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Background.—Quantum key distribution (QKD) will
play an important role in quantum-safe cryptography.
The main theoretical problem in QKD is to calculate how
much secret key can be distributed by a given protocol.
A crucial practical issue is that the QKD protocols that
are easiest to implement with existing optical technol-
ogy do not necessarily coincide with the protocols that
are easiest to analyze theoretically [I]. Currently, cal-
culating the secret key output of a protocol is typically
extremely technical, and hence only performed by skilled
experts. Furthermore, each new protocol idea requires a
new calculation, tailored to that protocol. Ultimately the
technical nature of these calculations combined with the
lack of universal tools limits the pace at which new QKD
protocols can be discovered and analyzed. Here, we ad-
dress this problem by developing a user-friendly software
for calculating the secret key output, with the hope of
bringing such calculations “to the masses” [2].

The secret key output is quantified by the key rate -
the number of bits of secret key established divided by
the number of distributed quantum systems. Analytical
simplifications of the key rate calculation can be made
for special protocols that have a high degree of symme-
try [3], such as the BB84 [4] and six-state protocols [5].
However, in practice, lack of symmetry is the rule rather
than the exception. That is, even if experimentalists try
to implement a symmetric protocol, experimental imper-
fections tend to break symmetries. Furthermore, it is
sometimes desirable due to optical hardware issues to
implement asymmetric protocols, e.g., as in Ref. [6]. We
refer to general QKD protocols involving signal states or
measurements that lack symmetry as “unstructured” pro-
tocols. Some recent work has made progress in bound-
ing the key rate for special kinds of unstructured proto-
cols, such as four-state protocols [7], 8] and qubit proto-
cols [9]. Still, there is no general method for computing
tight bounds on the key rate for arbitrary unstructured
protocols. Yet, these are the protocols that are most rel-
evant to experimental implementations.

This motivates our present work, in which we develop a
robust, numerical approach to calculating asymptotic key
rates [2]. We employ this approach in a computer soft-
ware, where Alice and Bob input a description of their
protocol (e.g., their signal states, measurement devices,
sifting procedure, and key map) and their experimen-
tal observations, and the software outputs the key rate
for their protocol. This software allows for any discrete-
variable protocol, including those that lack structure.

At the technical level, the key rate problem is an op-
timization problem, since one must minimize the well-
known entropic formula for the key rate [I0] over all
states pap that satisfy Alice’s and Bob’s experimental
data. The main challenge here is that this optimiza-
tion problem is inefficient, with the number of parameters
growing as d4d%, for a state pap with dy = dim(H)
and dgp = dim(Hp). For example, if d4 = dg = 10,
the number of parameters that one would have to opti-
mize over is 10000. In this work, we give a novel insight
that transforming to the dual problem (e.g., see [11]) re-
solves this issues, hence paving the way for automated
key rate calculations. In the dual problem, the number
of parameters is the number of experimental constraints
that Alice and Bob choose to impose. For example, in
the generalization of BB84 to arbitrary dimensions [12],
Alice and Bob typically consider two constraints: their
error rates in the two mutually-unbiased bases. So, for
this protocol, we have reduced the number of parameters
to something that is constant in dimension. We therefore
believe that our approach (of solving the dual problem)
is ideally suited to calculate key rates in high dimensions.

Software.—We have developed a software package for
implementing our numerical approach. We intend to
make this software publicly available in the very near
future, likely within the next month. To develop our
software, we created a Graphical User Interface using
MATLAB, which will work on Mac, Windows, or LINUX.
Furthermore, the user does not need a MATLAB license
in order to use our software. Figure [I] shows a screen-
shot. To use our software, the user inputs four pieces of
information: (1) the key map (i.e., how the key is derived
from the data), (2) the constraints (the observables mea-
sured and their expectation values), (3) the post-selection
map (e.g., sifting), and (4) the amount of error correc-
tion. This information defines the protocol. Once this
information is entered, the user can click on the “Calcu-
late Key Rate” button. The computer will then perform
the calculation, save the data, and generate a plot of the
data. In the “Controls” menu, we provide the option of
calculating the key rate using either the dual problem or
the primal problem. We also provide the option to per-
form parallel computing. In the “Help” menu, we provide
a list of example protocols, such as the BB84, B92, and
six-state protocols. When the user clicks on one of these
examples, the parameters associated with that protocol
will be loaded into the software.

Applications.—We have a long list of scenarios that we
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FIG. 1: A screenshot of our software for calculating key rates. The user inputs the following information: (1) the key-map
POVM, (2) the constraints, (3) the post-selection, and (4) the amount of error correction. This information defines the protocol,

and the software will calculate the key rate based on it.

are interested in applying our software to:

e Side-channel attacks (e.g., trojan-horse attacks)

e Protocols with detector efficiency mismatch

e Protocols involving discrete sets of coherent states
e Measurement-device-independent (MDI) protocols

e Protocols involving decoy states with partial phase
randomization

e Distributed-phase-reference protocols, such as the
coherent-one-way (COW) protocol

Thusfar we have only investigated the first four topics,
as we now discuss. However, we anticipate having results
for all the above topics by the time of QCRYPT.
Trojan-horse attack.—Consider a BB84 protocol where
Alice encodes using a phase modulator. A well-known
hacking attack is the trojan-horse attack [I3], which ex-
ploits the fact that Alice’s phase modulator is not iso-
lated from Eve. Eve sends a pulse of light, some of which

passes through Alice’s phase modulator and reflects back
to Eve, carrying the information about Alice’s encoding.
Let « denote the amplitude of the light reflected back
to Eve. Figure [2] shows the key rate versus « obtained
from our numerics, for the case where the signal is a
single photon. Our key rates are slightly higher than a
recent analytical result from [I4], shown as solid curves
in Fig. 2] We are currently working on extending our
analysis to multi-photon signals.

Efficiency mismatch.—Detector efficiency mismatch is
an important issue in QKD because it leads to hacking
attacks if not accounted for [I5, [16]. Ref. [I7] gave an
analytical lower bound on the key rate in the case of effi-
ciency mismatch, assuming Bob receives at most a single
photon. However, in practice, it is common for Bob to
receive a signal with multi-photon contributions. It re-
mains an open problem in QKD theory to ask how the
key rate depends on efficiency mismatch, for the general
scenario where the photon number distribution is arbi-
trary. This is precisely the sort of problem on which our
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FIG. 2: Key rate versus amplitude « of back-reflected light for
the Trojan-horse attack, for error rates of 0.01 (black), 0.03
(red), 0.05 (blue). Our numerics (circular dots) give higher
key rates than previous analytical results (solid curves) [I4].

numerical approach could make progress. Indeed we have
some preliminary results for the multi-photon case that
look promising. Here we show only the single-photon
case in Fig. ] For simplicity, we assume one detector
has perfect efficiency and the other has efficiency n. The
red curve in Fig. [3] shows the result of our numerics for
this scenario. We find that, for all values of 1, our nu-
merics give slightly higher key rates than the result of
Ref. [I7], which is shown as the blue curve in Fig.

Coherent-state QKD.—We are currently using our
software to investigate protocols using weak coherent
states with non-randomized phases. For example, we
considered one such protocol introduced in [I8] and an-
alyzed in [I9], and we found that we obtained slightly
higher key rates than those of Ref. [19].

MDI QKD.—Using our software we have reproduced
the known key rate for MDI QKD with BB84 signal states
[20]. We are currently using our software to investigate
MDI QKD protocols involving coherent states.

Conclusions.—QOur software is robust, efficient, and
user-friendly. It has the potential to be a widely used tool
in the QKD field. It can even be used to as an educa-
tional tool for undergraduate researchers, hence bringing
QKD analysis to a wider community.
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