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1 Introduction

Outline. In instantaneous nonlocal quantum computation, two parties coop-
erate in order to perform a quantum computation on their joint inputs, while
being restricted to a single round of simultaneous communication. Previous re-
sults showed that instantaneous nonlocal quantum computation is possible, at
the cost of an exponential amount of prior shared entanglement (in the size of
the input). Here, we show that a linear amount of entanglement suffices, (in
the size of the computation), as long as the parties share nonlocal correlations
as given by the Popescu-Rohlich box. This means that communication is not
required for efficient instantaneous nonlocal quantum computation. Exploiting
the well-known relation to position-based cryptography, our result also implies
the impossibility of secure position-based cryptography against adversaries with
non-signalling correlations. Furthermore, our construction establishes a quantum
analogue of the classical communication complexity collapse under non-signalling
correlations.

Motivation. In two-party quantum computation, Alice and Bob wish to eval-
uate a quantum circuit C on their joint inputs. Here, we consider that Alice and
Bob are co-operating players that are restricted only in the way they commu-
nicate: they can agree ahead of time on a joint strategy (and possibly establish
shared correlations or entanglement), but they are separated before receiving
their quantum inputs, and are allowed only a single round of simultaneous com-
munication (thus: Alice sending a message to Bob, and Bob sending a message
to Alice, simultaneously). The requirement is that at the end of this round, Alice
and Bob must share the output system ρAB

out = C(ρAB
in ). This problem is known

as instantaneous nonlocal quantum computation. Remarkably, this task is known
to be achievable for any circuit as long as the parties share an exponential (in
the size of the inputs) amount of an entangled resource given as copies of the
two-qubit maximally entangled state, 1√

2
(|00〉+ |11〉) [4, 10].

The motivation for the study of instantaneous nonlocal quantum computa-
tion includes the foundations of quantum physics and distributed computing;
however, the original and main motivation is in the context of position-based

1

http://arxiv.org/abs/1512.04930


2

cryptography. Here, parties use their geographic location as a cryptographic cre-
dential. Protocols typically exploit the relativistic no-signalling principle: the
idea being that a careful timing argument would then ascertain the location of
the parties [6]. Unfortunately, a no-go result is known in the the classical con-
text [14]. Due to the quantum no-cloning principle, it was originally believed
that quantum protocols could escape this impossibility result [13, 19–22]. How-
ever, these protocols are all broken by entanglement-based attacks, as long as
the colluding adversaries share a large enough (exponentially large) entangled
state [4, 10] This exponential overhead in resources (in terms of entanglement
and quantum memory) leads to the main open problem in this area, which is to
give a protocol which can be executed efficiently by honest players, but for which
any successful attack requires an exponential amount of resources (see related
work [12,28,29]).

Popescu-Rohlich Boxes. In an apparently unrelated line of research, Popescu
and Rohlich [26] defined the nonlocal box (NLB) as a virtual device that achieves
the CHSH conditions [16] perfectly: when Alice (Bob) uses input x (y), the NLB
produces output a (b) such that a⊕ b = x · y. We note that quantum mechanics
achieves this correlations with a maximum value of ≈ 85% [15], but that the
NLB is consistent with relativity since it does not enable communication. This
device, as well as more general non-signalling correlations have been studied
extensively, mostly in terms of understanding the power and limitations of non-
signalling theories [3, 7–9], as well as more generally in terms of information
causality [1,11,25] and local orthogonality [18,27]; see also [23,24]. One striking
consequence of the NLB is that it implies the collapse of classical communica-
tion complexity [30], meaning that, any Boolean function can be computed in
a two-party distributed context with a single bit of communication, as long as
the parties have access to the NLB correlations1. This is presented as evidence
against physical theories that allows the strong correlations of the NLB.

2 Summary of Contributions and Techniques

Here, we make progress towards the question of secure position-based quantum
cryptography by showing an efficient attack to any scheme, where the partici-
pants are allowed the additional NLB resource. Our technique consists in show-
ing that instantaneous nonlocal quantum computation is possible with a linear
amount of pre-shared entanglement (in the size of the circuit), together with
a linear amount of uses of the NLB. Furthermore, if we restrict the output to
being a single qubit (say, held by Alice), the classical communication reduces
to only two bits sent from Bob to Alice (in the case of quantum output), or a
single bit (in the case of classical output). In both cases, this is optimal [5]. Thus
our construction establishes a quantum analogue of the classical communication
complexity collapse [30] under no-signalling correlations.

1 This result was also shown by Richard Cleve (unpublished).
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In order to establish this result, we make the key observation that the Pauli-
X and Z corrections used in teleportation correspond precisely to the process
of quantum one-time pad encryption [2]. Thus, we view the two-party compu-
tation as being evaluated on encrypted quantum data, where the classical keys
are available via the teleportation corrections. More precisely, for each wire i in
the computation, Alice keeps track of encryption keys xAi ∈ {0, 1} and zAi {0, 1}
(Bob does likewise with values xBi ∈ {0, 1} and zBi {0, 1}). At any point in the

computation, the keys are distributed : applying the operation XxA
i ⊕x

B
i ZzA

i ⊕z
B
i at

each wire i results in the quantum state at that point in the (unencrypted) com-
putation. Crucially, aided by the NLB correlations, the parties can evaluate the
circuit on encrypted data without any communication: the decryption being de-
layed until the end of the protocol, when the parties exchange the classical keys
and thus can locally decrypt (reconstruct) their outputs. We note that, inspired
by a 2011 preliminary report on this work, Speelman [28] used a similar frame-
work to achieve instantaneous nonlocal quantum computation for circuits of low
T-depth; furthermore, recently, these techniques have led to the breakthrough
result of quantum fully homomorphic encryption [17].

3 Conclusions

Our result establishes a no-go result for position-based quantum cryptography
against efficient adversaries with non-signalling correlations. This implies that, if
position-based quantum cryptography is indeed possible against efficient quan-
tum adversaries, it will be thanks in part to bounds such as Tsirelson’s [15],
according to which quantum mechanics is not maximally non-signalling. One
open question that remains is to characterize more broadly the set of physical
theories that rule out position-based cryptography, for instance, in terms of non-
signalling correlations that are not known to be distillable to the NLB, or other
related theories.
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