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Quantum key distribution (QKD) uses the laws of
quantum mechanics to allow two users to effectively and
securely generate a one time pad in order to protect
sensitive information from adversaries. The first such
protocol, the so called BB84 algorithm [1], employs two
sets of mutually unbiased orthonormal bases. The first
being the eigenbasis of one observable and the second
basis set being the eigenbasis of one of the two sets of
complimentary observables. In [3], the BB84 protocol is
extended 6 states: it employs both sets of complimentary
measurements. The increase in the observables allows for
better adversarial eavesdropper detection [2]. In [4], [5]
and [6] the authors move to the more general framework
of non-orthogonal positive operator valued measures
(POVMs) for qubit qkd.

There is a well established correspondance between
POVMs and the elegant field of tight frames. A tight
frame is a set of vectors {fj}j∈J in H (a real or complex
valued Hilbert space) such that for all x ∈ H we have
that

∑
j∈J |〈x, fj〉|

2
= A ‖x‖2 for some positive con-

stant A. If H = Cd and ‖fj‖ = 1, then |J | = N < ∞
and A = N

d . We then have

N∑
j=1

d

N
fj ⊗ f†j = Id×d,

which is to say,
{

Πj = d
N fj ⊗ f

†
j

}
forms a POVM.

Similarly, one may construct a unit norm tight frame
from any POVM.

Renes’ four state protocol [6] employs a four element
tight frame {fj}4j=1 for C2 that has an additional equian-
gualar condition (also known as mutual unbiasedness):
|〈fj , fk〉|2 = 1

3 j 6= k. The corresponding POVM is
known as a symmetric, informationally complete, POVM
(SIC-POVM). In general, if N = d2 and {fj}d

2

j=1

forms an equiangular tight frame for Cd, then the cor-
responding POVM is a SIC-POVM. The existence of
such ensembles in all dimensions is an open problem
in harmonic analysis, and quantum information theory,
respectively.

Both the three state and four state quantum key
algorithms rely on a measurement ensemble, generated
by a companion equianguler frame {gj} defined as
follows: given an equiangular tight frame F = {fj}Nj=1,
the equiangular tight frame {gj}Nj=1 is a companion
equiangular frame for F if

|〈gj , fk〉|2 =

{
0 k = j

c o.w.
.

Much like the existence of equiangular frames, the
construction of such sets is a non-trivial problem.

We extend equiangular QKD algorithms to arbitrary
finite dimensions assuming the existence of equiangular
tight frames and their companions. We give an explicit
example of the generalized QKD algorithm using Fourier
equiangular frames in C4, and we discuss the difficul-
ties in finding companion equiangular frames, given an
existing equiangular frame.

Alice and Bob wish to communicate securely and have
access to a quantum channel as well as a classical one.
Alice and Bob predetermine an equiangular frame set
of states {fj}Nj=1 from which Alice uniformly samples
from the N states and picks out fk, which she sends
to Bob. Bob has a measurement device corresponding

to the POVM
{
Gj = d

N gj ⊗ g
†
j

}N

j=1
where {gj}Nj=1

is a companion equiangular frame for {fj}Nj=1. Bob
receives fk from Alice and performs a measurement
with outcome l ∈ {1, ..., N}. Now Bob knows with
certainty, Alice did not send fl, as the probability of
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measuring l given fl is |〈gl, fl〉|2 = 0. However, Bob
knows nothing about which of the other N − 2 possible
states that might have been sent. To determine this,
Bob then communicate a random sampling S of N − 2
elements of {1, ..., N} \ {l} without replacement. He
sends the sample S to Alice through a classical channel.
If k ∈ S, then then Alice signals failure and sends a
new quantum state. If k 6∈ S (which has a probability of
1

n−1 of happening) then Alice and Bob both know that
Alice sent state k, while anyone viewing the classical
communication only knows that Alice sent either fk or
fl. Alice and Bob generate a random classical bit based
on an a priori agreed upon algorithm (say b = 1 if
(−1)l = 1 and b = 0 otherwise). Based on eavesdrop-
ping of the classical channel, an eavesdropper Eve has
at best a 2−k probability of guessing the correct k bit
number based on complete knowledge of the classical
communications, which would presumably have some
sort of classical encryption. Similarly, an intercept and
resend attack on the quantum channel would quickly be
detected, as Alice and Bob’s keys would not match with
arbitrarily high probability.

Before the difficulty of experimental implementation,
there is the non trivial tasks of generating equiangular
frames, and the associated companion set. In C2, Renes
and Pheonix et. al. exploited the geometric representation
of the Bloch sphere in order to construct such sets.
In higher dimensions, no such geometric representation
allows for such visual solutions. We provide an example
in C4 using a Fourier equiangular frame with 5 elements.

We construct an equiangular tight frame {fj}4j=1 by
sampling the 5 × 5 discrete Fourier transform matrix
(DFT). Indeed, we have

DFT =


1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω ω3

1 ω3 ω ω4 ω2

1 ω4 ω3 ω2 ω

 ,

and

P =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,
and we set fj equal to the jth column of 1

2P ∗DFT . It is
straightforward to show that {fj}4j=1 is an equiangular
tight frame for C4. Define gj = Ufj for j = 1, ..., 5

where

U =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 = σz ⊗ σz.

Then we have 〈gj , fj〉 = 1 − 1 − 1 + 1 = 0 and
|〈gk, fl〉|2 = 5

16 for k 6= l. Hence, {gj}4j=1 is a
companion equiangular frame for {fj}4j=1. Similarly,
sampling the 17 × 17 DFT matrix and employing U =
diag[1, 1,−1, 1,−1,−1,−1, 1, 1,−1,−1,−1, 1,−1, 1, 1]
generates an equiangular harmonic frame and a
companion equiangular frame for C16.

In general, given any dimension d, sampling the last d
rows of the (d+ 1)× (d+ 1) discrete Fourier transform
matrix, and rescaling by 1√

d
generates an equiangular

tight frame of states for Cd. When d = 2, 4 or 16 we
can find a diagonal, traceless matrix U with eigenvalues
of ±1 the generates a companion equiangular frame. We
conjecture that such a matrix exists when d = 22

3

and
d = 22

4

as d + 1 is a (Fermat) prime in both cases.
However, these are the only other known cases of Fermat
primes, and it is conjectured that no more exist.

Using the aforementioned construction, and using a
difference set sampling strategy, the class of harmonic
equiangular tight frames may be constructed (cf. [7]).
Let F {fj}Nj=1 be a harmonic equiangular frame. We
conjecture that unitary matrices, other than the Fermat
prime case presented here, exists such that

G {gj |gj = Ufj j = 1, ...N}

is a companion equiangular frame for F .
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