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Introduction
When designing quantum key distribution (QKD) protocols, measurement outcomes produced by an incom-
patible choice of basis are usually discarded by the protocol specification. However, it has been shown that
these mismatched measurement outcomes can actually be useful in better determining E’s attack, leading
potentially to an improved key-rate bound. For instance, in [1], it was shown that mismatched measurement
outcomes can lead to an improved key-rate for the BB84 protocol under certain channels.

In [2, 3], the three state BB84 was considered (originally introduced in [4]). This is a protocol where
Alice (A) sends only |0〉 , |1〉 , or |+〉 = 1√

2
(|0〉+ |1〉) but never |−〉 = 1√

2
(|0〉 − |1〉) (thus, the users may not

directly estimate the probability of E’s attacking flipping a |−〉 to a |+〉 as may be done in the standard
BB84). Despite this limitation, however, it was proven that the use of mismatched measurement outcomes
allows the three-state protocol to suffer the same amount of noise as the full BB84 protocol, namely 11%. In
fact, the key-rate expression for both protocols is identical. Furthermore, and rather surprisingly, the choice
of the third state was largely irrelevant; i.e., A need not send |+〉 but any state |a〉 = α |0〉 +

√
1− α2 |1〉

for α ∈ (0, 1) (and B measuring in the basis {|a〉 , |ā〉}, where 〈ā|a〉 = 0) - assuming a symmetric attack
the choice of α did not matter (it may, however, affect the key rate if imprecise estimation is performed
[3]). Ref. [2] went further and also studied a modified four-state BB84 where A sends |0〉 , |1〉 , |+〉 , or
|0Y 〉 = 1√

2
(|0〉 + i |1〉). It was shown that this led to the same key-rate as the full six-state BB84 protocol,

again assuming a symmetric channel.
Recently, we have been developing a general framework from which to utilize mismatched measurement

outcomes in the security proofs of arbitrary QKD protocols, extending the work we initially performed in [3].
We consider both one-way (where a qubit travels from A to B each iteration) and two-way protocols (where
a qubit travels from A to B then back to A each iteration, thus passing through the adversary’s lab twice).
We show that our technique adapts to both scenarios and can lead to greatly improved key rate bounds for
a variety of protocols. We also do not assume symmetric attacks and instead derive key rate expressions for
various QKD protocols which may be used for asymmetric channels (for example, where E’s attack flips a
|0〉 with different probability than it would flip a |1〉). In fact, our key rate expressions utilize multiple noise
parameters which may be estimated by the two users of the protocol.

Applications
We first consider the generalized BB84 protocol denoted Ψ − BB84, where Ψ is the set of qubit states
that A may prepare randomly each iteration. We consider two cases: Ψ3 = {|0〉 , |1〉 , |a〉} and Ψ4 =
{|0〉 , |1〉 , |a〉 , |b〉}, where |a〉 = α |0〉+

√
1− α2 |1〉 and |b〉 = β |0〉+ i

√
1− β2 |1〉 (with α, β ∈ (0, 1) are fixed

parameters that are public knowledge). For such a protocol all states (and combinations of measurement
bases) are used for parameter estimation; however, only |0〉 and |1〉 are used for key distillation. In this case,
if E’s attack is symmetric (in that it may be modeled as the depolarization channel EQ(ρ) = (1 − 2Q)ρ +
QI, where I is the two-dimensional density operator; note this assumption is actually enforceable with
mismatched measurement bases [3]), then when Ψ3 is used, the protocol can tolerate up to 11% error while
if Ψ4 is used, it can tolerate up to 12.6% error, exactly that achieved by the full six-state BB84 (without
any preprocessing) [5]. This therefore provides an alternative proof to the result of [2] (which also used
mismatched measurement outcomes, though using a different proof technique, to show this same end result).
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α 0 0.342 0.643 0.939 0.985
Old Bound From [6] 11% 9.3% 5.7% 1% 0.27%

New Bound Using Ψ3 11% 9.97% 7.8% 3.8% 2.05%
New Bound using Ψ4 12.6% 11.9% 10.2% 5.31% 2.85%

Table 1: Comparing our new key rate bound for the extended B92 protocol with the one from [6]. In partic-
ular, we compare the maximally tolerated error rates of our bound with the one from [6] for a depolarization
channel and for various values of α = 〈0|a〉 (where |0〉 and |a〉 are used to encode the classical value of 0 and
1 respectively).

However, we went further and also derived a key rate expression utilizing all measurement statistics, allowing
the evaluation of asymmetric channels. That is, denote by pi,j , for i, j ∈ {0, 1, a, b}, the probability that, if A
sends |i〉 then B measures |j〉 (conditioning on the event B chose to measure in the basis in which |j〉 exists).
Our key rate expression utilizes several different combinations of i and j (e.g., p0,a, pb,1, p0,1 etc.). Thus,
the users need only measure these statistics, and evaluate the key-rate expression directly. Furthermore, we
show the choice of α, β ∈ (0, 1) does not matter, assuming the asymptotic scenario and perfect parameter
estimation.

Moving beyond BB84, we applied our technique to the extended B92 protocol described in [6] (which
may also be considered an asymmetric SARG04 [7]). Here, A uses |0〉 and |a〉 to encode a raw key bit of 0
and 1 respectively. We derived a new key rate expression and use mismatched measurement bases to improve
the channel estimation as was done for the BB84 example prior. We also considered the case where A sends
states from Ψ3 and from Ψ4. Our results are shown in Table 1 for various choices of α assuming a symmetric
attack. As before, the choice of β does not matter; the choice of α, however, does affect the key rate as it is
used directly in key bit distillation (unlike the BB84 protocol). Note that the tolerated noise level becomes
higher as α approaches 0 (i.e., as |a〉 approaches |1〉) which results in the BB84-style encoding.

In light of the above, we ask the question: given that our parameter estimation procedure determined
particular statistics on the channel, is BB84-style encoding (i.e., using |0〉 for a raw key bit of 0 and |1〉 for a
key bit of 1) optimal? For symmetric channels, BB84-style encoding was shown optimal in [8] using different
techniques from ours. We consider general asymmetric channels and to answer this question, we consider a
rather general (though by no means all inclusive) protocol where A encodes a raw key bit of 0 by sending
a qubit |ψ0〉 = αs |0〉 +

√
1− α2

s |1〉 and a key bit of 1 by sending a qubit |ψ1〉 = βs |0〉 +
√

1− β2
s |1〉 for

αs, βs ∈ [−1, 1]. Bob will measure and if he receives outcome |φ0〉 = αr |0〉 +
√

1− α2
r |1〉 he will set his

raw key bit to 0; otherwise if he receives outcome |φ1〉 = βr |0〉+
√

1− β2
r |1〉, his key bit will be a 1 (here,

αr, βr ∈ [−1, 1]; we also do not assume 〈φ0|φ1〉 = 0). Note the subscript “s” stands for send, while the “r” is
for receive. Clearly this does not parameterize all one-way QKD protocols; it does, however, include BB84
and the extended B92 as particular sub-cases.

We derive a key-rate expression for this protocol, based on parameters αs, βs, αr, βr and assuming states
from Ψ4 are used for parameter estimation (i.e., states in Ψ4 will be sent by A to B and used to estimate the
channel; while |ψi〉 and |φi〉 are used for key distillation only). We evaluate this expression numerically and
show that if the channel is symmetric (i.e., it is a depolarization channel), then the BB84 encoding is indeed
optimal (i.e., the choice of αs = 1, βs = 0, αr = 1, βr = 0 yielded the highest key rate for the symmetric
channel), confirming the result of [8]. For other, non-symmetric channels, this was not the case. We show
some examples in Table 2. Note that we use pi,j for i, j ∈ {0, 1, a, b} to denote the probability that, if A
sends |i〉 then B measures |j〉 (conditioning on the event he chose to measure in the basis in which |j〉 lives).
The reader will note that all statistics mentioned in the table are used in evaluating our key rate expression
(both for this protocol, and all others we have considered).

Finally, we consider two-way QKD protocols: one where a qubit must travel from A to B and then return
to A each iteration, thus allowing an attacker two opportunities to interact with the qubit. Furthermore,
the protocol we consider is a semi-quantum one [9] where the user B is limited in his quantum capabilities
(in particular, he can only measure in the Z basis). We use mismatched measurement bases to derive a
key rate expression for the protocol of Boyer et al. [9]. Assuming a symmetric attack, and using Ψ3 for
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Ψ4 − BB84’s key-rate .349 0.001 0 .265 .07
Optimized key-rate .349 0.001 .038 .307 .16
Optimized (αs, βs) (1, 0) (1, 0) (−1, .23) (.23,−1) (−.73, .65)
Optimized (αr, βr) (1, 0) (1, 0) (−.94, .02) (−.97,−.01) (.8,−.64)

p0,1 .07 .126 .138 .079 .224
p1,0 .07 .126 .191 .120 .198
pa,a .93 .874 .909 .966 .955
pb,b .93 .874 .942 .9371 .853
p0,a .5 .5 .523 .526 .397
p1,a .5 .5 .623 .544 .621
pa,0 .5 .5 .566 .523 .619
p0,b .5 .5 .435 .334 .294
p1,b .5 .5 .505 .623 .681
pb,0 .5 .5 .419 .396 .302

Table 2: Showing the key rate of Ψ4 − BB84 (i.e., A sends states of the form |0〉, |1〉, |a〉, and |b〉) and
the optimized one-way protocol under various attacks using our parameter estimation process (we used
α = β = 1/

√
2). The first two data columns are a symmetric attack with a noise level of 7% and 12.6%,

respectively, in all bases. The other columns are randomly chosen, asymmetric, attacks. Note that the third
data column shows an attack where BB84 would abort, yet there exists a way to distill a raw key using a
different encoding. Our key rate expressions (for all protocols considered) utilize all pi,j statistics shown.

parameter estimation our key rate bound remains positive up to an error rate of 5.4% (assuming the two
channels may be modeled as independent depolarization channels); this is an improvement over earlier work
in [10] (which did not use mismatched measurement outcomes) which could only tolerate up to 4.57% (note
that both results are lower bounds). If the two channels are correlated so that the error through a single
channel is equal to that through both, then our new bound remains positive up to an error rate of 7.4%
while the older bound in [10] only remained positive until 5.34%. Our new bound is improved if Ψ4 is used
for parameter estimation, in which case we get 6.7% for the independent channel case and 8.76% for the
correlated channels.
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