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We present a new scheme for quantum homomorphic encryption which is compact and allows for effi-
cient evaluation of arbitrary polynomial-sized quantum circuits. Building on the framework of Broadbent
and Jeffery [BJ15] and recent results in the area of instantaneous non-local quantum computation [Spe15],
we show how to construct quantum gadgets that allow perfect correction of the errors which occur during
the homomorphic evaluation of T gates on encrypted quantum data. Our scheme can be based on any
classical (leveled) fully homomorphic encryption (FHE) scheme and requires no computational assump-
tions besides those already used by the classical scheme. The size of our quantum gadget depends on
the space complexity of the classical decryption function – which aligns well with the current efforts to
minimize the complexity of the decryption function.

Motivation

Rivest, Adleman and Dertouzous were the first to observe the possibility of manipulating encrypted
data in a meaningful way, rather than just storing and retrieving it [RAD78]. Early classical homo-
morphic encryption schemes were limited in the sense that they could not facilitate arbitrary oper-
ations on the encrypted data: some early schemes only implemented a single operation (addition or
multiplication)[RSA78,GM84,Pai99]; later on it became possible to combine several operations in a lim-
ited way [BGN05,GHV10,SYY99]. A breakthrough happened in 2009 when Gentry presented a fully
homomorphic encryption (FHE) scheme [Gen09]. In subsequent work [VDGHV10,BGV12,BV11], FHE
schemes have been simplified and based on more standard computational assumptions such as the hard-
ness of learning with errors (LWE), which is believed to be hard also for quantum attackers. The exciting
developments around FHE have sparked a large amount of research in other areas such as functional
encryption [GKP+13b,GVW13,GKP+13a,SW14] and obfuscation [GGH+13].

Developing quantum computers is a formidable technical challenge, so it currently seems likely that
quantum computing will not immediately be available for everyone and hence quantum computations
have to be outsourced. Given the importance of classical FHE for “computing in the cloud”, it is natural
to wonder about the existence of encryption schemes which can encrypt quantum data in such a way
that a server can carry out arbitrary quantum computations on the encrypted data (without interacting
with the encrypting party4).

A recent result by Ouyang, Tan and Fitzsimons provides information-theoretic security for circuits
with at most a constant number of non-Clifford operations [OTF15]. However, Yu, Pérez-Delgado and
Fitzsimons [YPDF14] showed that information-theoretically secure quantum fully homomorphic encryp-
tion (QFHE) is not possible unless the size of the encryption grows exponentially in the input size.
Computational assumptions could allow bypassing this impossibility result.

A natural idea is to encrypt a message qubit with the quantum one-time pad (i.e. by applying a
random Pauli operation), and send the classical keys for the quantum one-time pad along as classical
information, encrypted using a classical FHE scheme. Any computational assumptions on the classical
scheme are also required for the quantum scheme. Broadbent and Jeffery, who were the first to thoroughly
investigate QFHE schemes based on computational assumptions [BJ15], call this basic scheme CL. It is
easy to see that CL allows an evaluator to compute arbitrary Clifford operations on encrypted qubits,
simply by performing the actual Clifford circuit, followed by homomorphically updating the quantum
one-time pad keys according to the commutation rules between the performed Clifford gates and the
Pauli encryptions. The CL scheme can be regarded as analogous to additively homomorphic encryption
schemes in the classical setting. The challenge, like multiplication in the classical case, is to perform
non-Clifford gates such as the T gate. After a T gate is performed on a one-time-pad encrypted qubit

4 In contrast to blind or delegated quantum computation where some interaction between client and server is
usually required.
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XaZb|ψ〉, the result might contain an unwanted (non-Pauli) phase Pa depending on the key a with which
the qubit |ψ〉 was encrypted, since TXaZb = PaXaZbT. Obviously, the evaluator is not allowed to know
the key a, so he cannot easily resolve the error.

Broadbent and Jeffery propose two different approaches for extending CL, accomplishing homomor-
phic encryption for circuits with a limited number of T gates. In one of their schemes, called AUX, the
evaluator is supplied with auxiliary quantum states, stored in the evaluation key. These auxiliary states
allow him to evaluate T gates and immediately remove any error Pa that may have occurred. Unfortu-
nately, the required auxiliary states grow doubly exponentially in size with respect to the T depth of the
circuit, rendering AUX useful only for circuits with constant T depth.

Main result

Our work is concerned with answering the following question:

Is it possible to construct a computationally secure quantum homomorphic encryption scheme that
allows evaluation of polynomial-sized quantum circuits?

We answer it in the affirmative by presenting a new scheme TP (as abbreviation for teleportation)
for quantum homomorphic encryption which is both compact and efficient for circuits with polynomially
many T gates. The scheme is secure against chosen plaintext attacks from quantum adversaries, as
formalized by the security notion q-IND-CPA security [BJ15].

Our scheme TP is related to AUX in that it extends the Clifford scheme CL by providing extra
resources in the evaluation key for removing errors, which we call gadgets. In sharp contrast to AUX,
the size of the evaluation key in TP only grows linearly in the number of T gates in the circuit (and
polynomially in the security parameter), allowing the scheme to be leveled fully homomorphic.

In TP, we require exactly one evaluation gadget for every T gate that we would like to evaluate
homomorphically. After applying a T gate, the evaluator can teleport the resulting qubit PaXaZbT|ψ〉
“through the gadget” [GC99] in a way that depends on a classical FHE encryption of a, in order to
remove the unwanted phase. The quantum part of the gadget is consumed in the process. On a high
level, the use of an evaluation gadget corresponds to an instantaneous non-local quantum computation5

of the classical decryption function, where one party holds the secret key of the classical FHE scheme,
and the other party holds the input qubit and a classical encryption of the key to the quantum one-time
pad. Together, this information determines whether an inverse phase gate P† needs to be performed on
the qubit or not.

If the classical decryption function has a circuit in NC1, then we can show explicitly how to construct a
gadget for correcting T gate errors. By Barrington’s Theorem [Bar89], there exists a width-5 permutation
branching program (PBP) of polynomial length that computes the decryption function. A width-5 PBP
is a list of instructions, each of which queries a single bit of the input, and selects a permutation on the set
{1, 2, 3, 4, 5} based on the bit value. The program is executed by concatenating the selected permutations:
the execution results in the identity permutation if the function evaluates to 0, and in a fixed 5-cycle
otherwise. Since only a single input bit is queried per instruction, all permutations that depend on bits
of the secret key can be prepared in advance by the creator of the gadget. They are prepared as groups
of five intertwined EPR pairs: if a set of five qubits is teleported through such a group, they will be
permuted according to the corresponding program instruction. The evaluator can ‘fill in the gaps’ by
connecting the groups of EPR pairs (through Bell measurements) according to the program instructions
that depend on bits of the encryption of a. The qubit PaXaZbT|ψ〉, when teleported through the resulting
state starting at the first position, remains at the first position if a = 0, and is permuted to a different
position if a = 1. Applying the correction P† to all but the first position ensures that the phase error
is corrected if and only if a = 1. As a technicality, an entire reverse copy of the permutation branching
program is performed afterwards, to ensure that the qubit ends up at a known position.

The structure of the gadget can be hidden from the evaluator using an additional quantum one-time
pad on the entire state. Even without knowledge of the structure (i.e. how the pairs are intertwined),
the evaluator can perform Bell measurements according to the PBP instructions. Because of the Bell
measurements and quantum one-time pad, the keys a and b need to be updated after the gadget use.

5 This term is not related to the term ‘instantaneous quantum computation’, and instead first was used for a
specific form of non-local quantum computation, one where all parties have to act simultaneously.
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Some encrypted classical information is provided with the gadget that allows the evaluator perform these
updates.

Recent results by Speelman [Spe15] show that there exist protocols to construct and use these gadgets
for an even wider class of classical decryption functions, namely those with polynomial garden-hose
complexity [BFSS13]. In particular, if the decryption function is log-space computable, then the number
of EPR pairs in the gadget is polynomial in the security parameter. This relation turns out to be very
convenient, as classical FHE schemes are often optimized with respect to the complexity of the decryption
operation (in order to make them bootstrappable). As a concrete example, if we instantiate our scheme
with the classical FHE scheme by Brakerski and Vaikuntanathan [BV11], each evaluation gadget of our
scheme consists of a number of qubits which is polynomial in the security parameter. Since the evaluation
of the other gates causes no errors on the quantum state, no gadgets are needed for those; any circuit
containing polynomially many T gates can be efficiently evaluated in TP.

We prove computational security of TP by reducing it to CL in several steps, replacing one gadget
with a completely mixed quantum state at every step. The encrypted classical information that accom-
panies the gadget is simultaneously replaced with an encryption of a string of zeros. Leveraging the
q-IND-CPA security of the classical scheme, we show that these replacements cannot significantly influ-
ence the winning probability for any polynomial-time adversary in a quantum CPA indistinguishability
experiment. After all gadgets have been replaced with completely mixed states, the scheme is equivalent
to the Clifford scheme CL, which has already been proven q-IND-CPA secure [BJ15].

Properties and applications of our scheme

The quantum part of our evaluation gadget is strikingly simple, which provides a number of advantages.

To start with, the evaluation of a T gate requires only one gadget, and does not cause any errors to
accumulate on the quantum state. The scheme is very compact in the sense that the state of the system
after the evaluation of a T gate has the same form as after the initial encryption, except for any classical
changes caused by the classical FHE evaluation. This kind of compactness also implies that individual
evaluation gadgets can be supplied “on demand” by the holder of the secret key. Once an evaluator runs
out of gadgets, the secret key holder can simply supply more of them.

Furthermore, TP does not depend on a specific classical FHE scheme, hence any advances in classical
FHE can directly improve our scheme. Our requirements for the classical FHE scheme are quite modest:
we only require the classical scheme to have a space-efficient decryption procedure and to be secure against
quantum adversaries. In particular, no circular-security assumption is required. Since we supply at most
a polynomial number of evaluation gadgets, our scheme TP is leveled homomorphic by construction, and
we can simply switch to a new classical key after every evaluation gadget. In fact, the Clifford gates in
the quantum evaluation circuit only require additive operations from the classical homomorphic scheme,
while each T gate needs a fixed (polynomial) number of multiplications. Hence, we do not actually require
fully homomorphic classical encryption, but leveled fully homomorphic schemes suffice.

Finally, circuit privacy in the passive setting almost comes for free. When wanting to hide which
circuit was evaluated on the data, the evaluating party can add an extra randomization layer to the
output state by applying his own one-time pad. We show that if the classical FHE scheme has the
circuit-privacy property, then this extra randomization completely hides the circuit from the decrypting
party. This is not unique to our specific scheme: the same is true for CL.

In terms of applications, our construction can be appreciated as a round-optimal scheme for blind
delegated quantum computation, using computational assumptions. With only a single round of commu-
nication, the server can evaluate a universal quantum circuit on the encrypted input, consisting of the
client’s quantum input and a (classical) description of the client’s circuit. In this context, it is desirable
to minimize the number and complexity of quantum operations that the client needs to perform. In our
scheme, the encryption and decryption only requires the client to apply Pauli operations. We show that
even the creation of the evaluation gadgets can be performed (with the help of the server) using only
swap and Pauli operations, at the expense of an extra communication round.

As another application, we can instantiate our construction with a classical FHE scheme that al-
lows for distributed key generation and decryption amongst different parties that all hold a share of the
secret key [AJLA+12]. In that case, we expect that our construction can be adapted to perform multi-
party quantum computation [BCG+06] in the semi-honest case. We also consider it likely that our new
techniques will be useful in other contexts such as quantum indistinguishability obfuscation [AF16].
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