Quantum key distribution protocol with slow basis change
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In many quantum key distribution (QKD) protocols, the receiver has to randomly change a

measurement basis for each pulse or each train of pulses.
It is also cumbersome for some QKD protocols,

generate a huge amount of random numbers.

This random change requires us to

such as the round-robin differential phase shift QKD protocol, to change the basis rapidly. In this
presentation, we address these issues by analyzing the security of QKD protocols with slow basis
change. In particular, we show a sufficient condition that allows a QKD protocol to employ the
slow basis change. It turns out that the slow basis change does not compromise the key generation
rate in a relatively high loss regime when we change the basis as frequently as the photon detection
events. Our security proof relaxes technological demands on the receiver side without frustrating

the performance.

I. INTRODUCTION

Most of quantum key distribution (QKD) protocols as-
sume a random change of the working basis to deduce the
degree of the intervention of an eavesdropper (Eve). Usu-
ally a protocol dictates that the change of basis should
be done at every round of transmitting an optical signal
from the sender (Alice) to the receiver (Bob). As a result,
the signal repetition rate can never exceed the inverse of
the switching time of the active device used for the basis
change. Sometimes a faster active device is available only
in exchange for making a compromise on insertion loss,
stability, and cost. Although the use of passive elements
for routing photons to detection devices with different
bases removes this constraint, the increase in the number
of detectors is a disadvantage in terms of the cost and the
dark counts. Such a technological demand is especially
severe in the protocols using many different bases like
the round-robin differential phase shift (RRDPS) QKD
protocol [1]. This has motivated us to consider the pos-
sibility of making the update of the basis less frequently
than usual, which is the main goal of this paper. Such
a modification will have another merit of reducing the
consumption rate of random numbers, allowing the use
of slower physical random number generators.

In this presentation, we propose a way to construct a
modified protocol where Bob changes the measurement
basis only every M signals. If the original protocol satis-
fies specific conditions, we can derive its security without
looking into how the security of the original protocol is
proved. Moreover, as long as 1/M is larger than the
detection rate, the key rate of the modified protocol is
almost the same as that of the original one. It means
that we can reduce the rate of the basis change almost
as low as the detection rate without compromising the
performance.

II. SLOW BASIS CHANGE AND SECURITY

In this section, we explain a condition that allows a
QKD protocol to employ the slow basis change. Although

this condition applies to many protocols, we particularly
consider the BB84 protocol with an ideal single-photon
source to explain how and why our main idea works. Let
us call the two complementary bases in the BB84 protocol
as the Z basis and the X basis. In our proof, we assume
that the detection efficiency of Bob’s measurement appa-
ratus is independent of the measurement basis, which is
a crucial property for our argument. Note that the same
assumption has been used in many security proofs. The
BB84 protocol is composed of the following procedures,
which we call Protocol I:

1. Alice randomly selects a basis from the Z basis and
the X basis. She also randomly chooses one of the
eigenstates in the chosen basis to encode a bit on
the single-photon pulse and sends it to Bob over a
quantum channel.

2. (Fast basis change) Bob randomly chooses a mea-
surement basis from the Z basis and the X basis,
and uses the chosen basis for measuring the incom-
ing pulse.

3. They repeat procedures 1 and 2 a predetermined
number of times.

4. By using an authenticated classical public channel,
Alice and Bob disclose the bases of the detected
instances and keep the bases of the other instances
private. They discard the instances where they
have used difference bases. After this sifting step,
they perform error correction and privacy amplifi-
cation to generate the final key.

The security of this protocol against general attacks has
been proven [2-6] and the key generation rate is also
known.

The key insight about this protocol is that the proce-
dure 2 is equivalently replaced by

2. (Basis change upon heralding) Bob performs the
non-demolition measurement of the photon num-
ber to determine whether photons are present or
not before choosing a measurement basis. Only
when the photon number is nonzero, he randomly
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FIG. 1. Relation between Protocol I, Protocol I, Protocol
II’, and Protocol II. The dotted lines divide the areas which
belong to Alice, Eve, and Bob. Protocol I’ is equivalent to
Protocol I. Protocol IT’ is the same as Protocol I’ except that
Bob employs the imaginary device just before his measure-
ment apparatus. Protocol II is equivalent to Protocol II’.

chooses a measurement basis, and use it for the
measurement.

The equivalence is justified by the condition that the de-
tection efficiency is independent of the measurement ba-
sis. For later use, we call Protocol I whose procedure 2
is replaced with this equivalent procedure as Protocol I'.
(see Fig. 1)

Now we introduce the BB84 protocol with slow basis
change, which we call Protocol II. Let us divide the pulse
train into sequences, each of which contains M successive
pulses. In Protocol II, the measurement basis is updated
only after every sequence of M pulses. We also include a
procedure that assures that at most one detection occurs
in a sequence. The procedure 2 of Protocol II is described
as follows.

2. (Slow basis change) If the round is the beginning
of a sequence, Bob randomly chooses a new basis
and uses it for the measurement. Otherwise, he
uses the same basis as the previous round. If there
was already a round with detection in the same
sequence, he ignores the measurement outcome and
treats it as undetected.

Note that Protocol II is exactly what we want to prove
the security of. We will prove the security of Protocol
IT by first showing that Eve’s operation against Protocol
IT is limited compared with Eve against Protocol I. It
follows that Protocol II is secure if Protocol I is secure,
and we can use exactly the same key rate formula.
More specifically, for the proof, we introduce an imag-
inary device that works in the following way. It deter-
mines the number of photons in each pulse, and when-
ever it finds a pulse with nonzero photons, it lets the
pulse pass through but replaces all the subsequent pulses
in the sequence with the vacuum. Imagine that Bob em-
ploys this imaginary device just before his measurement
apparatus, and then Alice and Bob follow the procedures
of Protocol I'. We call it Protocol IT’. Protocol II’ is
equivalent to Protocol II because both of them treat only

the first detectable event in each sequence as a detected
event, and Bob’s random choice of the basis is used only
for this detection. Protocol IT’ can be recognized as Pro-
tocol I’ with a restriction on Eve’s attack strategies; Eve
has to use the imaginary device at the end of the quan-
tum channel. Since Protocol I’ is proven to be secure
against general attacks, Protocol IT’ is also secure if the
same key rate formula is used. It means that Protocol
IT is secure and we can employ the key rate formula of
Protocol I for Protocol II.

The argument so far is applicable to the protocols sat-
isfying the following conditions:

1. The detection probability does not depend on the
basis choice.

2. There exists an input state to Bob’s apparatus that
ensures that the detection never occurs.

The condition 1 enables Bob to determine whether detec-
tion occurs or not before choosing the basis. The condi-
tion 2 is rather technical but ensures the existence of an
imaginary device to guarantee at most one detection oc-
curs in each sequence. The protocols satisfying these con-
ditions include SARGO04 protocol [7], Decoy-BB84 proto-
col [8-10], three-state protocol [11], and RRDPS proto-
col [12]. The exceptions are the protocols that uses the
strong reference pulse [13, 14].

III. PERFORMANCE

In this section, we consider the effect of the slow basis
change on the performance of QKD. Although we can
use exactly the same key rate formula for Protocol II,
it does not mean that Protocol II has the same perfor-
mance as Protocol 1. The effective transmission rate of
Protocol II is smaller than that of Protocol I because
Protocol II ignores the detection events except the first
one in a sequence. However, if the detection rate is much
smaller than 1/M, the second detection rarely occurs,
and therefore Protocol II has almost the same perfor-
mance as Protocol L.

By taking the BB84 protocol discussed above as an
example, we numerically compare the fast basis change
and the slow basis change. We set the dark count rate d.
per pulse to be 1076 and the length M of the sequence to
be 102. We assume the same baseline system error rate
ep(= 0.03) for the Z and X bases, which is independent
of the transmission rate. For Md,. < 1, the asymptotic
secure key generation rate G per pulse is given by

11— =-n—d)M
= % (1—=h(e) = h(e), (1)

where h(z) is —zlogy(z) — (1 — z)logy(1 — ), and e is

% The key rates for the fast basis change

(M = 1) and the slow basis change (M = 100) are il-
lustrated in Fig. 2. In this example, the detection rate
per pulse approximately equals to the transmission rate
1. We find that the key generation rates of the two cases
are almost the same when the detection rate is smaller
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FIG. 2. The key generation rate per pulse of the BB84 proto-
col with the single photon source. We draw the M = 1 case
(dashed line) and the M = 100 case (solid line) of the Eq.
(1).

than 1/M, which shows that we can employ the slow ba-
sis change in such a regime without sacrificing the per-
formance.

IV. CONCLUSION

We have shown that the security of the protocol is
essentially unchanged, even when Bob updates the mea-

surement basis only at the beginning of the sequence, as
long as the protocol satisfies the condition 1 and 2. We
have also shown that the same key rate formula can be
used for this modified protocol. Its performance is almost
the same as that of the original protocol if the length of
the sequence is smaller than the inverse of the detection
rate. Thus, we can reduce the rate of changing the mea-
surement basis to the order of the detection rate without
sacrificing the performance.

One of the remaining problems is to consider what hap-
pens if we use multiple detections in a sequence. If we use
the same classical post-processing as the original proto-
col, there is an example where an effective eavesdropping
strategy exists [15]. This implies that we need to modify
the key rate formula itself to reflect the effect of reducing
the randomness for the basis choice. Such an analysis will
also deepen our quantitative understanding on the role of
randomness for the basis change in the QKD protocols.

ACKNOWLEDGMENTS

We thank H. Takesue, K. Azuma, W. Munro, G. Knee,
and F. Furrer for valuable discussions. This work was
funded in part by ImPACT Program of Council for Sci-
ence, Technology and Innovation (Cabinet Office, Gov-

ernment of Japan), Photon Frontier Network Program
(MEXT).

[1] H. Takesue, T. Sasaki, K. Tamaki, and M. Koashi, Nat
Photon 9, 827 (2015).

[2] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441
(2000).

[3] D. Mayers, J. ACM 48, 351 (2001).

[4] R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A 72,
012332 (2005).

[5] M. Koashi, New Journal of Physics 11, 045018 (2009).

[6] M. Hayashi and T. Tsurumaru, New Journal of Physics
14, 093014 (2012).

[7] V. Scarani, A. Acin, G. Ribordy, and N. Gisin, Phys.
Rev. Lett. 92, 057901 (2004).

[8] W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).

[9] H-K. Lo, X. Ma,

230504 (2005).

[10] X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Phys. Rev. A 72,
012326 (2005).

[11] K. Tamaki, M. Curty, G. Kato, H--K. Lo, and K. Azuma,
Phys. Rev. A 90, 052314 (2014).

[12] T. Sasaki, Y. Yamamoto, and M. Koashi, Nature 509,
475 (2014).

[13] A. Acin, N. Gisin,
012309 (2004).

[14] M. Koashi, Phys. Rev. Lett. 93, 120501 (2004).

[15] T. Sasaki, K. Tamaki, and M. Koashi, arXiv preprint
arXiv:1604.04460 (2016).

and K. Chen, Phys. Rev. Lett. 94,

and V. Scarani, Phys. Rev. A 69,



