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Quantum computers threaten classical cryptography. With a quantum computer, an attacker
would be able to break all schemes based on the hardness of factoring, or on the hardness of
discrete logarithms [8]. This would affect most public key encryption and signature schemes is
use today. For symmetric ciphers and hash functions, longer key and output lengths will be
required due to considerable improvements in brute force attacks [5,3]. These threats lead to the
question: how can classical cryptography be made secure against quantum attacks? Much research
has been done towards cryptographic schemes based on hardness assumptions not known to be
vulnerable to quantum computers, e.g., lattice-based cryptography. (This is called post-quantum
cryptography .) Yet, identifying useful quantum-hard assumptions is only half of the problem.
Even if the underlying assumption holds against quantum attackers, for many classically secure
protocols it is not clear if they also resist quantum attacks: the proof techniques used in the
classical setting often cannot be applied in the quantum world.

An example of such a protocol is the popular Fiat-Shamir transform [4], a transformation
that takes a so-called sigma-protocol (i.e., a simple kind of zero-knowledge proof) and transforms
it into a highly efficient non-interactive zero-knowledge proof. This in turn also yields a highly
efficient signature scheme. In the classical setting, the security of Fiat-Shamir is well-studied;
the “forking lemma” [7] allows us to deal with the interaction of rewinding1 and random oracles
in the proof. Unfortunately, both rewinding and random oracles are notoriously difficult in the
quantum setting. Rewinding, when done naively, contradicts the no-cloning theorem (but in some
cases it can be done [11,9]), and the random oracle can be queried in superposition [2], moving
the proofs into the realm of quantum query complexity.

Indeed, [1] shows that the Fiat-Shamir transform is insecure in general.2

This is unfortunate, since no other general construction of comparable efficiency is known.
(The construction from [10] is a quantum secure non-interactive zero-knowledge proof from any
sigma-protocol, but it is much less efficient.) In this work, we set out to save Fiat-Shamir. In [9], an
extra condition on sigma-protocols was introduced, “strict soundness” and shown to circumvent
the impossibility results from [1] for interactive protocols. . (Roughly, strict soundness means
that the third message is determined by the first two.) We give evidence that the same holds for
Fiat-Shamir. In particular, our contributions are:

– We formalize the security notions achieved by Fiat-Shamir in the quantum case. (Zero-
knowledge and simulation-sound extractability.) These turn out to be non-trivial, because a
one-to-one translation of the classical definitions leads to trivially unachievable definitions.

– We prove: If the “quantum forking lemma” (see below) holds, then Fiat-Shamir is secure (zero-
knowledge and simulation-sound extractable; assuming strict soundness of the underlying
sigma-protocol).

– And we show that these security notions imply the existence of signatures, like in the classical
case.

What is the (conjectured) quantum forking lemma? Rougly, it states:

1 This refers to a proof technique where the state of the adversary is stored and reproduced later.
2 Relative to some oracle.



Conjecture (Quantum forking lemma – informal) Let MH be a projective mea-
surement that can be implemented by a quantum circuit making polynomially many
queries to a random function H. Measure some quantum system X using MH , this leads
an outcome x. Change the functionH at input x:H(x) := random. Measure the quantum
system X again using MH (but with the changed H), this leads an outcome x′.
Then x = x′ with non-negligible probability.

Intuitively this means: A projective measurement cannot find an input x for H so that the
post-measurement state encodes much information about H(x).3

Summarizing, we have reduced the security of Fiat-Shamir to a self-contained query com-
plexity question. Proving the quantum forking lemma will show the security of Fiat-Shamir.

References

1. A. Ambainis, A. Rosmanis, and D. Unruh. Quantum attacks on classical proof systems (the hardness
of quantum rewinding). In FOCS 2014, pages 474–483. IEEE, October 2014.

2. D. Boneh, O. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry. Random oracles
in a quantum world. In ASIACRYPT 2011, pages 41–69, Berlin, Heidelberg, 2011. Springer-Verlag.

3. G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the collision problem. ACM SIGACT
News, 28:14–19, 1997. Full version at arXiv:quant-ph/9705002.

4. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In A. M. Odlyzko, editor, Advances in Cryptology, Proceedings of CRYPTO ’86, number
263 in Lecture Notes in Computer Science, pages 186–194. Springer-Verlag, 1987.

5. L. K. Grover. A fast quantum mechanical algorithm for database search. In STOC, pages 212–219,
1996.

6. R. Koenig, R. Renner, and C. Schaffner. The operational meaning of min- and max-entropy. http:
//arxiv.org/abs/0807.1338.

7. D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer, editor, Eurocrypt
96, volume 1070 of LNCS, pages 387–398. Springer, 1996.

8. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In FOCS
1994, pages 124–134. IEEE, 1994.

9. D. Unruh. Quantum proofs of knowledge. In Eurocrypt 2012, volume 7237 of LNCS, pages 135–152.
Springer, April 2012. Preprint on IACR ePrint 2010/212.

10. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle model. In Eurocrypt
2015, volume 9057, pages 755–784. Springer, 2015. IACR ePrint 2014/587.

11. J. Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput., 39(1):25–58, 2009.

3 Formally, if x is the outcome of the measurement MH , the max-entropy [6] of H(x) is superlogarithmic
given x, X, and all values H(x′) except for H(x).

http://arxiv.org/abs/quant-ph/9705002
http://arxiv.org/abs/0807.1338
http://arxiv.org/abs/0807.1338
http://eprint.iacr.org/2014/587

	Quantum security of the Fiat-Shamir transform

