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Abstract

Unconditionally secure information sharing of private information against an eavesdropper can be achieved with a quantum
key distribution (QKD) protocol. A theoretical bound on a secure key rate of a QKD protocol is known to be realized by a reverse
private capacity such as with a reverse reconciliation. We show theoretically that a reverse private capacity has a property of
superadditivity, with an example consisting of two quantum channels which are a pure loss channel and an 100% erasure channel.
This implies that a tighter bound for a secure key rate exists than the previously known bound based on analysis of a reverse
private capacity in a single channel.

I. INTRODUCTION

Private communication has become important as personal information is immensely shared over the Internet. Quantum key
distribution (QKD) is suitable for private secure communication because it guarantees unconditional security by its physical
properties such as no cloning theorem [1].

An objective of QKD is to make two remote parties share a random bit sequence which is not uncovered to an eavesdropper
in a probabilistic manner. Then, one can have a fundamental question: what is the maximum generation rate for the shared
random bit sequence called as a secure key. Researches to find an answer to the question has been conducted [2]–[4]. The
corresponding results provide upper and lower bounds for the maximum secure key rate. The upper and lower bounds are
based on quantum relative entropy [4] and a reverse private capacity [2], respectively. In case of the lower bound, the authors
in [2] reveled that there exists possibility of a tighter lower bound since the proposed lower bound does not utilize a property
of a reverse private capacity. That is, a property of a reverse private capacity should be carefully investigated to find a tighter
lower bound.

A reverse private capacity is defined as the maximum secure key rate generated by a QKD protocol with reverse reconciliation
through a quantum channel [2]. As aforementioned, the proposed lower bound does not utilize a property of a reverse private
capacity which is superadditivity due to lack of its proof. Superadditivity means that a secure key capacity where quantum
channels are independently used is less than the capacity where quantum channels are used together. This implies an existence
of a tighter lower bound because the proposed lower bound is based on a single channel capacity. In this paper, we show a
reverse private capacity has superadditivity by showing a counter example. In that case, two quantum channels are modeled
as a pure loss channel and a 100% erasure channel.

This paper will be organized as follows. First, we explain a reverse private capacity with a simple system diagram in Section
II. In Section III, we then provide a detailed procedure for proof about superadditivity of a reverse private capacity. We finally
conclude our presentation as in Section IV.

II. REVERSE PRIVATE CAPACITY

Figure 1: QKD for reverse reconciliation.
By [2], a reverse private capacity, PR(N), means the maximum secure key rate achieved by a QKD with reverse reconciliation.

PR(N) is expressed as follows:

PR(N
A′→BE) = lim

n→∞

1

n
P

(1)
R ((NA′→BE)⊗n), (1)

where

P
(1)
R (NA′→BE) = max

ρAA′ ,MB

I(Y ;A)− I(Y ;E). (2)

Here, P (1)
R (N) is defined as a reverse private capacity for a single channel use. P (1)

R (N) describes a capacity of the QKD
with reverse reconciliation as shown in Fig.1. A transmitter, Alice, prepares a pure entangled quantum state AA′ of two qubits
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Figure 2: QKD for reverse reconciliation in two quantum channels which are a arbitrary quantum channel and an 100% erasure
channel.

for which a density matrix is given ρAA′
provided by a purification of a quantum state A′. Then, she sends a quantum state

A′ with ρA
′
= TrA(ρAA′

) to a receiver, Bob, through a quantum channel NA′→BE which is a completely positive and trace
preserving (CPTP) map. During transmission, some of the transmitted quantum state can be absorbed by an environment,
which is represented as a quantum state E with the corresponding density matrix ρE . Here, the absorbed quantum state by the
environment is conservatively assumed to be leaked to an eavesdropper, Eve. Bob measures his received quantum state with
positive operator valued measure (POVM), MB . Then, he obtains a measurement result which is a classical state Y . Based on
this, P (1)

R (N) is obtained from difference between quantum mutual information as in Eq.(2).

III. SUPERADDITIVITY OF A REVERSE PRIVATE CAPACITY

To show superadditivity, we use two quantum channels which are a pure loss channel and an 100% erasure channel. First,
we show a theorem which is helpful to show superadditivity.

Theorem 1. As shown in Fig.2, Alice prepares a quantum state A1A
′
1A2A

′
2 with ρA1A

′
1A2A

′
2 where quantum states A1A

′
1

and A2A
′
2 are pure entangled states. Then, she sends a quantum state A′

1A
′
2 with ρA

′
1A

′
2 = TrA1A2(ρ

A1A
′
1A2A

′
2) through an

arbitrary quantum channel NA′
1→B1E1

1 and 100% erasure channel NA′
2→E2

2 . After transmission, Bob measures a quantum
state B1 with POVM MB to obtain a classical state Y1. In this case, the following relation is established.

Q
(1)
R (N

A′
1→B1E1

1 ⊗N
A′

2→E2

2 ) ≥ I(Y1;A1), (3)

where

Q
(1)
R (NA′→BE) = H(A)−H(E). (4)

Proof. Given a quantum state A1A
′
1 with ρA1A

′
1 , by choosing a specific quantum state A2A

′
2 with ρA2A

′
2 , consider a quantum

state A1A
′
1A2A

′
2 with ρA1A

′
1A2A

′
2 which satisfies the following conditions.

A1⊥A2, (5)
H(A2) ≥ H(Y1), (6)

ρA1Y1E1A
′
2 = |ψA1Y1E1A

′
2⟩ ⟨ψA1Y1E1A

′
2 | . (7)

Eq.(5) means that we consider a quantum states A2 which is independent to a quantum state A1, i.e., H(A1|A2) = H(A1)
where H(·) represents von Neumann entropy. Since Bob’s POVM, MB , is known to Alice, we can find a quantum state A2

satisfying Eq.(6). To show existence of a quantum state satisfying Eq.(7), assume that a quantum state A1Y1E1 with ρA1Y1E1

is given, which can be obtained by a quantum channel, NA′
1→B1E1

1 . Then, by purification, there exists a pure quantum state
A1Y1E1A

′
2 with ρA1Y1E1A

′
2 purified by a quantum state A′

2. This provides that we can find the quantum state satisfying Eq.(7)
by controlling a quantum state A2A

′
2.

With the aforementioned conditions, the following can be established.

Q
(1)
R (N

A′
1→B1E1

1 ⊗N
A′

2→E2

2 ) = max
ρA1A′

1A2A′
2

[H(A1A2)−H(E1E2)], (8)

≥ H(A1A2)−H(E1E2), (9)
= H(A1A2)−H(E1A

′
2), (10)

= H(A1) +H(A2)−H(E1A
′
2), (11)

≥ H(A1) +H(Y1)−H(E1A
′
2), (12)

= H(A1) +H(Y1)−H(Y1A1), (13)
= I(Y1;A1). (14)

Eq.(8) comes from the definition of a reverse quantum capacity in [2]. Eq.(9) is caused by the fact that we consider the specific
input quantum state having assumptions in Eqs.(5)-(7). By the 100% erasure channel, a quantum state E2 is the same as a
quantum state A′

2, which provides Eq.(10). Eqs.(11) and (12) are satisfied by Eqs.(5) and (6), respectively. In case of Eq.(13),
by the Schumidt decomposition, we can easily check that H(E1A

′
2) = H(Y1A1) if a quantum state A1Y1E1A

′
2 is pure.
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By the fact that a reverse private capacity is bounded by a reverse quantum capacity [2], the result of Theorem 1 provides
the following.

P
(1)
R (N

A′
1→B1E1

1 ⊗N
A′

2→E2

2 ) ≥ Q
(1)
R (N

A′
1→B1E1

1 ⊗N
A′

2→E2

2 ) ≥ I(Y1;A1). (15)

Next, consider an arbitrary quantum channel NA′
1→B1E1

1 in Eq.(15) as a pure loss channel with transmittance 0 < η < 1.
In this channel, a reverse private capacity can be achieved by using an input Gaussian state and a rank one measurement [4].
The corresponding reverse private capacity is as follows:

P
(1)
R (N

A′
1→B1E1

1 ) = H(A1)−H(E1). (16)

By the fact that P (1)
R (N

A′
1→B1E1

1 ) > 0 when 0 < η < 1 [4], H(A1) > H(E1) ≥ 0. Since an input quantum state A1 is a
Gaussian state, output quantum states B1 and E1 are also Gaussian states in a pure loss channel [2]. Assume that the average
photon number in the quantum state A1 is NA. Then, by von Neumann entropy of a Gaussian state [5],

H(A1) = (NA + 1) log2 (NA + 1)−NA log2NA, (17)
H(E1) = ((1− η)NA + 1) log2 ((1− η)NA + 1)− (1− η)NA log2 (1− η)NA. (18)

By Eqs.(17) and (18), H(A1) > H(E1) > 0 if NA ̸= 0.
Next, consider a rank-one measurement to calculate conditional von Neumann entropy. One property of a rank-one mea-

surement is the following [2].

H(A1E1|Y1) =
∑
y

P (y)H(A1E1|Y1 = y) = 0, (19)

H(A1|Y1) = H(E1|Y1). (20)

By the chain rule, H(A1E1|Y1) can be expressed as follows:

H(A1E1|Y1) = H(E1|Y1) +H(A1|E1Y1). (21)

Note that H(A1|E1Y1) and H(E1|Y1) act as the Shannon entropy by a classical state Y1, i.e., H(A1|E1Y1) ≥ 0 and
H(E1|Y1) ≥ 0 [6]. By this property, Eqs.(19) and (21) can be expressed as follows:

H(E1|Y1) = −H(A1|E1Y1) ≤ 0. (22)

Since H(E1|Y1) ≥ 0, Eq.(22) indicates H(E1|Y1) = 0. Furthermore, by Eq.(20), H(A1|Y1) = 0. Therefore, for the maximizer
of a reverse quantum capacity in a pure loss channel, i.e., an input Gaussian state and a rank-one measurement,

I(Y1;A1) = H(A1)−H(A1|Y1) = H(A1), (23)
I(Y1;E1) = H(E1)−H(E1|Y1) = H(E1). (24)

By Eq.(16) and the fact that H(E1) > 0 if 0 < η < 1 as in Eq.(18), for the maximizer of a reverse private capacity,

I(Y1;A1) > P
(1)
R (N

A′
1→B1E1

1 ). (25)

Finally, by Theorem 1 and Eq.(25),

P
(1)
R (N

A′
1→B1E1

1 ⊗N
A′

2→E2

2 ) > P
(1)
R (N

A′
1→B1E1

1 ) = P
(1)
R (N

A′
1→B1E1

1 ) + P
(1)
R (N

A′
2→E2

2 ). (26)

In Eq.(26), equality holds because a reverse private capacity is zero in an 100% erasure channel.

IV. CONCLUSION

We prove superadditivity of a reverse private capacity in two quantum channels which are a pure loss channel and an 100%
erasure channel. This is, based on our knowledge, the first ever proven for a reverse private capacity. Therefore, it provides
the possibility to find a tighter lower bound for a secret key capacity of a secret system such as a QKD system.

ACKNOWLEDGMENT

This work was supported by the ICT R&D program of MSIP/IITP. [1711028311, Reliable crypto-system standards and core
technology development for secure quantum key distribution network]

REFERENCES

[1] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, no. 5886, pp. 802–803, 1982.
[2] S. Pirandola, R. Garcı́a-Patrón, S. L. Braunstein, and S. Lloyd, “Direct and reverse secret-key capacities of a quantum channel,” Physical review letters,

vol. 102, no. 5, p. 050503, 2009.
[3] S. Pirandola, “Quantum discord as a resource for quantum cryptography,” arXiv preprint arXiv:1309.2446, 2013.
[4] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “The ultimate rate of quantum cryptography,” arXiv preprint arXiv:1510.08863, 2015.
[5] C. Weedbrook, S. Pirandola, R. Garcı́a-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Reviews of Modern

Physics, vol. 84, no. 2, p. 621, 2012.
[6] M. M. Wilde, Quantum information theory. Cambridge University Press, 2013.


