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INTRODUCTION

Quantum repeaters are devices that subdivide a long
quantum channel into smaller segments [1, 2]. They are
designed to tackle errors like noise and losses which would
spoil the transmitted quantum state. Long-distance quantum
communication via quantum repeaters allows distant parties
to perform various quantum information protocols. A promi-
nent application is quantum key distribution [3-5].

Several proposals for quantum repeaters are known. They
may be classified by the direction of classical communica-
tion: two-way communication is used for repeat-until-success
strategies for transmission between neighbouring re-
peaters [6-8] and for entanglement distillation protocols,
while one-way communication suffices for schemes based on
quantum error correction [9-12]. Our results can be obtained
for both types of repeaters, but we focus on repeaters of the
latter kind in this talk [13].

The previous descriptions apply to a single channel con-
necting two parties A and B. It is natural to consider the
multipartite generalization of this scenario: several sites A,
B, C, ... are connected by quantum channels. Such a quantum
network corresponds to a mathematical graph, where the
sites are represented by nodes and the quantum channels are
the edges of the graph. This way the mathematical graph
models the physical infrastructure of the quantum network.
In practice the capacity of each link is constrained. For
simplicity we assume that each channel allows to transmit a
single qudit of fixed dimension D per time step. Some sites
are special in the sense that they will share a qudit of the
finally distributed entangled quantum state. We continue to
call these sites parties, while we call the other nodes quantum
repeaters or quantum routers if they have vertex degree two
or larger than two, respectively.

RESEARCH QUESTION

The task that we consider is the distribution of entangled
states (more precisely graph states, see below) shared by arbi-
trary subsets of parties via a quantum network. These states
are a general resource for different quantum information pro-
tocols, e.g. teleportation [14], quantum key distribution [3-5],
distributed quantum computing [15], secret sharing [16] and
Bell test experiments [17].

We investigate the performance of such an entanglement dis-
tribution protocol with respect to

1. the overall throughput of the quantum network, i.e. the

production rate for the desired quantum state,

2. and the robustness against failures of nodes (e.g. due to
a power outage).

The same questions arise in classical communication net-
works [18, 19]. It turned out that network coding, i.e. routers
that can modify the transmitted data, can be advantageous
with respect to the throughput and the robustness of the
network, compared to routing-only strategies. We investigate
similar advantages in the quantum scenario described above.
Additionally we generalize a known link between classical
linear network codes and quantum network codes [20] to the
distribution of quantum graph states.

SKETCH OF THE PROTOCOL

The quantum network coding protocol we investigate can
be summarized as follows. The quantum graph state associ-
ated with the network described above is distributed using
the graph state repeater scheme of [13]. Transmission losses
are corrected using a quantum error correction code [21]
following that reference (this physical layer will be hidden
from the abstraction in this talk). Then all repeaters and
all routers measure their qudit in X-basis, i.e. the repeaters
and routers perform a special type of measurement-based
quantum computation.  By-product operators depending
on the measurement outcomes are applied, such that the
protocol deterministically produces the same quantum state
for all outcomes. Note that these measurements can be done
on-the-fly, such that the large graph state is never actually
present. Nevertheless it gives a very convenient description
of the quantum network.

METHODS

We use the stabilizer formalism. Instead of writing down
the quantum state |y/) of a system it can be more convenient to
keep track of a set S of commuting operators, which uniquely
define |y) via the eigenequations
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We say s stabilizes [i). Please note that products of stabilizer
operators fulfil Eq. (1), too.

Consider a measurement A with outcome a. One may update
S corresponding to the new knowledge by replacing all s € S



that commute with the projector P, on the eigenspace of A
associated with the eigenvalue a by P,s. The other stabilizer
operators are invalidated. Let the post-measurement state [i”)
be defined by a minimal set of operators that commute with
P, (for all a). We call these operators the main stabilizers.
Identifying them reveals the measurement dynamics.

We will be mostly interested in the non-measured part B of
a system composed of A and B after measuring A on A with
outcome a. If s has the form A* ® B, then we simply replace
itby a*B.

The stabilizer formalism is particularly handy in the context
of graph states [22, 23]. The D-dimensional graph state |G)
associated with the mathematical graph G = (V, E) with vertex
set V, edges E, and adjacency matrix I’ is stabilized by the so-
called stabilizer generators
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X and Z are not Hermitian but normal and we will use them
as observables. The discrete Fourier transform matrix
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performs the basis change HXH' = Z and HZH' = X!

The concept of X-chains, i.e. stabilizer operators that con-
tain only X-operators (products of stabilizer generators where
all Z contributions cancel out), is very useful when analysing
the robustness of the quantum network coding scheme with
respect to node failures. The main idea is that the outcomes of
the X-measurements on the repeaters and routers allow to de-
termine error syndromes for X-chains, because the product of
the measurement outcomes would be 1 in the ideal case. Note
that it is not possible to directly measure a stabilizer generator
in our scenario, because the qudits are located at different sites
of the network.

INSTRUCTIVE EXAMPLES

The most prominent example of network coding is the so-
called butterfly network [24, 25], see Figure 1. The desired
target state, a tensor product of two Bell pairs, is also shown in
Figure 1. One can easily see that this task is achieved by mea-
suring the routers 1 and 2 in X-basis (and applying by-product
operators to correct for the measurement outcomes) by look-
ing at the following main stabilizers: Xa,X2Zp,, Xa,X2Z3,,
Xp, X1Z4, and Xp,X1Z4,. The measurements project these

A, A; A A,
1
—>
2
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FIG. 1. The butterfly network. A, and A, want to share a Bell pair
with By and B, respectively. Orange edges have weight —1 and edge
weights of 1 are omitted.

(a)A ternary linear network
coding.

(b)The corresponding quantum
network coding.

FIG. 2. A linear network code (taken from [18], Fig. 19.5) and its
corresponding quantum network code (QNC). The network does not
allow for a binary linear network code to achieve the task. The QNC
produces two 7-qutrit GHZ states. Orange edges have weight —1 and
edge weights of 1 are omitted.

main stabilizers onto the stabilizer generators of the target
state.

Figure 2 shows a quantum network code that distributes two
seven-qutrit GHZ states (star-graph states) by measuring the
qutrits from the second row to the second-last row in X-basis.
This example is based on Fig. 19.5 of []. It illustrates the
distribution of multipartite entangled states. Again the func-
tionality of the network coding can be understood by finding
appropriate main stabilizers that connect the upper party with
the lower party via chains of X-operators.

A network code variant of the nine-qudit-Shor code is shown
in Figure 3. This network produces a Bell pair (up to by-
product operators) shared by parties a and b if all other qudits
are measured in X-basis (one can easily check this from the
main stabilizers). Furthermore this network can tolerate the

FIG. 3. A network variant of the nine-qudit-Shor error correction
code [21].



failure of one of the nodes g1, ¢>, ..., g9. One way to see this
is that it is always possible to find main stabilizer operators
that act trivially on the lost qudit. Or, equivalently, one can
use the syndrome measurement of the X-chains (e.g. g, g;zl,
&n g;zl 8 g;zl) as described above to correct the error.

SUMMARY OF MAIN RESULTS

The main results presented in this talk are the following.
First we generalize the result of [20] to the distribution of arbi-
trary graph states associated with bipartite graphs, i.e. a graph
that allows a split into two partitions, s.t. there are no edges
between two vertices of the same partition. The quantum net-
work code allows to distribute this state in a single use of the
network. There are examples where this is not possible with
a routing strategy, i.e. one observes a gain of throughput in
comparison to the scenario where the routers are not able to
perform computations on the transmitted qudits.

Second we show how X-chains in the qudit graph state associ-
ated with the network graph give error syndromes. This leads
to network based error correction in graph state repeater net-
works. The analysis of the robustness of the network coding
against node failures is greatly simplified by mapping network
codes as described above to stabilizer error correction codes.
An error in the network can be corrected if and only if a cor-
responding error can be corrected in the stabilizer error cor-
rection code. Furthermore we give the reverse direction, i.e.
we describe an explicit construction of a network code derived
from a stabilizer error correction code (see also Figure 3).
Third we give simple rules to simplify a quantum network
code of the type discussed above. This is done by investi-
gating which networks and their associated quantum graph
state lead to the same final state. Basically it is achieved
by checking whether the post-measurement state of the X-
measurement on a certain qudit of the graph state leads to a
graph state that is compatible with the network constraints
(the rate constraints of the edges), i.e. whether the post-
measurement state could have been produced without the “de-
tour”.

OUTLOOK

The formalism developed in this work can be applied to in-
vestigate further interesting questions in this context. We plan
to apply the techniques developed to simplify the quantum
network code to the simplification of gates in measurement-
based quantum computation, e.g. the SWAP gate that corre-
sponds to the butterfly network.

It will be interesting to consider network coding in random
graphs and compare it to classical random network coding,
which proved to be very efficient, e.g. if the network layout is
unknown.

A further related project is the generalization of the presented
scheme to the distribution of graph states associated with non-

bipartite graphs.

The advantage of the distribution of multipartite entanglement
via routers with network coding for quantum key distribution,
as measured by the secret key rate, compared to bipartite QKD
protocols, deserves further quantitative investigations.
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