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In today’s era of cloud and distributed computing, protecting a client’s privacy is a task of
highest priority. Performing computations in the cloud on encrypted data rather than on plain text
is a promising tool to achieve this goal. Here, we report about a continuous variable protocol for
performing computation on encrypted data on a quantum computer. We theoretically investigate
the protocol and present a proof-of-principle experiment implementing displacements and squeezing
gates. We demonstrate losses of up to 10 km both ways between the client and the server and
show that security can still be achieved. Our approach offers a number of practical benefits, which
can ultimately allow for the potential widespread adoption of this quantum technology in future
cloud-based computing networks.

Clouds provide computing and data resources on-
demand. A client can easily perform computationally
demanding tasks in the cloud with scalable resources.
Cloud services are third-party operated, for instance by
companies like Amazon, and share their available re-
sources among their customers. The cloud contains, in
principle, various types of sensitive data for which secu-
rity and privacy is important. For example, an individ-
ual’s personal data (such as medical records and credit
card information), the trade secrets and intellectual prop-
erty of multinational corporations, and sensitive govern-
ment information (e.g., the CIA bought cloud space from
Amazon). Securing a client’s privacy in the cloud is
therefore one of the most important security challenges
today.

A current solution to this problem is fully homomor-
phic encryption [1], i.e. arbitrary computation on cipher-
text. Since the program completely runs on encrypted
data which never needs to be decrypted, the program can
be run in an untrusted environment like a cloud with-
out revealing sensitive information. However, the best
known implementations of fully homomorphic encryption
are impractical for today’s computers [1–4].

Quantum computers will be a vital part of future cloud
services with a promising speed up of algorithms. It has
been shown that perfectly secure, deterministic fully ho-
momorphic quantum computation is only possible with
exponential overhead in the size of the encrypted state
with the size of the allowed operations [5]. One can,
however, relax the requirements of quantum homomor-
phic encryption by allowing further rounds of interaction
between the client and server in the cloud [6]. Seminal
work by Broadbent et al. [7] showed that in the quan-
tum world it is even possible to hide not only the input
and the final result, but also the quantum program itself.
Unfortunately, hiding all three, input, program and re-
sult, places stringent requirements on the experimental
realization of such protocols including a lot of classical
and quantum communication. Giving up the idea of hid-

ing the program but agreeing on it beforehand, however,
solves this issue [8]. Such a protocol can also be termed
quantum computing on encrypted data.

In this paper we report about quantum computing on
encrypted data using continuous variables. In our proto-
col the input state is encrypted using displacement oper-
ations to hide it from the server. We show that the result
of the computation can be decrypted by displacement op-
erations as well, except for the non-Gaussian cubic phase
gate U3 [9, 10], where an additional squeezing operation is
needed. We furthermore demonstrate quantum comput-
ing on encrypted data in a proof-of-principle experiment
implementing the two displacement gates, X and Z, as
well as the U2 squeezing gate and using a lossy channel
simulating loss of up to 10 km in equivalent fiber length.
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Figure 1. Protocol for quantum computing on encrypted data.
Input: A displaced vacuum state is prepared. Encryption: A
random displacement is applied to the initial state as an en-
cryption procedure. Channel: The state is transmitted over a
Gaussian lossy channel to the server (transmission t). Gate:
The server applies the desired unitary. Channel: The state is
sent back over the Gaussian lossy channel to the client. De-
cryption: The client applies a decryption operation to retrieve
the final output state.

Our protocol for quantum computing on encrypted
continuous variables comprises four stages, see Fig. 1.
First, an input stage, where the input quantum state,
a displacement in our case, is generated. In the second
stage the input state is encrypted by further displacing
it with a displacement randomly chosen from a Gaus-
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sian distribution. The encrypted quantum state is then
send to the server through a lossy quantum channel. The
server applies one or a series of gate operations before
sending the result back to the client. In the fourths and
last stage the client decrypts the result of the computa-
tion.

To discuss suitable decryption operations we first
define the Heisenberg-Weyl operators [11] X(Q) =
exp(−iQp̂) and Z(P ) = exp(iP q̂), as well as the displace-
ment operator D(α) = exp(αâ†−α∗â) where q̂, p̂ are the
canonical amplitude and phase operators, respectively,
which obey Heisenberg’s uncertainty relation [q̂, p̂] = i.
The annihilation and creation operators are denoted by
â, â† respectively, and are defined by â = (q̂+ip̂)/

√
2 and

its adjoint.

To achieve universal quantum computation on en-
crypted data we need to show that the results of the
gates in the set G = {X(Q), Z(P ), U2(T ), U3(T ), F, CZ}
where Uk(T ) = exp(iT q̂k), F = exp

[
iπ
4

(
q̂2 + p̂2

)]
, and

CZ = exp(iq̂1 ⊗ q̂2) can be decrypted with an appro-
priately chosen operation. Hereby X(Q) and Z(P ) are
displacement gates, U2(T ) is the squeezing gate, U3(T )
is the cubic phase gate, F is the Fourier gate and CZ is
the controlled not gate. While U3 is a non-Gaussian gate
which is difficult to implement, all the other gates are
Gaussian. Table I lists the decryption operations for the
individual gates. Except for U3, all of these operations
have decryption operators that correspond to displace-
ments.

Gate Decryption

Z(T ) X(−Q)Z(−P )

X(T ) X(−Q)Z(−P )

U2(T ) X(−Q)Z(−2QT − P )

U3(T ) X(−Q)Z(3Q2T − P )U2(−3QT )

F X(P )Z(−Q)

CZ X1(−Q1)Z1(−Q2 − P1) ⊗X2(−Q2)Z2(−Q1 − P2)

Table I. The decryption operations corresponding to each
gate, up to a phase, for the encryption operation D(Q,P ) for
single mode gates and D1(Q1, P1)D2(Q2, P2) for two-mode
gates.

In our proof-of-principle experiment we tested quan-
tum computing on encrypted data by performing the two
displacements gates, X and Z, and the squeezing gate U2.
The experimental setup of the proof-of-principle experi-
ment is shown Fig. 2. The input state was generated by
applying an amplitude and phase modulation via electro-
optical modulators to a 1064 nm laser beam. At the same
modulators we performed the encryption operation by
driving the two modulators with noise from two indepen-
dent Gaussian noise sources. The encrypted state is then
send to the server via a lossy quantum channel with the
loss applied by a half-wave plate and a polarizing beam
splitter. For the X and Z gates the server performed an-

Figure 2. Schematic representation of the experimental im-
plementation. All phase space displacements were performed
using electro-optical modulations of the amplitude (AM) and
phase (PM) field quadratures at 10.5 MHz. Two Gaussian
noise generators were used to encrypt and decrypt the input
and output states, respectively. The server could either im-
plement the Z and X gates by performing a displacement by
using two more electro-optical modulators or a squeezing op-
eration. The squeezing operation was implemented by feeding
the encrypted input state into a linear squeezed-light source
(SQZ) by means of a polarizing beam splitter and a Faraday
rotator (FR). The lossy channels with transmission t were
implemented by variable beam splitters based on half-wave
plates and polarizing beam splitters.

other displacement, while the squeezing gate was imple-
mented by injecting the quantum state received by the
server into a squeezed-light source. The squeezed-light
source was a parametric-down conversion source with a
potassium-titanyl-phosphate crystal in an optical cavity.
Afterwards the resulting quantum state was send back
to the client via a lossy channel with the same optical
loss. The decryption of the resulting quantum state took
place by displacing it using another set of electro-optical
modulators. The noise from the Gaussian white noise
generators used for encryption was thereby applied to
the modulators according to Tab. I.

Figure 3 shows the effectiveness of the encryption. We
measured the mutual information of the client’s input
state and the encrypted state received by the server. For
this measurement we used Gaussian white noise to gen-
erate the input state which resembled an ensemble of
coherent states. The mutual information was calculated
from the data acquired by recording the Gaussian white
noise used for the coherent input state generation and
a homodyne measurement of the encrypted state. The
solid line shows a theory model according to

I(serverenc : clientin) =
1

2
ln

(
1 +

Vin
Venc

)
, (1)

where Vin and Venc are the variances of the input state
ensemble and the encryption noise, respectively. The plot
shows the effect of a finite encryption variance, finally
given by energy constraints. To reveal as little as possible
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Figure 3. Effectiveness of encryption. The mutual informa-
tion I(serverenc : clientin) for a coherent state chosen accord-
ing to a Gaussian alphabet with variance Vin = 0.6 shot noise
units, which is then encrypted with a varied encryption vari-
ance Venc before being sent to the server. For a fixed distri-
bution of input states the plot shows how an increased en-
cryption noise decreases the server’s knowledge of the inputs.
Error bars are smaller than the point size. The transmittivity
of the channel was set to t = 1 for this measurement.

Figure 4. Reconstructed Wigner functions of the ensemble of
result states of a computation using displacement gates with
(a) and without (b) encryption. The input state ensemble had
a variance of Vin = 0.3 shot-noise units, the gate operation
ensemble was Vgate = 0.6 shot-noise units and the encryption
noise had a variance of Venc = 31 shot-noise units.

about the input state, the encryption noise variance has
to be chosen as large as possible.

As an example computation we show the tomograph-
ically reconstructed Wigner functions of the ensemble
of result states of a displacement gate operations. The
Wigner functions shown in Fig. 4 were reconstructed
using a maximum likelyhood method based on homo-

dyne measurements with a scanned local oscillator phase.
Both, the input states as well as the gate operations were
produced by white noise generators to create ensembles of
possible states and gate operations. Figure 4a shows the
resulting ensemble without encryption, while for Fig. 4b
the encryption was switched on. The resulting ensemble
after decryption has some additional noise due to experi-
mental imperfections in the decryption operation. The
fidelity between the ensemble without encryption and
with encryption was calculated to 99.2 % showing that
the computation on encrypted data works almost as good
as on plain text.

In conclusion we have developed a protocol for quan-
tum computing on encrypted continuous variables and
demonstrated a subset of the gates experimentally. Our
protocol requires a baseline of two uses of a quantum
channel, one to transfer the input from the client to the
quantum server, and the other to transfer back the result.
Only for the cubic phase gate U3 one additional round of
classical communication in each direction and one addi-
tional use of the quantum channel is needed while Gaus-
sian gates can be implemented with no communication
cost.
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