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Introduction. Commitment schemes are one of the most fundamental primitives in cryptog-
raphy. A commitment scheme is a two-party protocol consisting of two phases, the commit and
the open phase. The goal of the commitment is to allow the sender to transmit information
related to a message m during the commit phase in such a way that the recipient learns nothing
about the message (hiding property). But at the same time, the sender cannot change his mind
later about the message (binding property). Later, in the open phase, the sender reveals the
message m and proves that this was indeed the message that he had in mind earlier (by sending
some “opening information” u). Unfortunately, it was shown by [3] that the binding and hiding
property of a commitment cannot both hold with information-theoretical security. Thus, one
typically requires one of them to hold only against computationally-limited adversaries. Since
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Figure 1: (a) and (b) should be indis-
tinguishable, i.e., Pr[b = 1] negligibly
close in both cases.

the privacy of data should usually extend far beyond the end
of a protocol run, and since we cannot tell which technological
advances may happen in that time, we may want the hiding
property to hold information-theoretically, and thus are inter-
ested in computationally binding commitments. Unfortunately,
computationally binding commitments turn out to be a subtle
issue in the quantum setting. As shown in [7], if we use the
natural analogue to the classical definition of computationally
binding commitments,1 we get a definition that is basically
meaningless (the adversary can open the commitment to what-
ever message he wishes). They suggested a new definition,
“collapse binding” commitments, that better captures the idea
of computationally binding commitments. This definition was
shown to perform well in security proofs that use rewinding (e.g., they allow the construction
of statistical zero-knowledge arguments of knowledge). (They studied classical non-interactive
commitments, i.e., all exchanged messages are classical, but the adversary is quantum.)

We describe basic idea of “collapse-binding” commitments: When committing to a message m
using a commitment c, it should be impossible to produce a superposition of different messages
m that the adversary can open to. Unfortunately, this requirement is too strong to achieve
(at least for an information-theoretically hiding commitment).2 Instead, we require something
slightly weaker: Any superposition of different messages m that the adversary can open to
should look like it is a superposition of only a single message m. Formally, if the adversary
produces a classical commitment c, and a superposition of openings m,u in registers M,U , the

∗An early draft of a full version is provided here: http://www.ut.ee/~unruh/commit-std.pdf. It provides
proofs, but no motivation or explanations yet.

1This definition roughly states, that it is computationally hard to find a commitment c, two messages m 6= m′

and corresponding valid opening informations u, u′.
2The adversary can initialize a register M with the superposition of all messages, run the commit algorithm in

superposition, and measure the resulting commitment c. Then M will still be in superposition between many
messages m which the adversary can open c to.
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adversary should not be able to distinguish whether M is measured in the computational basis
or not measured. That is, for all quantum-polynomial-time A,B, the circuits (a) and (b) are
indistinguishable (assuming A only outputs superpositions that contain only valid openings).

[7] further showed that in the quantum random oracle model, collapse-binding, information-
theoretically hiding commitments can be constructed. However, they left open two big questions:

• Can collapse-binding commitments be constructed in the standard model? That is, without
using the random oracle heuristic.

• One standard minimum requirement for commitments (called “sum-binding” in [7]) is that
for quantum-polynomial-time A, p0 + p1 ≤ 1 + negligible where pb is the probability that
A opens a commitment to b when he learns b only after the commit phase. Surprisingly,
[7] left it open whether the collapse-binding property implies the sum-binding property.

Our contribution: collapse-binding in the standard model. We show that collapse-
binding commitments exist in the standard model. More precisely, we construct a non-interactive,
classical commitment in the public parameter model (i.e., we assume that some parameters
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Figure 2: (c) and (d) should be in-
distinguishable.

are globally fixed), for arbitrarily long messages (the length of
the public parameters and the commitment itself do not grow
with the message length), information-theoretically hiding, and
collapse-binding. The security assumption is the existence of
lossy trapdoor functions [5], or alternatively that SIVP and
GapSVP are hard for quantum algorithms to approximate
within Õ(dc) factors for some constant c > 5.

The basic idea of our construction is the following: In [7],
it was shown that information-theoretically hiding, collapse-
binding commitments can be constructed from “collapsing”
hash functions (using a classical construction from [2]). A func-
tion H is collapsing if an adversary that outputs h and a superposition M of H-preimages of h
cannot distinguish whether M is measured or not. That is, the circuits (c) and (d) should be
indistinguishable. So all we need to construct is a collapsing function in the standard model.

To do so, we use a lossy trapdoor function (we do not actually need the trapdoor part,
though). A lossy function fs : A→ B is parametrized by a public parameter s. There are two
kinds of parameters, which are assumed to be indistinguishable: We call s lossy if |im f(A)| � |A|.
We call s injective if fs is injective.

If s is injective, then it is easy to see that fs is collapsing: There can be only one preimage
of h on register M , so measuring M will not disturb M . But since lossy and injective s are
indistinguishable, it follows that fs is also collapsing for lossy s. Note, however, that fs is not
yet useful on its own, because its range B is much bigger than A, while we want a compressing
hash functions (output smaller than input).

However, for lossy s, |fs(A)| � |A|. Let hr : A→ C be a universal hash function, indexed
by r, with |fs(A)| � |C| � |A|. We can show that with overwhelming probability hr is injective
on fs(A), for suitable choice of C. Hence hr is collapsing (on fs(A)). The composition of two
collapsing functions is collapsing, thus H(r,s) := hs ◦ fs is collapsing for lossy s.

Thus far, we have found a collapsing H(r,s) : A→ C that is compressing. But we need some-
thing stronger, namely a collapsing hash function {0, 1}∗ → C, i.e., applicable to arbitrary long
inputs. A well-known construction (in the classical setting) is the Merkle-Damg̊ard construction,
that transforms a compressing collision-resistant function H into a collision-resistant one with
domain {0, 1}∗. We prove that the Merkle-Damg̊ard construction also preserves the collapsing
property. Applying this result to H(r,s), we get a collapsing hash function MD(r,s) : {0, 1}∗ → C.
And from this, we get collapse-binding commitments.

We present all our proofs with concrete security bounds, and our reductions have only
constant factors in the runtime, and the security level only has an O(message length) factor.
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We stress that the security proof for the Merkle-Damg̊ard construction has an additional
benefit: It shows that existing hash function like SHA-2 [4] are collapsing, assuming that the
compression function is collapsing (which in turn is suggested by the random oracle results in
[7]). Since we claim that collapsing is a desirable and natural analogue to collision-resistance in
the post-quantum setting, this gives evidence for the post-quantum security of SHA-2.

Our contribution: Collapse-binding implies sum-binding. In the classical setting, it
relatively straightforward to show that a computationally binding bit commitment satisfies the
(classical) sum-binding condition. Namely, assume that the adversary breaks sum-binding, i.e.,
p0 + p1 > 1 + negligible. Then one runs the adversary, lets him open the commitment as m = 0
(which succeeds with probability p0), then rewinds the adversary, and lets him open the same
commitment as m = 1 (which succeeds with probability p1). So the probability that both runs
success is at least p0 + p1 − 1 > negligible, which is a contradiction to the computational binding
property.

Since collapse-binding commitments work well with rewinding, one would assume that a
similar proof works using the rewinding technique from [6]. Indeed, the proof goes through;
but due to the worse bounds achieved by quantum rewinding, we can only conclude p0 + p1 ≤√

2 + negigible. (This is better than the trivial bound p0 + p1 ≤ 2, and possibly sufficient in
many applications, but not enough to achieve sum-binding.)

To show that a collapse-binding commitment is sum-binding, another proof technique is
needed. The basic idea is, instead of simulating two executions of the adversary (opening m = 0
and opening m = 1) after each other, we perform the two executions in superposition. For space
reasons, we omit the details here, but in the end we can show that if p0 + p1 − 1 > negligible, we
can transform the this superposition of executions into an adversary against the collapse-binding
property.

The same proof technique can be used to show that a collapse-binding string commitment
satisfies the generalization of sum-binding presented in [1].

Possibly the technique of “rewinding in superposition” used here might be a special case of a
more general new quantum rewinding technique (other than [8, 6]), we leave this as an open
question.
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