g., DSSM) cannot predict the correct program. We

further examine the session context by decomposing the dataset

into single-query and multi-query sessions. Comparing DSSM and

N-HRNN, the accuracy gap is much larger on multi-query sessions

(P@1 of 0.546 vs. 0.483) than on single-query sessions (P@1 of 0.770

vs. 0.757), thus affirming the value of modeling session context.

Single-query sessions obtain much higher accuracies overall since

they are by construction “easy queries” in which viewers reach

their intended program in a single query. These findings are consis-

tent with Rao et al. [24]. Finally, we see that bidirectional modeling

(BiLSTM) provides little benefit for program prediction.

Turning our attention to the “Single-Task Learning” subtable

(rows 8–10), we observe that the search-based program represen-

tation performs worse than the N-HRNN model. Considering that

these two models share the same underlying query embedding and

contextual component, the difference comes from the problem for-

mulation (classification vs. ranking) and how we train the model. In

the search-based model, we selected k negative programs for each

query–program sample during training. This can be less effective

than a classification formulation since the classification loss forces

the N-HRNN to select the positive program against all negative
programs, thus giving it stronger discriminative power. However,

this does not mean that a classification approach is better, as we

discussed in Section 4.4. The ranking formulation works well with

the combination-based representation (row 10), which significantly

outperforms N-HRNN at p < 0.05 using Fisher’s two-sided, paired

randomization test [30]. Incorporating signals based on program

Intent Channel Movie Series Event Browse

Channel 97.9% 0.4% 0.5% 0.0% 0.2%

Movie 0.4% 89.7% 2.4% 0.1% 3.3%

Series 0.2% 0.8% 96.2% 0.0% 1.3%

Event 0.4% 3.7% 1.6% 87.3% 0.0%

Browse 0.1% 1.9% 1.8% 0.0% 94.1%

Table 3: Confusion matrix for the top five intent types,
where the rows indicate the actual labels and the columns
the predicted labels.

titles helps the combination-based approach answer queries about

programs not observed during training, which cannot be answered

using a classification approach.

Subtable “Multi-Task Learning” (rows 11–13) confirms the bene-

fits of multi-task learning. Regardless of program representation,

program prediction is consistently and significantly (p < 0.05)

better than training in isolation. As expected, the improvements

from multi-task learning come from partial task overlap with intent

classification and query tagging. High confidence in a predicted

intent is able to help the program prediction component discard

candidate outputs that conflict. For example, the query “Disney

channel shows” is predicted as having intent Browse, and so the

predicted program is correctly set to NA (no answer).

7.2 Intent Classification
As shown in the “Intent” column in Table 2, the N-HRNN variants

form strong baselines, suggesting that intent classification is an

easier problem due to the limited size of the intent set. Bidirectional

modeling doesn’t improve the accuracy here. Since the approaches

in subtable “Single-Task Learning” are essentially the same model

as the N-HRNN BiLSTM (with respect to intent classification), the

accuracy differences are negligible. However, by jointly learning

all three tasks, we see consistent improvements. Our best method

(combination-based) achieves an accuracy of 0.925, which we con-

sider quite impressive given the diversity of real voice queries.

For further insights, we show the confusion matrix of our best

method (combination-based) for the most frequent five intent types

in Table 3 (where the rows indicate the actual labels and the columns

the predicted labels). The Channel intent has the highest accuracy,

while the Event intent has the lowest accuracy. This matches our

intuition that channel tuning is an easier task while the Event

intent is harder to identify given its somewhat vague definition. We

also see that the model is often confused between the remaining

three intent types: Movie, Series, and Browse. Again, this is likely

due to blurred lines between these intent types. For example, the

query “life of pets” can be interpreted either as an intent to watch

the movie with that title, the television series, or to Browse the

catalog for documentaries about pets.

7.3 Query Tagging
In the final “Tagging” column in Table 2, we see that the CRF

tagger achieves the lowest accuracy of 0.821 among all baselines:

the N-HRNN LSTM outperforms the CRF-only approach by more

than six absolute points. Unlike the other two tasks, bidirectional

modeling is crucial for the tagging problem because the tag of a

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

644

 0

 0.2

 0.4

 0.6

 0.8

 1

Context Channel Title Genre Person

Stanford CRF Tagger
Single LSTM

Single BiLSTM
Multi-Task(comb)

Figure 5: Tagging accuracy of all methods for five tags.

particular word is dependent on both the previous and next words.

By introducing a CRF on top of the BiLSTM in our multi-task model

(with “Single-Task Learning”), we are able to significantly beat the

N-HRNN BiLSTM and CRF baselines (p < 0.05). Finally, multi-task

learning provides an additional small boost to tagging accuracy.

Not all tags are created equal, which is why we examined the

accuracies of various methods for five representative tags, shown in

Figure 5. For the most common three tags (context, channel, and title)
that make up 95% of tokens, our multi-task learning approach con-

sistently performs the best while the CRF performs poorly. However,

the CRF performs well on the least frequent tags (genre and person).
This is likely due to insufficient training data for these tags (each ap-

pears in less than 1.5% of tokens). The LSTM-based approaches have

a much larger parameter space, making them more data hungry.

Overall, our best multi-task approach achieves a tagging accuracy

of nearly 95%. Once again, we believe that these results are quite

impressive given the diversity of real-world queries.

8 NEXT STEPS AND CONCLUSIONS
Our vision is that future entertainment systems should behave like

speech-enabled intelligent agents. In this paper, we described our

current progress toward this goal. Initial efforts focused on picking

the “low hanging fruit” of navigational voice queries. Today, our

N-HRNN runs in production as part of the Comcast X1 platform,

and the model has improved the customer experience for millions

of queries each day.

To tackle the limitations of our initial solution, we designed a

novel neural architecture to jointly accomplish three related tasks:

program prediction, intent classification, and query tagging. This

paper articulates how the three tasks complement each other to

understand a wide range of intents. We demonstrate how joint

learning improves the effectiveness of each task individually, yield-

ing significant gains over strong baselines. More importantly, our

multi-task framework provides an opportunity to build a complete

end-to-end system for understanding voice queries. This newmodel

is now being prepared for deployment and will soon be serving

millions of Comcast customers, providing natural voice-based in-

teractions for the entertainment domain.

REFERENCES
[1] R. Caruana. 1997. Multitask Learning. Machine Learning (1997), 41–75.

[2] O. Chapelle and Y. Zhang. 2009. A Dynamic Bayesian Network Click Model for

Web Search Ranking.WWW. 1–10.

[3] C. Chelba and J. Schalkwyk. 2013. Empirical Exploration of Language Modeling

for the google.com Query Stream as Applied to Mobile Voice Search. Mobile
Speech and Advanced Natural Language Solutions.

[4] R. Collobert and J. Weston. 2008. A Unified Architecture for Natural Language

Processing: Deep Neural Networks with Multitask Learning. ICML. 160–167.
[5] M. Dundar, Q. Kou, B. Zhang, Y. He, and B. Rajwa. 2015. Simplicity of K-means

Versus Deepness of Deep Learning: A Case of Unsupervised Feature Learning

with Limited Data. ICMLA. 883–888.
[6] J. Feng and S. Bangalore. 2009. Effects of Word Confusion Networks on Voice

Search. EACL. 238–245.
[7] J. Finkel, T. Grenager, and C. Manning. 2005. Incorporating Non-local Information

into Information Extraction Systems by Gibbs Sampling. ACL. 363–370.
[8] J. Guo, Y. Fan, Q. Ai, and B. Croft. 2016. A Deep Relevance Matching Model for

Ad-hoc Retrieval. CIKM. 55–64.

[9] I. Guy. 2016. Searching by Talking: Analysis of Voice Queries on Mobile Web

Search. SIGIR. 35–44.
[10] A. Hassan, R. Kulkarni, U. Ozertem, and R. Jones. 2015. Characterizing and

Predicting Voice Query Reformulation. CIKM. 543–552.

[11] H. He, J. Wieting, K. Gimpel, J. Rao, and J. Lin. 2016. UMD-TTIC-UW at SemEval-

2016 Task 1: Attention-Based Multi-Perspective Convolutional Neural Networks

for Textual Similarity Measurement. SemEval. 1103–1108.
[12] P. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. 2013. Learning Deep

Structured Semantic Models for Web Search using Clickthrough Data. CIKM.

2333–2338.

[13] J. Jiang, W. Jeng, and D. He. 2013. How Do Users Respond to Voice Input Errors?

Lexical and Phonetic Query Reformulation in Voice Search. SIGIR. 143–152.
[14] T. Joachims. 2006. Training Linear SVMs in Linear Time. SIGKDD. 217–226.
[15] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. 2016. Bag of Tricks for Efficient

Text Classification. arXiv:1607.01759.
[16] J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional Random Fields: Proba-

bilistic Models for Segmenting and Labeling Sequence Data. ICML. 282–289.
[17] P. Liu, X. Qiu, and X. Huang. 2017. Adversarial Multi-task Learning for Text

Classification. arXiv:1704.05742.
[18] M.-T. Luong, Q. Le, I. Sutskever, O. Vinyals, and L. Kaiser. 2015. Multi-task

Sequence to Sequence Learning. arXiv:1511.06114.
[19] T. Mikolov, W. Yih, and G. Zweig. 2013. Linguistic Regularities in Continuous

Space Word Representations. HLT/NAACL. 746–751.
[20] R. Pasunuru and M. Bansal. 2017. Multi-Task Video Captioning with Video and

Entailment Generation. arXiv:1704.07489.
[21] J. Rao, H. He, and J. Lin. 2016. Noise-Contrastive Estimation for Answer Selection

with Deep Neural Networks. CIKM. 1913–1916.

[22] J. Rao, H. He, and J. Lin. 2017. Experiments with Convolutional Neural Network

Models for Answer Selection. SIGIR. 1217–1220.
[23] J. Rao, H. He, H. Zhang, F. Ture, R. Sequiera, S. Mohammed, and J. Lin. 2017.

Integrating Lexical and Temporal Signals in Neural Ranking Models for Social

Media Search. Neu-IR.
[24] J. Rao, F. Ture, H. He, O. Jojic, and J. Lin. 2017. Talking to Your TV: Context-Aware

Voice Search with Hierarchical Recurrent Neural Networks. CIKM. 557–566.

[25] J. Rao, F. Ture, and J. Lin. 2018. What Do Users Say to Their TVs? An Analysis of

Voice Queries to an Entertainment System. SIGIR.
[26] J. Rao, W. Yang, Y. Zhang, F. Ture, and J. Lin. 2018. Multi-Perspective Relevance

Matching with Hierarchical ConvNets for Social Media Search. arXiv:1805.08159.
[27] R. Sequiera, G. Baruah, Z. Tu, S. Mohammed, J. Rao, H. Zhang, and J. Lin. 2017. Ex-

ploring the Effectiveness of Convolutional Neural Networks for Answer Selection

in End-to-End Question Answering. Neu-IR.
[28] J. Shan, G. Wu, Z. Hu, X. Tang, M. Jansche, and P. Moreno. 2010. Search by Voice

in Mandarin Chinese. INTERSPEECH. 354–357.
[29] M. Shokouhi, U. Ozertem, and N. Craswell. 2016. Did You Say U2 or YouTube?

Inferring Implicit Transcripts from Voice Search Logs.WWW. 1215–1224.

[30] M. Smucker, J. Allan, and B. Carterette. 2007. A Comparison of Statistical Signifi-

cance Tests for Information Retrieval Evaluation. CIKM. 623–632.

[31] L. Wang, J. Lin, and D. Metzler. 2011. A Cascade Ranking Model for Efficient

Ranked Retrieval. SIGIR. 105–114.
[32] Y. Wang, D. Yu, Y. Ju, and A. Acero. 2008. An Introduction to Voice Search. IEEE

Signal Processing Magazine, 29–38.
[33] R. Yu, A. Li, V. Morariu, and L. Davis. 2017. Visual Relationship Detection with

Internal and External Linguistic Knowledge Distillation. ICCV. 1974–1982.
[34] R. Yu, H. Wang, and L. Davis. 2018. ReMotENet: Efficient Relevant Motion Event

Detection for Large-Scale Home Surveillance Videos.WACV.
[35] B. Zhang and M. Al Hasan. 2017. Name Disambiguation in Anonymized Graphs

using Network Embedding. CIKM. 1239–1248.

[36] Y. Zhang and Q. Yang. 2017. A Survey on Multi-Task Learning. arXiv:1707.08114.

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

645

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Navigational Voice Queries
	4 Initial Model Deployment
	4.1 Implementation Details
	4.2 Query Coverage
	4.3 Quality Evaluation
	4.4 Lessons Learned and Shortcomings

	5 Multi-Task Learning Architecture
	5.1 Program Prediction
	5.2 Intent Classification
	5.3 Query Tagging
	5.4 Multi-Task Learning

	6 Experimental Setup
	6.1 Data Collection
	6.2 Model Training
	6.3 Metrics and Baselines

	7 Results
	7.1 Program Prediction
	7.2 Intent Classification
	7.3 Query Tagging

	8 Next Steps and Conclusions
	References

