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Abstract: We propose a Bhattacharyya parameter formula of Polar codes for binary symmetric 
channel using the linear combination of its upper and lower bound. The optimized 
reconciliation efficiency is suitable for quantum key distribution.

1. Introduction

Polar codes [1] have the remarkable properties of low decoding complexity, and thus can be applied in the high-speed
quantum key distribution (QKD) system, especially in the short-range condition. Polar codes take advantages of chan-
nel polarization to transmit information in some channels, while other channels are populated with pre-agreed values
(the so-called frozen bits) which is usually decided by the Bhattacharyya parameter (Z-value for short). [1] gave the re-

cursive formula of Z-value, which are Z
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The explicit formula of the Z-value for the odd index depends on the channel type, and it is unknown for a binary
symmetric channel (BSC), which plays a key role in QKD.

The performance of three types of the Z-value, which are the upper bound (I), lower bound (II) and the mean of
the two bounds (III), are compared in [2]. Later, the simulation method [3] to select the frozen bits is proposed, which
outperforms all the three types of Z-value method. However, the simulation method will consume a long design time
especially for the large block size. Therefore, a hybrid method which uses both Z-value and the simulation to decide
the frozen bits is proposed.

Here we propose to use the linear combination of the upper bound and the lower bound of the Z-value, which is
formally presented as:
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We carry a comprehensive experiment under different block length and different QBER, which verifies that when the
value of α changes, the performance of corresponding polar codes will change. Moreover, we successfully apply this
method to the hybrid method to optimize the reconciliation efficiency.

2. Experiment and Result

We implement our experiment with three QBER values: 0.02, 0.05 and 0.08. Under each QBER value, we fix the
proportion of frozen bits. We traverse α from 0 to 1 with 0.01 step value, which means 101 test batches. Under each
batch we compute the Z-value of each channel using the corresponding recursive formula. Then we test 500 groups of
data to get the frame error rate (FER) of each batch. The results of our experiments are shown in figure 1.

As depicted in the figure, one can find that: First, the coefficient αopt that yields the best performance is not 0, 0.5
or 1. Generally, αopt lies in the range [0.1,0.35], which is closer to 0, and thats why [2] obtains the conclusion that
the upper bound has the best performance. Second, αopt is not always the same under different circumstance, and it is
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Fig. 1. The QBER and the proportion of frozen bits of (a), (b) and (c) are: 0.02, 0.05 and 0.08; 0.26,

Fig. 1. The QBER and the proportion of frozen bits of (a), (b) and (c) are: 0.02, 0.05 and 0.08; 0.26,
0.41 and 0.52, respectively. N is the block size.
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Fig. 2. The block length is (a) 218 and (b) 220, the QBER is 0.05 and the FER is guaranteed under

Fig. 2. The block length is (a) 218 and (b) 220, the QBER is 0.05 and the FER is guaranteed under
0.1. As for other parameters, we set them the same as [3].

shown that when QBER is fixed, the longer the block length is, the lower αopt is. Third, although the exact value of
αopt may vary with different conditions, the trend of the curve is the same: decrease first and then increase, which can
help us to find αopt quickly.

3. Application to the hybrid method

The application potential of Polar codes to QKD environment is discussed in [3, 4]. A hybrid method is proposed to
design well-performed polar codes, which uses the Z-value to decide the first m frozen bits and then use the simulation
to decide the rest. Generally, larger m saves more time of finishing the design of polar codes, which also means worse
reconciliation efficiency. By using our proposed linear combination Z-value, the reconciliation can be optimized to be
close to the only-simulation case.

We test the reconciliation efficiency over different α , see Figure 2. Comparing to the type I and II Z-value, the
optimized α will improve the reconciliation efficiency significantly. Although the highest efficiency of 220 block size
is 91.2%, only close to 93.8% reached by the only simulation method, the m used here will save more than 70% time
comparing to the only simulation method.

In summary, we propose a formula of the Bhattacharyya parameter of polar codes which uses the linear combination
of its upper and lower bounds. The performance of the polar code can be optimized by traversing the coefficient α ,
which saves the code design time and still approaches a reconciliation efficiency suitable for quantum key distribution.
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