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Given a set of non-commuting sharp observables what is the best joint measurement approx-
imating them? A quantitative answer to such a question is given by a measurement uncertainty
relation (see Figure 1). As such questions naturally arise in many applications within the fields
of quantum cryptography and quantum computing, we want to provide a poster wrapping up
the main results of our current works [1, 2, 3] which are tackling the above question.

The basic method used for finding an optimal joint measurement is semidefinite program-
ming, which we apply to arbitrary finite collections of projective observables on a finite dimen-
sional Hilbert space. The quantification of errors is based on the Wasserstein distance build
on an (arbitrary) cost function, which assigns a penalty to getting result x rather than y, for
any pair (x, y) of measurement outcomes. There are different ways to form an overall figure of
merit from the comparison of distributions. We consider three, which are related to different
physical scenarios. The first figure of merit compares the distances between the marginals of
a joint measurement and a reference observable for every input state. The second is a figure
of merit that just tests on the states for which a “true value” is known in the sense that the
reference observable yields a definite outcome. Thirdly, we can also measure an error as a single
expectation value by comparing the two observables on the two parts of a maximally entangled
state. All three error quantities have the property that they vanish if and only if the tested
observable is equal to the reference. We provide a general method to efficiently compute the
POVM representation of an optimal joint measurement and uncertainty relations with arbitrary
numerical precision. Moreover we give analytical lower bounds based on the norm of certain
commutators.
In cryptographic settings one often takes the discrete metric as a cost function and hence obtain
the total variational distance as an error measure. Here we compute the exact error trade-off
for different pairs of observables that are typically arising as decoding maps in data locking
protocols.

Aρ

B

R

ε(A′|A)

ε(B′|B)

ρ

ρ

Figure 1. Basic setup of measurement
uncertainty relations. The approxi-
mate joint measurement R is shown in
the middle, with its array of output
probabilities. The marginals A′ and
B′ of this array are compared with the
output probabilities of the reference ob-
servables A and B, shown at the top
and at the bottom. The uncertain-
ties ε(A′|A) and ε(B′|B) are quanti-
tative measures for the difference be-
tween these distributions.
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