
Forgetting boosts the private capacity

David Elkouss∗ and Sergii Strelchuk†

Abstract

A channel capacity is non-convex if the capacity of a mixture of different quantum
channels exceeds the mixture of the individual capacities. This implies that there is a
concrete communication scenario in which a sender can increase the transmission rate by
forgetting which channel acts on the channel input. Here, we prove that the private capacity
is non-convex.

Introduction. Classical information theory was laid down by Shannon in the nineteen
forties to characterize the ultimate rate at which one could hope to transmit classical information
over a classical communication channel: the channel capacity. Surprisingly, in retrospect, this
theory has not only achieved its purpose but the capacity of classical channels turned out to
comply with all the properties that one could expect for such a quantity: it can be efficiently
computed and it is both additive and convex in the set of channels.

With quantum channels, a whole new range of communication tasks became feasible. No-
tably, they allow for the transmission of quantum and private classical communication – tasks
beyond the reach of classical channels. For most of these tasks, the tools used to prove the
capacity theorems in the classical case can be generalized. However, computability, additivity,
and convexity — the three convenient properties of the classical capacity of classical channels
— do not necessarily translate to the quantum case.

The capacity T of a quantum channel is non-convex if there exists a pair of channels N1

and N2 and p ∈ (0, 1) such that:

pT (N1) + (1− p)T (N2) < T (pN1 + (1− p)N2) . (1)

Non-convexity is a particularly surprising property especially in connection to the following two
scenarios depicted in Fig. 1. In the first case, corresponding to the left-hand side of (1), Alice has
access to two channels separately: she chooses N1 with probability p and N2 with probability
1−p. The encoding over the two channels is independent. In the second case, corresponding to
the right-hand side, Alice has no control over which of the channels is applied; instead a black
box applies them at random with the same probabilities p and 1−p. Another way of looking at
the second scenario is that Alice can choose between both channels but then she forgets which
one she applied. The qualitative difference between the two scenarios is that in the second case
Alice loses all control over the identity of the applied channel which intuitively will severely
handicap her ability to transmit information.

Here, we report that private capacity is non-convex. In fact, our results are more general
as we also prove non-convexity of the classical environment-assisted capacity. For the complete
technical details see [1]. Prior to our work, non-convexity had only been shown for the quantum
capacity [2].

Private Capacity. The action of a quantum channel can always be defined by an isometry
V that takes the input system A′ to the output B together with an auxiliary system called the
environment E: NA′→B(ρA

′
) = trEV

A′→BEρA
′
(V A′→BE)†. This isometry allows to define the

action of the complementary channel: N̂A′→E(ρA
′
) = trBV

A′→BEρA
′
(V A′→BE)†.
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Figure 1: Operational interpretation of non-convexity. Above, Alice has full control over which
channel is applied in the transmission, but she has to apply each channel with some probability.
Below, a black box chooses the channel for Alice (with the same probabilities). Non-convexity
implies that Alice might communicate at a strictly higher rate in the scenario below.

Let ρA be a quantum state, we denote by H(A) = −trρ log ρ the von Neumann entropy. Let
ρAB be a bipartite quantum state, we denote by I(A;B) = H(A) +H(B)−H(AB) the mutual
information between the systems A and B.

We are interested in the task of transmitting private information. The capacity of a channel
for this task without additional resources is called the private capacity. We define the private
information to be

P(1)(N ) = max∑
x px|x〉〈x|X⊗ρA

′
I(X;B)− I(X;E), (2)

where I(X;B) and I(X;E) are evaluated on the states idX ⊗NA′→B(
∑

x px|x〉〈x|X ⊗ ρA
′
) and

id ⊗ N̂A′→E(
∑

x px|x〉〈x|X ⊗ ρA
′
). The private capacity is given by the regularization of the

private information

P(N ) = lim
n→∞

1

n
P(1)(N⊗n). (3)

Non-convexity. In the following we sketch the proof of our result. The proof is based on
the properties of two families of channels. The first is the d-dimensional erasure channel Ed,p.
It takes the input to the output with probability 1 − p and with probability p it outputs an
erasure flag. The private capacity of the erasure channel is known to be:

P (Ed,p) = max{0, (1− 2p) log d}. (4)

The second is the ‘rocket channel’ Rd which was introduced by Smith and Smolin in [3]. It
takes two d-dimensional inputs that we label C and D. The channel chooses two unitaries U
and V at random and applies them to C and D respectively, followed by the application of a
joint dephasing operation P given by P =

∑
ij ω

ij |i〉〈i| ⊗ |j〉〈j| with ω being a primitive d-th
root of unity. Finally, C together with a classical description of U and V is sent to the output
of the channel and D is traced out. The total action of the channel is the average over U and
V . Rocket channels have small classical capacity for d ≥ 9 [3]:

0 < C(Rd) ≤ 2. (5)

Consider a convex combination of a flagged erasure channel and a flagged rocket channel:

Nq,d,p = qN 1
d,p + (1− q)N 2

d . (6)
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Figure 2: The figure shows the difference between (9) and (8) normalized by log d when d goes
to infinity. A value larger than zero implies non-convexity of P.

where N 1
d,p = Ed2,p ⊗ |0〉〈0| and N 2

d = Rd ⊗ |1〉〈1|.
We prove (see the full technical version [1]) that for some ranges of d, p and q:

P(Nq,d,p) > qP(N 1
d,p) + (1− q)P(N 2

d ). (7)

The right-hand side of (7) is bounded from above by

q ·max{0, (1− 2p)2 log d}+ (1− q) · 2. (8)

In order to bound the left-hand side of (7) we use the fact that any achievable rate for quantum
communication is a lower bound on the private capacity. By choosing an appropriate input
state we can prove that [1]:

P(Nq,d,p) ≥ q ((1− q)(2− 3p) + q(1− 2p)) log d. (9)

It only remains to compare the achievable bound in (9) with the converse bound in (8). For
any triple (q, d, p) such that (9) is strictly greater than (8) the private capacity is non-convex.
Figure 2 depicts the achievable region for which we exhibit non-convexity.
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