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Adaptive Versus Non-Adaptive Attacks. We consider attacks on cryptographic schemes, and we
compare adaptive versus non-adaptive strategies for the adversary. In our context, a strategy is adaptive if
the adversary’s action can depend on some auxiliary side information, and it is non-adaptive if the adversary
has no access to any such side information. Non-adaptive strategies are typically much easier to analyze than
adaptive strategies.

Adaptive strategies are clearly more powerful than non-adaptive ones, but this advantage is limited by
the amount and quality of the side-information available to the attacker. In the classical case, this can be
made precise by the following argument. If the side information consists of a classical n-bit string, then it is
easy to see that adaptivity increases the adversary’s winning probability (e.g., in opening a bit commitment
to the wrong bit) by at most a factor of 2n. Indeed, a particular non-adaptive strategy is to try to guess
the n-bit side information and then apply the best adaptive strategy. Since the guess will be correct with
probability at least 2−n, it follows that PNA

succ ≥ 2−nPA
succ, and thus PA

succ ≤ 2nPNA
succ, where PA

succ and PNA
succ

respectively denote the optimal adaptive and non- adaptive winning probabilities. Even though there is an
exponential loss, this is a very powerful relation between adaptive and non-adaptive strategies as it applies
very generally, and it provides a non-trivial bound as long as we can control the size of the side information,
and the non-adaptive winning probability is small enough.

Our Technical Result. In this work, we consider the case where the side information (and the crypto-
graphic scheme as a whole) may be quantum. A natural question is whether the same (or a similar) relation
holds between adaptive and non-adaptive quantum strategies. The quantum equivalent to guessing the side
information would be to emulate the n-qubit quantum side information by the completely mixed state IA

2n .
Since it always holds that ρAB ≤ 22n IA

2n ⊗ ρB , we immediately obtain a similar relation PA
succ ≤ 22nPNA

succ,
but with an additional factor 2 in the exponent. The bound is tight for certain choices of ρAB , and thus this
additional loss is unavoidable in general; this seems to pretty much answer the above question.

In this work, we show that this is actually not yet the end of the story. Our main technical result consists
of a more refined treatment—and analysis—of the relation between adaptive and non-adaptive quantum
strategies. We show that in a well-defined and rather general context, we can actually bound PA

succ as

PA
succ ≤ 2I

acc
max(B;A)PNA

succ ,

where Iaccmax(B;A) is a new (quantum) information measure that is upper bounded by the number of qubits
of A. As such, we not only recover the classical relation PA

succ ≤ 2nPNA
succ in the considered context, but we

actually improve on it.
In more detail, we consider an abstract “game”, specified by an arbitrary bipartite quantum state ρAB , of

which the adversary Alice and a challenger Bob hold the respective registers A and B, and by an arbitrary
family {Ej}j∈J of binary-outcome POVMs acting on register B. The game is played as follows: Alice chooses
an index j, communicates it to Bob, and Bob measures his state B using the POVM Ej = {Ej

0, E
j
1} specified

by Alice. Alice wins the game if Bob’s measurement outcome is 1. In the adaptive version of the game, Alice
can choose the index j by performing a measurement on A; in the non-adaptive version, she has to decide upon
j without resorting to A. As we will see, this game covers a large class of quantum cryptographic schemes,
where Bob’s binary measurement outcome specifies whether Alice succeeded in breaking the scheme.



Our main result shows that in any such game it holds that PA
succ ≤ 2nPNA

succ where n = H0(A), i.e.,
the number of qubits of A. Actually, as already mentioned, we show a more general and stronger bound
PA
succ ≤ 2I

acc
max(B;A)PNA

succ that also applies if we have no bound on the number of qubits of A, but we have
some control over its “information content” Iaccmax(B;A), which is a new information measure that we introduce
and show to be upper bounded by H0(A).

To give a first indication of the power of our result, we observe that it easily provides a lower-bound on
the quantity, or quality, of entanglement (as measured by Iaccmax(B;A) and as a function of the scheme) a
dishonest committer needs to carry out the standard attack [5] on a quantum bit commitment scheme. Let
Alice be the committer and Bob the receiver in a bit commitment scheme in which the opening phase consists
of Alice announcing a classical string j and Bob applying a verification described by POVM {Ej

accept, E
j
reject}.

In the standard attack, Alice always commits to 0 while purifying her actions and applies an operation on
her register if she wants to change her commitment to 1. If we let ρAB be the state of Bob’s register B that
corresponds to a commitment to 0, then the probability that a memoryless Alice successfully changes her
commitment to 1 is PNA

succ = maxj tr(E
j
acceptρAB) where the maximum is over all j that open 1. If Alice holds

a register A entangled with B, our main result implies that Iaccmax(B;A) must be proportional to − logPNA
succ

for Alice to have a constant probability of changing her commitment.
But the real potential lies in the observation that adaptivity is notoriously difficult to handle in the

analysis of cryptographic protocols, and as such our result provides a very powerful tool: as long as we have
enough control over the side information, it is sufficient to restrict ourselves to non-adaptive attacks.

Applications. We demonstrate the usefulness of this methodology by proving the security of two com-
mitment schemes. In both examples, the fact that the adversary holds quantum side information obstructs
a direct analysis of the scheme, and we circumvent it by analyzing a non-adaptive version and applying our
general result.

One-bit cut-and-choose is universal for two-party computation. As a first example, we propose and prove
secure a quantum bit commitment scheme that uses an ideal 1-bit cut-and-choose primitive 1CC as a black
box. Since bit commitment (BC) implies oblivious transfer (OT) in the quantum setting [1, 3, 6], and oblivious
transfer is universal for two-party computation, this implies the universality of 1CC and thus completes the
zero/xor/one law proposed in [4]. Indeed, it was shown in [4] that in the information-theoretic quantum
setting, every primitive is either trivial (zero), universal (one), or can be used to implement an XOR—
except there was one missing piece in their characterization: it excluded 1CC (and any primitive that implies
1CC but not 2CC). How 1CC fits into the landscape was left as an open problem in [4], and we resolve it
here.

The BCJL bit commitment scheme is secure in (a variant of) the bounded quantum storage model. As a
second application, we consider a general class of non-interactive commitment schemes and we show that
for any such scheme, security against an adversary with no quantum memory at all implies security in a
slightly strengthened version of the standard bounded quantum storage model4, with a corresponding loss
in the error parameter.5

As a concrete example scheme, we consider the classic BCJL scheme that was proposed in 1993 by
Brassard et al. [2] as a candidate for an unconditionally-secure scheme—back when this was thought to be
possible—but until now has resisted any rigorous positive security analysis. Our methodology of relating
adaptive to non-adaptive security allows us to prove it secure in (a variant of) the bounded quantum storage
model.
4 Beyond bounding the adversary’s quantum memory, we also restrict its measurements to be projective; this can
be justified by the fact that to actually implement a non-projective measurement, additional quantum memory is
needed.

5 We have already shown above how to argue for the standard attack [5] against quantum bit commitment schemes;
taking care of arbitrary attacks is more involved.
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