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Quantum key distribution (QKD) is one of the most
promising quantum information processing applications,
and is now on the verge of global commercialization.
Having said that, however, there are still some problems
both theoretically and experimentally that need to be
solved. One serious problem is to establish practical se-
curity proofs to bridge the gap between theory and prac-
tice. As QKD is physical cryptography, in the security
proofs we have to assume some mathematical models for
Alice and Bob’s devices. However, if these models do
not faithfully represent the physical properties of actual
QKD devices, the security of the actual QKD systems is
no longer guaranteed. In fact, such discrepancies between
the device models in security proofs and the properties of
the actual devices can be exploited by Eve to attack the
source device [1, 2] and the detection unit [3]. Therefore,
it is urgently required to establish security proofs based
on practical devices for realizing secure communication.

QKD employs a source device and a detection unit, and
we have to consider filling the gaps of both of them. Re-
garding the detection unit, thanks to the measurement-
device-independent (MDI) QKD protocol [4], secure com-
munication is possible without any assumption on the
measurement device. That is, the gap in the detection
unit is completely closed. However, assumptions on the
source device are still necessary even in the MDI QKD
protocol, and hence to accommodate source imperfec-
tions in security proofs is of vital importance. Unfor-
tunately, security proofs with practical light sources are
so far less satisfactory in the sense that only a few se-
curity proofs have accommodated realistic imperfections
in the source device. The dominant imperfections in
the source device are intensity and phase modulation er-
rors (see Fig.1). Regarding the phase modulation errors,
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FIG. 1: Alice’s source is composed of a laser source, an inten-
sity modulator and a phase modulator.

the GLLP analysis [5] showed that such an imperfection
puts a severe limitation on the key rate as well as on
the achievable distance. To solve this problem, the loss-
tolerant (LT) protocol [6] has been proposed recently as
a means to overcome typical phase modulation errors in
the actual QKD systems. We have extended the orig-
inal security proof in the asymptotic regime [6] to the
finite-key regime [7], which is also an important issue in
practical security proofs (see Table I for a review of re-
cent finite-key analyses). In [6, 7], it was shown that if
the probability distribution of the phase modulation error
in a qubit space follows an identically and independent
distribution (IID), such an imperfection does not have a
significant influence on the resulting secret key rate even
when the channel loss is high. Also, experimental demon-
strations of the LT protocol have been done recently in
both the prepare-and-measure setting [8] and the MDI
setting [9].

A crucial problem in the previous proofs [6, 7] is that
the IID assumption on the phase modulation errors can
hardly be satisfied in the actual encoding devices, basi-
cally due to their time-dependent noises and correlations.
Even if the error distribution follows IID in reality, it is
impossible in finite time to verify whether or not the dis-
tribution is indeed IID for each pulse. Therefore, the er-
ror model in [6, 7] is not testable in the experiment, and it

Ref. Protocol Source Encoding flaws

[10, 11] BB84 Single-photon No

[12–14] BB84 Coherent light No

[7] 3-state Coherent light IID phase, non-IID intensity

This work 3-state Coherent light non-IID phase & intensity

TABLE I: Review on recent finite-key analyses against coher-
ent attacks. Refs. [10–14] assume that there are no encoding
flaws in the source device, which cannot be guaranteed in
practice. In our previous analysis [7], IID phase modulation
errors and non-IID intensity fluctuation errors are accommo-
dated. In this work [15, 16], we have generalized the source
model assumed in [6], and we have accommodated non-IID
properties in both phase and intensity modulators.
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FIG. 2: Comparison in the secret key rate (per pulse) in log-
arithmic scale versus fiber length between our previous re-
sult [7] and our new result. These three curves show the case
for (rk,∆θc) = (0.05, 0). Regarding the two solid lines, the
security parameter is ϵsec = 10−10, and the right curve is for
N = 1012 based on our new result, and the left curve is for
N = 1014 based on the previous result [7]. The dashed line
corresponds to the asymptotic case.

is not clear how to apply the security proof to guarantee
the security of the actual QKD systems. Another impor-
tant imperfection in the source device is due to intensity
fluctuations. In the original decoy state method, stable
control of intensity is required for better performance,
and the effect of the fluctuation has to be taken into ac-
count into the security proof. In our previous work [7], we
have accommodated this effect in the finite-key analysis.
The assumption on the intensity fluctuation in [7] is that
almost all the actual intensities lie in a certain interval.
Note that there is no need to assume any particular dis-
tribution of the intensity fluctuation, and hence non-IID
intensity modulation errors are accommodated. Unfortu-
nately, with the mathematical methods used in [7], such
an imperfection strongly limits the achievable secret key
rate. More concretely, if one assumes an intensity fluctu-
ation of ±5%, we have that the achievable distance de-
creases down to 50km when Alice sends Bob 1014 signals
(see Fig. 2). This strongly contrasts with the asymptotic
result of 140km in the same situation, and constitutes a
significant problem in practical security proofs. There-
fore, we need to develop more efficient finite key analyses
that takes into account intensity fluctuations.

Here, we solve these two significant problems on the
practical source devices [15, 16]. Our first contribution
is to establish a security proof based on potentially ex-
perimentally testable assumptions on the source device,
which causes dominant imperfections. More specifically,
we generalize the phase modulation errors in [6, 7] to ac-
commodate non-IID phase modulation errors and prove
the security against coherent attacks in the finite-key
regime. The second contribution is to generalize the pre-
vious decoy-state method [7] to improve the performance
under intensity fluctuation errors.

Main results.— Here, we first summarize all the as-
sumptions we make on Alice’s source. After that we de-
scribe our main results in detail.
(i) Assumptions on the sending states
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FIG. 3: Secret key rate (per pulse) in logarithmic scale versus
fiber length. Regarding the solid lines, the security parameter
is ϵsec = 10−10, and the number of signals sent is N = 1012.
The right and left solid lines are for the case (rk,∆θc) =
(0, 0) and for the case (rk,∆θc) = (0.03, 3π/180), respectively.
The right and left dashed lines respectively show the case for
(rk,∆θc) = (0, 0) and (0.03, 3π/180) with N → ∞.

Alice’s sending states are in a single-mode and the
photon number distributions follow a Poissonian distri-
bution in any chosen basis, bit and intensity. Also, the
joint phase between a signal and a reference pulse is ran-
domized. Moreover, we assume that there are no side-
channels in Alice’s source.
(ii) Intensity of emitted light

We assume that the intensity of the emitted light lies

in a certain interval except for error probability ϵ
(k)
int .

Pr[|{ik|µ(ik) ∈ R
(k)
int }| ≥ Nk − δ

(k)
int ] ≥ 1− ϵ

(k)
int (1)

Here, µ(ik) denotes the intensity of the ithk coherent pulse
when Alice selects the intensity k ∈ K = {k1, k2, k3}.
R

(k)
int is a certain interval of the intensity. Nk denotes

the number of emitted light pulses with k ∈ K, and δ
(k)
int

denotes the number of intensities that do not lie within
the interval R

(k)
int . | ∗ | denotes the cardinality of a set ∗.

(iii) Relative phase of emitted light

We assume that the relative phase of the emitted light

lies in a certain interval except for error probability ϵ
(c)
ph .

Pr[|{ic|θ(ic) ∈ R
(c)
ph }| ≥ Nc − δ

(c)
ph ] ≥ 1− ϵ

(c)
ph (2)

Here, θ(ic) denotes the ithc relative phase between two
consecutive coherent pulses when the bit and basis infor-

mation is c ∈ C = {0Z , 1Z , 0X}. R(c)
ph is a certain interval

of the relative phase. Nc denotes the number of emitted

pulses with c ∈ C, and δ
(c)
ph denotes the number of phases

that do not lie within the interval R
(c)
ph .

The assumptions (ii) and (iii) on the intensity and the
phase modulations mean that each intensity and relative
phase generated almost surely lies inside a particular in-
terval, which can be potentially guaranteed in the actual

experiments. Importantly, given the intervals R
(k)
int and

R
(c)
ph , we do not need to care anymore about the particular

distributions of the phase and the intensity for each trial,
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and arbitrary correlations among phases and intensities
are allowed.
Based on these three assumptions, we prove the se-

curity against coherent attacks in the finite-key regime.
More specifically, we establish the estimation method for
Eve’s leaked information accommodating the dominant
imperfections. As for the intensity fluctuation problem,
the main innovation of this work is the generalization
of the “intensity post-selection method” [12] to accom-
modate the intensity fluctuation (see Appendix D in the
supplementary material for detail). As a result, we have
obtained significant improvements over the previous re-
sult [7] (see Fig. 2). Moreover, the generalization of the
previous proofs with IID phase modulation errors [6, 7]
to non-IID phase modulation errors (see Appendix E in
the supplementary material for detail) has a significant
importance on the practical security of QKD because it
enables us to realize secure communication with realistic
phase modulators (see Fig. 3).
We now briefly discuss the simulation results of the key

generation rate for a fiber-based QKD system. For sim-
ulation purposes, we assume the following experimental
parameters [14]: the attenuation coefficient of the optical
fiber is 0.2dB/km, and the detection efficiency and dark
count probability of the single-photon detectors are, re-
spectively, ηdet = 10% and pd = 6 × 10−7. The channel
transmittance is given by ηch = 10−0.2l/10 with l denoting
the fiber length. Also, the overall misalignment error of
Bob’s apparatus is assumed to be 1%. In addition, we as-
sume an error correction leakage equal to fEC|Ztot|h(eZ),
where h(x) = −x log2 x − (1 − x) log2(1 − x), |Ztot| is
the number of detection events when Alice and Bob se-
lect the Z basis, and eZ is the bit error rate of the
sifted key. For simplicity, we assume an error correc-
tion efficiency fEC = 1.16 that is independent of the
size of |Ztot|. In addition, we assume the phase inter-

val R
(c)
ph as [θc−∆θc, θc+∆θc] for a fixed value ∆θc with

θ0Z = 0, θ1Z = π and θ0X = π/2. Also, we assume the

intensity interval R
(k)
int as [(1− rk)k, (1+ rk)k] for a fixed

value rk. Further, we assume δ
(c)
ph = δ

(k)
int = ϵ

(c)
ph = ϵ

(k)
int = 0

for all k ∈ K and c ∈ C for simplicity of the analysis.
With these parameters, we simulate the secret key gen-

eration rate R := ℓ/N for a fixed value of the correct-
ness and secrecy parameters ϵc = ϵs = 10−10. Here, ℓ
and N denote the secret key length and the number of
emitted pulses by Alice, respectively (see Appendix C
in the supplementary material for the derivation of ℓ).
For this, we perform a numerical optimization for R over
the free parameters pZ , pk1

, pk2
, k1 and k2, where we fix

the weakest decoy state to k3 = 2 × 10−4. pZ and pk
denote the probability of choosing the Z basis and the
intensity k ∈ K, respectively. In Fig. 3, we show the re-
sulting secret key rate with a phase modulation error of
±3π/180rad and intensity fluctuation of ±3%. The left
solid curve is for N = 1012, and the left dashed line is for

N → ∞. For comparison, we plot the curves for the ideal
case (rk = ∆θc = 0). The right solid and right dashed
lines are for N = 1012 and N → ∞, respectively. This
result strongly suggests the feasibility of long distance se-
cure communication with imperfections of ±3π/180rad
phase modulation error and ±3% intensity fluctuation.
In Fig. 2, to see how the intensity fluctuation alone affects
the performance, we plot the key generation rate assum-
ing the intensity fluctuation only. The two left curves
show that the achievable distance of our new result is
more than double than that in [7]. From this, we observe
the dramatic improvement over the previous result [7].

Conclusions.— In this work, we establish a security
proof based on potentially testable assumptions on the
phase and the intensity modulations, which cause domi-
nant imperfections in the source devices. As a result of
our security proof, even if a realistic phase fluctuation
of ±3π/180rad and intensity fluctuation of ±3% occur,
we show that long distance secure communication is pos-
sible with reasonable times of signal transmission. Our
result constitutes a significant step toward realizing se-
cure quantum communication with practical devices.
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