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Quantum data locking is a special quantum effect that can lock classical correlation. One can
lock an exponentially large amount of information using a short secret key, making it inaccessible
to unauthorized users without the key. Here we report experimental demonstrations of quantum
data locking scheme originally proposed by DiVincenzo et al. [Phys. Rev. Lett. 92, 067902(2004)]
and a loss-tolerant scheme developed by Fawzi, Hayde, and Sen [J. ACM. 60, 44(2013)]. In both
experiments we verify that the unlocked amount of information can be larger than the key size,
exhibiting data locking effect not shown in classical information theory. We successfully transmit of
a photo over a lossy channel with quantum data (un)locking and error correction as an application
example.

Information security continuously remains the research
frontier, driven by both scientific curiosity and the in-
creasing demand from practical applications in secure
communication and secure data storage. Classical infor-
mation security is based on computation complexity, the
security can be broken if equipped with enough compu-
tational capacity. Quantum key distribution (QKD), on
the other hand, allows two parties to generate secure keys
with the security based on quantum mechanics. Now
QKD has been demonstrated in metropolitan networks
and is ready to commercialize. By generating secret keys
using QKD and encrypting message with one-time pad,
the security of information transmission can be guaran-
teed. The one-time pad method offers the highest se-
curity but acquires the length of key size the same as
the information size. Quantum data locking [1–4] al-
lows to lock information in quantum states with expo-
nentially shorter key, presenting an efficient solution to
many resource-limited secure applications.

In classical information theory, the mutual informa-
tion is a measure for the correlation between two parties.
The increase of mutual information is proportional to the
messages communicated between two parties. Consider
the following example with two parties, Alice and Bob,
who start with no mutual information. First, Alice clas-
sically encodes an n-bit message into an n-bit codeword
using a k-bit key and sends the encoded message (but
not the key) to Bob. The two parties then share n bit
mutual information. After Alice sends the key to Bob,

their mutual information increases by k.

DiVincenzo, Horodecki, Leung, Smolin, and Terhal
(DHLST)[1] found that a k-bit key can increase the mu-
tual information by an amount more than k via quantum
means. In the DHLST scheme, Alice encodes messages
with a set of orthonormal bases and then encrypt the
messages by applying a unitary operation, Identity or
Hadamard transform depending on the key bit 0 or 1, to
each of the qubits. In quantum information, it can be
shown that the maximum amount of accessible mutual
information is n/2 without the one-bit key; while the n-
bit message can be completely recovered with the one-bit
key.

This striking result of quantum data locking is due to
the inherent quantum uncertainty and violates the incre-
mental proportionality property of classical information
theory in an extreme manner. Quantum data locking
has received much attention since then. It was even con-
sidered to hold the potential to reconcile the black-hole
information loss [4–6].

One of the key issues for the original quantum data
locking scheme lies in the fact that message information
may suffer from significant qubit loss. In 2013, Fawzi,
Hayden and Sen (FHS) developed a loss-tolerant quan-
tum data locking scheme [2], in which the possible infor-
mation leakage can be made arbitrarily small in a lossy
environment while the unlocked information is signifi-
cantly larger than the key size [7]. This makes quantum
data locking appealing for realistic applications such as
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FIG. 1. Schematic of experimental quantum data-locking

secure communication [3, 4]. The implementation of FHS
scheme [2] includes the mutually unbiased bases and per-
mutation extractors. The detailed scheme is complicated
so will not be shown in this extended abstract. The secret
key consumption includes the basis choices consumption
of length log(2/ε2), and the permutation extractor con-
sumption of length 40000 log(24n2/ε). The mutual in-
formation is 6εn/16.12 +H(ε) without knowing the key,
and expands to η × n/16.12(1 −H(eb)) given the secret
key. Here H(·) is the binary Shannon entropy, and the
information is calculated excluding the key.

Experimental realization of quantum data locking was
considered to be a severe technical challenge [4]. Here,
we report experimental demonstrations of both DHLST
scheme and FHS scheme. As shown in Fig. 1, we gen-
erate heralded single photons by detect one of the cor-
related photon pairs using a superconducting nano-wire
single photon detector (SNSPD) [8, 9]. Then the mes-
sage is encoded using two successive pockels cells. After
transmitting in fiber spools, Bob uses a pockels cell to set
his bases and detects the message using superconducting
Transition-edge-sensors (TESs) [10, 11].

In the experimental demonstration, daughter pho-
tons at 1560 nm are generated via type-II spontaneous
parametric down-conversion process using a periodically-
poled potassium titanyl phosphate (PPKTP) crystal. Af-
ter optimizing the collection parameters, the single pho-
ton heralding efficiency is determined to be 87%, includ-
ing all losses in the photon pair source setup [12–14]. We
use a SNSPD with a rising edge of τ ∼70 ps and detec-
tion efficiency ∼50% as the heralding detector for fast
heralding photon generation; We use a TES with detec-

tion efficiency ∼70% to detect the signal photons at the
receiver.

The first result is the realization of DHLST scheme.
We set the basis to be Z(Y ) if the key is 0(1), and send
more than 8 Mb data in each basis. The whole transmit-
tance in our setup is greater than 55%. With the mea-
sured error rate less than 0.4%, we calculate the accessi-
ble mutual between Alice and Bob is greater than n/2,
which is greater than the maximum amount of informa-
tion (n/2) Eavesdropper might have (detail not shown in
this extended abstract). From informational theoretical
view, this locking effect is a non-classical behavior, thus
clearly demonstrate the quantum data locking effect.

In a lossy channel, the FHS protocol is more suitable
since it’s loss tolerant. To verify this, we sent the single
photons through fiber spools from 0 km to 11 km where
the transmittance is tailored to be 54%, 41% and 33%.
Eve’s accessible information Iacc(A : E) is bounded by at
most 1 bit by setting ε = 10−9. (The detail is not shown
in the extended abstract)

We define the data locking efficiency as

κ =
Iacc(A : B) − Iacc(A : E) − r

r
, (1)

where r is the key length, Iacc(A : E) and Iacc(A : B)
are the mutual information before and after reconciliation
between Alice and Bob.

Fig. 2(a) shows the result data locking efficiency grows
linearly with data size. The performance of data locking
surpasses that of of one time pad (with κ = 1) when
the data size is large enough. Note that the nonclassical
quantum data locking effect appears when κ > 0.
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FIG. 2. (color online) (a) Data locking efficiency of FHS scheme with tailored single photon transmittance. (b) Sending a
photo with data (un)locking and error correction. (c) Communication rate in a quantum erasure channel.

From practical view, we need to keep information in-
tegrity when transmit message. A forward error correc-
tion (FEC) with erasure coding can help. As an example,
we send a photo with quantum data (un)locking through
a lossy channel, and we simply repeat each encoded qubit
by 50/η times as a FEC code. As shown in Fig. 2(b), al-
though the recovered photo is lossy each time, we can
recover the original message with high probability by de-
code using the repeat photos. Using this method, Eve’s
information only increases 50/η times.

An important application of data locking is quantum-
locked key distribution. We estimate the performance of
key-distribution based on our experimental results (open
circle) with ε = 10−9 , and compare it with the classical

capacity and private capacity. As shown in Fig. 2(c), the
secure communication rate of data locking (long dashed
line) is well above the private capacity (dotted-dashed
line) and is close to the classical capacity (solid line).
For comparison, we plot the secure key rate of the most-
used QKD+one time pad combination, which is less than
one half of the rate based on data locking. The difference
will be even larger when transmitting a longer random
number sequence using quantum locked key distribution.
However, we note that in terms of security, QKD+one
time pad is better than quantum locked key distribution
using the FHS scheme (which is much higher than using
DHLST scheme). Yet, the security of quantum locked
key distribution using the FHS scheme with bounded
quantum storage assumption can be as good as QKD.
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