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Let f(X) = cdX
d + · · · + c1X + c0 ∈ Fq[X] be an unknown polynomial of degree d, specified

by its coefficient vector c ∈ Fd+1
q . Suppose q and d are known and we are given a black box that

evaluates f on any desired x ∈ Fq. We are interested in determining how many queries are required

to determine the vector c ∈ Fd+1
q .

The classical query complexity of this problem is well known: d + 1 queries to f are clearly
sufficient and are also necessary to determine the polynomial, even with bounded error. Shamir
used this fact to construct a cryptographic protocol that divides a secret into d+ 1 parts such that
knowledge of all the parts can be used to infer the secret, but any d parts give no information about
the secret [17]. The security protocol relies on the fact that if f is chosen uniformly at random,
and if we only know d function values f(x1), . . . , f(xd), then we cannot guess the value f(xd+1) for
a point xd+1 /∈ {x1, . . . , xd} with probability greater than 1/q (that is, there is no advantage over
random guessing).

We [6] describe an optimal quantum algorithm that uses k quantum queries to infer the coef-
ficients of an unknown polynomial f ∈ Fq[X] of known degree d. Using this algorithm, we show
that the lower bounds in previous works [11,14] are tight: k = d/2 + 1/2 queries suffice to solve the
problem with constant success probability. While the success probability at this value of k has a
q-independent lower bound, it decreases rapidly with k, scaling like 1/k!. This raises the question
of how the success probability increases as we make more queries. We show that there is a sharp
transition as k is increased: with k = d/2 + 1 queries, the algorithm succeeds with a probability
that approaches 1 for large q. We also show that our algorithm is precisely optimal: it achieves the
highest possible success probability of any k-query algorithm.

Finally, we consider the gate complexity of polynomial interpolation. We call an algorithm gate-
efficient if it can be implemented with a number of 2-qubit gates that is only larger than its query
complexity by a factor poly(log q). We construct a gate-efficient variant of the optimal algorithm
that achieves almost the same success probability.

Our algorithm can be applied to improve results of Boneh and Zhandry giving quantum attacks
on certain cryptographic protocols [3]. For a version of the Shamir secret sharing scheme where the
shares can be quantum superpositions, their d-query interpolation algorithm shows that a subset of
only d parties can recover the secret. Our algorithm considerably strengthens this, showing that a
subset of d/2+1/2 parties can recover the secret with constant probability, and d/2+1 can recover
it with probability 1 − O(1/q). Boneh and Zhandry also formulate a model of quantum message-
authentication codes (MACs), where the goal is to tag messages in a way that authenticates the
sender. Informally, a MAC is called d-time if, given the ability to create d valid message-tag pairs,
an attacker cannot forge another valid message-tag pair. Boneh and Zhandry show that there are
(d + 1)-wise independent functions that are not d-time quantum MACs. Our result improves to
show that there are (d + 1)-wise independent functions that are not (d/2 + 1/2)-time quantum
MACs.
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