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The differential phase shift (DPS) protocol is one of the simplest quantum key distribution protocols for
implementation. Despite its practical advantage, current security proofs for the DPS protocol lead to much lower
key generation rates compared to the BB84 protocol. We prove the security of a variant of the DPS protocol,
called differential quadrature phase shift (DQPS) protocol. In addition to the fact that the DQPS protocol can
be implemented with essentially the same hardware as the BB84 protocol with phase encoding (PE-BB84), our
results show that the key generation rate of the DQPS protocol is eight thirds as high as that of the PE-BB84
protocol in the asymptotic key-size limit, and that the advantage still holds when the effect of finite-sized key is
taken into account.

Introduction: From a practical viewpoint, it is desired that
a quantum key distribution (QKD) protocol is implemented
with a conventional laser as its light source, and with simple
hardware for encoding, decoding and detection. The simplic-
ity is desired not only for a lower cost and a higher clock
rate, but also because complicated systems and procedures
tend to impose severe restrictions on the model of the sender’s
and the receiver’s apparatus, and to suffer from inefficiency in
short-time communications due to a large overhead involved
in statistical estimations. The differential-phase-shift (DPS)
protocol, which uses two relative phases{0, π} between every
neighboring pair of pulses belonging to a long train of pulses,
is one of the simplest QKD implementations suited for com-
munication over optical fibers. In the DPS protocol, the sender
only needs a phase modulator for encoding, while the receiver
only needs a passive Mach-Zehnder interferometer with two
detectors. Its feasibility was already demonstrated in an ex-
periment with a high clock rate [1]. Although its security was
proved, so far the key generation rate is much lower than the
decoy-BB84 protocol [2]. A new approach to improve the key
rate was also proposed [3] and demonstrated [4–7] recently,
but it requires a variable delay in the receiver’s apparatus to
measure relative phases between pulses at different intervals.

In this work, we seek after the benefit of the DPS-type QKD
in a different direction. We prove the security of the differen-
tial quadrature phase shift (DQPS) protocol [8], which uses
four relative phases{0, π2 , π,

3π
2 } between neighboring pulses

belonging to a long pulse train. The setup of the DQPS pro-
tocol is essentially the same as the BB84 protocol with phase-
encoding (PE-BB84 protocol) [9, 10], which uses four relative
phases between two neighboring pulses. We show that the key
generation rate of the DQPS protocol is 8/3 as high as the rate
of the PE-BB84 protocol in the asymptotic limit of infinite key
size [11]. We further show that the advantage of the DQPS
protocol over the PE-BB84 protocol still holds considering
the finite key effect, despite the fact that the security proof is
not as straightforward as the BB84 protocol. Our technique
for the security proof is unique in the following sense. Al-
though it is expected that we may prove the security in a sim-
ilar vein to BB84 protocol with weak laser pulses, namely, by
using the tagging idea [12], its application to the DQPS proto-
col is not straightforward. This is because there are chains of
coherence among successive pulses, which prohibits us from
defining the total photon number in neighboring two pulses.

We use an alternative approach to define the photon number
indirectly, which enables us to reduce the proof into the one
for the BB84 protocol. This is in sharp contrast with the fact
that the security proof of the original DPS protocol was quite
complicated and resulted in a low key generation rate.

FIG. 1. Setup for theL-pulse DQPS protocol. The protocol regards a
train of L pulses as a block, and the working basis is randomly cho-
sen for each block. At Alice’s site, pulses are modulated with phase
{0, π, π2 ,

3π
2 } according to her random bits and basis choice. The ran-

domization of the overall optical phase is also done for each block of
L pulses. At Bob’s site, each pulse train is fed to a delayed Mach-
Zehnder interferometer with phase shift 0 orπ

2 according to his basis
choice. Valid timings of detection are labeled by integers 1, 2, .., L−1,
according to the index of the pulse from the short arm of the interfer-
ometer. Detection from interference between pulses from different
blocks is regarded as invalid and ignored.

DQPS protocol: Here we introduce a DQPS protocol (See
Fig. 1) which is slightly modified from the one [8] proposed
by Inoue and Iwai. The protocol uses two bases, data basis for
generating the final key and check basis for monitoring the
leak of information.
1. Alice selects a bitc ∈ {0,1} with probability p0 and p1,
which correspond to the choice of the data basis and the check
basis, respectively. Bob also selectsd ∈ {0,1}with probability
p0 andp1.
2. Alice generatesL random bitsal ∈ {0, 1} (0,1, .., L − 1),



2

and preparesL optical pulses (systemS) in the state
L−1⊗
l=0

|eiθl (al ,c) √µ⟩S,l , θl(al , c) B alπ +
π

2
lc, (1)

where | √µ⟩S,l represents coherent statee−µ/2
∑

k
µk/2
√

k!
|k⟩S,l of

the l-th pulse mode. Alice randomizes the overall optical
phase of theL-pulse train, and sends it to Bob.
3. If d = 0, Bob sets the amount of phase shiftθB = 0. If
d = 1, he setsθB =

π
2 .

4. If there is no detection of photons in the valid timings, Bob
sets j = 0. If the detections have only occurred at a single
valid timing, the variablej is set to the index of the timing.
If there are detections at multiple timings, the smallest (earli-
est) index of them is assigned toj. If j , 0, Bob determines
his raw key bitb ∈ {0,1} depending on which detector has
reported detection at thej-th timing. If both detectors have
reported at thej-th timing, a random bit is assigned tob. Bob
announcesj through the public channel.
5. If j , 0, Alice determines her raw key bit asa = a j−1 ⊕ a j .
6. Alice and Bob repeat the above proceduresnrep times. They
publicly disclosec andd for each of thenrep rounds.
7-1. Alice and Bob define sifted keysκA1 andκB1, respec-
tively, by concatenating their determined bits withj , 0 and
c = d = 1. They publicly discloseκA1 andκB1.
7-2. Alice and Bob define sifted keysκA0 andκB0 by concate-
nating their determined bits withj , 0 andc = d = 0.
8. Bob corrects the errors in his sifted keyκB0 to make it co-
incide with Alice’s keyκA0. Alice and Bob conduct privacy
amplification to obtain the final keys.

Outline of security proof: In our proof, the tagging idea,
which was proposed by Gottesmanet al. [12], is used with a
modification. Let us discuss the difference between the orig-
inal tagging idea and ours. In the security proof of the PE-
BB84 protocol, if a pair of pulses emitted from Alice con-
tains more than a single photon, that signal is considered to be
“tagged” and totally insecure. This is useful in the sense that
as for untagged incidents, we can apply the proof for single-
photon BB84 protocol, which is well established. Intuitively,
we might want to use the same idea for the security proof of
the DQPS protocol because a key bit is generated from a pair
of pulses like in the PE-BB84 protocol. However, this turns
out to be difficult. In the DQPS protocol, Alice generates a
key bit a = a j−1 ⊕ a j after Bob’s announcement of detection
timing j. If we are to define tagged incidents as the state in
which Alice’s (j − 1)-th and j-th pulses contain more than a
single photon like in the PE-BB84 protocol, these two pulses
must be modulated with a common random phase shift. But
such a modulation would disturb the relative phase between
Alice’s ( j − 2)-th and (j − 1)-th as well asj-th and (j + 1)-th
pulse, undermining what is intended in the DQPS protocol.

An alternative way we took is to set the tagging rule through
an equivalent entanglement-based version of the protocol. In
the virtual version of the protocol, Alice preparesL auxiliary
qubits (systemA) andL optical pulses (systemS) in state

|Ψ(c)⟩AS B
L−1⊗
l=0

|ψ(c)⟩AS,l (2)

depending on her basis choice (c=0,1), where

|ψ(c)⟩AS,l B
1
√

2
(|+⟩A,l |ei π2 lc √µ⟩S,l+ |−⟩A,l |−ei π2 lc √µ⟩S,l). (3)

It is easily seen thatA,l ⟨±|ψ(c)⟩AS,l = |±ei π2 lc √µ⟩ /
√

2, which
means that the state conditioned on the measurement result
on {|+⟩A,l , |−⟩A,l} basis is identical to the actual one defined in
Eq.(1). To express Alice’s key extraction process (a j−1 ⊕ a j),
we consider a CNOT gate on the (j − 1)-th qubit as a tar-
get and thej-th qubit as a control, followed by{|+⟩A,l , |−⟩A,l}
basis measurement on thej-th qubit. An important property
of |ψ(c)⟩AS,l is that A,l ⟨0|ψ(c)⟩AS,l and A,l ⟨1|ψ(c)⟩AS,l are ex-
pressed as the superposition of odd- and even-photon number
state, respectively. This suggests that we may, in principle, ex-
tract information on the photon number in each of the pulses
through measurement on the remaining (L − 1) qubits. Let
{zl} (l , j) be the result of{|0⟩A,l , |1⟩A,l} basis measurement on
Alice’s qubit system. We set the tagging rule as follows:∑

l, j

zl = m : untagged,
∑
l, j

zl < m : tagged, (4)

wherem is the total photon number contained in theL-pulse
block, which is well-defined thanks to the random phase shift
on the whole pulse train. When the result is “untagged”, the
state of systemS is projected to the subspace where thel-th
pulse (l , j − 1, j) has no more than a single photon as well
as (j −1)-th andj-th pulses (in total) have no more than a sin-
gle photon. Roughly speaking, this situation is quite similar
to untagged events in the PE-BB84 protocol. As a rigorous
proof, we can prove that for untagged incidents, the errors in
the check basis is regarded as a result of unbiased sampling,
which means that the amount of privacy amplification is de-
termined from the observed error rate in the same way as the
BB84 protocol [11].

To obtain the secure key rate in the asymptotic limit (nrep→
∞), we assume that the following observed parameters are
fixed: Q B |κA0|/nrepp2

0, E0 B wt(κB0 − κA0)/nrepp2
0, E1 B

wt(κB1 − κA1)/nrepp2
1, where|κ| represents the length of a bit

sequenceκ, the minus sign is a bit-by-bit modulo-2 subtrac-
tion, and wt(κ) represents the weight, the number of 1’s, of a
bit sequenceκ. The asymptotic key rate per pulse is given by

R(asy)
L =

p2
0

L

(
(Q− rtag)(1− h

( E1

Q− rtag

)
) − Q f h(E0/Q)

)
(5)

where f > 1 represents the inefficiency of error correction
andrtag = 1−∑⌈L/2⌉

m=0 e−µLµm
L+1−mCm. Note that forL = 2, rtag

represents the probability that Alice emits more than a single
photon in a pair of pulses, which is the ratio of tagged in-
cidents in the PE-BB84. Although we have so far assumed
that each pulse is in a coherent state, the proof can be easily
extended to cover a general light source through a proper def-
inition of rtag. It is also possible to determinertag through a
simple off-line calibration setup like in the BB84 protocol.

Finite key analysis: For finite key analysis, letn0(∼ nrepp2
0)

be the number of rounds at which Alice and Bob have chosen
c = d = 0 (regardless of the detection). In the framework
of composable security definition [15], the protocol isϵ B
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FIG. 2. Secure key rate per pulseRL (L = 2, 4, 20) in the asymptotic limit (left) and for a finite total pulse numbernrepL = 107 (right) as
a function of the overall channel transmissionη. Note thatL = 2 corresponds to the PE-BB84 protocol and the other values to the DQPS
protocol. Dotted lines represent the key rates assuming no dark count. We see a clear advantage of the DQPS protocol.

√
2
√
ϵ1 + ϵ3 + ϵ2 + ϵ4 secure [14] if the key rate is set to

R(fin)
L =

((
|κA0| − n0(rtag+ δ)

)
(1− h

( md(ms)
|κA0| − n0(rtag+ δ)

)
)

− |κA0| f h(E0/Q) − s3 − s4

)
1

nrepL
(6)

wheremd(ms) is a function of observed error numberms B
wt(κB1−κA1) satisfying Pr(wt(κB0,untag−κA0,untag) ≥ md(ms)) ≤
ϵ1. Here,κA0,untagandκB0,untagare the concatenations of all the
untagged bits inκA0 andκB0, respectively. Furthermore,δ, s3

ands4 satisfy Pr(|κA0,untag| ≤ |κA0|−n0(rtag+δ)) ≤ ϵ2, 2−s3 ≤ ϵ3
and 2−s4 ≤ ϵ4, respectively.

Numerical examples: In Fig. 2, we show results of numer-
ical calculation of the key rates per pulse,R(asy)

L andR(fin)
L , as

a function of overall transmissionη (including detector effi-
ciency) forL = 2(PE-BB84), 4 and 20. We assumed a dark
count probability ofpdark = 0.5× 10−5 per pulse per detector
and a loss-independent bit error rate of 3%. We also assumed
Q = |κA0|/n0 = 1 − e−(L−1)µη + 2pdark, reflecting the fact that
there are (L − 1) valid timings per block of pulses. The error

correction efficiency was set tof = 1.1. For the asymptotic
case, we have also shown the key rates when the dark counts
are negligible and the error rate is fixed to be 3% (the dotted
lines). For the asymptotic case, we see thatRL for different
values ofL are all proportional toη2 in the limit of smallη, but
its coefficient increases asL gets larger. In the region of small
η, we found thatR20/R2 ∼ 8/3. For the zero-error case, we
have analytically found thatRL→∞/R2 → 8/3 for η → 0. For
the finite-key case, we chose the security parameterϵ = 10−10,
and the total pulse numbernrepL = 107. We see that the ad-
vantage of the DQPS protocol (L = 4,20) over the PE-BB84
protocol (L = 2) still holds even when the effect of finite-sized
key is taken into account.

Summary: We proved the security of a DQPS protocol,
which is a variant of the DPS protocol. By tailoring the def-
inition of tagging in the entanglement-based version of the
protocol, the security proof of the DQPS protocol is reduced
to that of the BB84 protocol. In the asymptotic limit of in-
finite pulses, the key rate of the DQPS protocol with a large
block sizeL is 8/3 as large as the one of the PE-BB84 proto-
col. Furthermore, we showed that the advantage still holds in
a finite-key regime despite the fact that the security proof of
DQPS protocol is not as straightforward as the BB84 protocol.
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