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One of the most central and counterintuitive aspects of quantum information theory is the
ability for quantum players to outperform classical players at nonlocal games. There are multi-
player games for which an expected score can be achieved by quantum players that is higher than
that which can be achieved by any classical or deterministic player (see [1] for a survey of this
phenomenon). A useful corollary of this fact is that the quantum players that achieve such scores
are achieving certified randomness. Their expected score alone is enough to guarantee that their
outputs could not have been predictable to any external adversary. This is the basis for device-
independent randomness expansion [3, 14, 4, 18, 15, 9, 6, 7, 12, 13]. When two players play a game
repeatedly and exhibit an average score above a certain threshhold, their outputs must be highly
random and can be postprocessed into uniformly random bits. The final bits are uniform even
when conditioned on the input bits used for the game.

In this work we consider another question about randomness: does a high score at a nonlocal
game imply that one player’s output is random to the other player? For example, suppose that
Alice and Bob play the CHSH game, where each is given randomly chosen input bits a and b,
respectively, and the score awarded is 1 if their outputs x, y ∈ {0, 1} satisfy x ⊕ y = a ∧ b, and
0 otherwise. Suppose that after the game is played, Bob is given Alice’s input bit a and asked
to produce her output bit. Will he be able to do this successfully? Such a question is important
for what we call blind randomness expansion, which is randomness expansion in a mutually mis-
trustful scenario: suppose that Bob is Alice’s adversary, and Alice wishes to perform randomness
expansion by interacting with him, while maintaining the security of her bits against him.

Aside from the desire to minimize trust assumptions in cryptography, blind randomness ex-
pansion is motivated by a resource problem: what is the least number of devices needed to achieve
unbounded randomness expansion? The best proved answer is four [12, 2], but a blind random-
ness expansion protocol could be used to reduce the number to three. Proving security of blind
randomness appears challenging from the perspective of known techniques. A satisfactory solu-
tion may lead to new insights on the nature of certifiable randomness and nonlocal games.

In this work we prove the following: if Bob can guess Alice’s output after the game is played,
then Alice’s and Bob’s expected score is no more than the classical threshhold. In fact we prove
something stronger: in such a case, Alice’s and Bob’s strategy (i.e., their state and measurements)
is equivalent to one in which a third party could perfectly guess Alice’s output given her input.
This result may be a good first step towards a security proof for blind randomness expansion (just
as one-shot results were a step towards the security proof of ordinary randomness expansion —
see, e.g., Appendix C in [3]).
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Results. The central difficulty in the blind randomness expansion scenario is that, after the game
is played, Bob has post-measurement states which he can try to use to guess Alice’s output. Con-
sider a two-player complete-support1 game G with input alphabetsA and B and output alphabets
X and Y . Suppose that the game is played by Alice and Bob, who use a strategy that involves
making measurements on a bipartite (possibly entangled) system DE. Let β

xy
ab denote the unnor-

malized post-measurement states of Bob’s system E. If Bob can perfectly guess Alice’s output, that
means that for any a ∈ A, b ∈ B, and Y , the states {βxy

ab | x ∈ X} are perfectly distinguishable
(i.e., they have mutually orthogonal supports). What can be deduced from this condition?

We define a notion of congruence between quantum strategies, which is derived from quantum
self-testing. Two strategies are congruent if they are related by expanding or shrinking the un-
derlying systems D and E (without changing the state or the measurements) or if they are related
by adding or dropping unmeasured ancillary systems. We show that if Bob can predict Alice’s
output perfectly, then their strategy is equivalent to one in which Bob’s system has two separate
parts (E = E1 ⊗ E2), one of which is used to produce his output and the other of which is used to
guess Alice’s output. If the system E2 is given to a third party, he can then use it to guess Alice’s
output given her input. Thus this theorem shows an equivalence between third-party guessing
and second-party guessing (see Figure 1).

This equivalence is proved by first showing that Bob must be able to guess Alice’s outputs
using measurement that commute with the measurements he uses to produce his own output. We
then apply the known fact (see [16]) that commutativity implies bipartitness for measurements on
a finite-dimensional Hilbert space.

Figure 1: Left: Bob is given his input b and produces his output y, and is then given Alice’s input a and
produces a guess x′ at her output. Right: Bob produces his output y while a separate party tries to guess
Alice’s output.

We also prove (Proposition 2 in the full paper) that if Alice’s and Bob’s strategy is such that
a third-party can guess Alice’s output given her input, then their score at G cannot be above the
classical threshhold. (This is a general version of commonly-used results in device-independent
quantum cryptography.) The following consequence is our main result.

Theorem 1. Suppose that Alice and Bob use a strategy for the game G such that each set
{βxy

ab | x ∈ X} of Bob’s post-measurement states is perfectly distinguishable. Then, Alice’s and
Bob’s original input-output distribution

pxy
ab := P(X = x, Y = y | A = a, B = b)

can be reproduced by a classical strategy.

1A game has complete support if all input pairs (a, b) ∈ A×B occur with nonzero probability.
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An interpretation of this result is that requiring Bob to guess Alice’s output effectively forces
Alice and Bob to exhibit behavior that is classical.

Implications. Our theorem shows a primitive version of blind randomness expansion: If Alice
and Bob achieve a superclassical input-output distribution, then Alice achieves at least some ran-
domness against Bob. Our result on splitting Bob’s system (E ↪→ E1 ⊗ E2) seems to suggest an
equivalence between ordinary randomness expansion (i.e., against a third party) and blind ran-
domness expansion. But the scenario becomes more complicated when we consider the degree of
randomness in Alice’s output. We discuss this in more detail in the full paper (in the section Blind
randomness expansion).

For the CHSH game, there is a unique strategy achieving the optimal score ( 1
2 +

√
2

4 ≈ 0.853 . . .).
If Alice and Bob are using this strategy, Alice’s output bit x is perfectly unpredictable to any
third party – that is, the guessing probability to an external observer is 1/2, even if the observer
knows Alice’s input. On the other hand, Bob’s information is partially correlated to x (even after
he executes his strategy) and if Bob were given Alice’s input he could guess her output with
probability 1

2 +
√

2
4 ≈ 0.853 . . .. Thus Alice’s output is less random to Bob than it would be to

an outside adversary. This suggests that although the necessary conditions for blind randomness
expansion are the same, the rate at which randomness is produced may be different.

The blind randomness scenario appears to be different from ordinary randomness expansion
and may require different techniques. A natural next step will be to prove a robust version of
Theorem 1. Since our current proof depends on the fact that commutativity implies bipartiteness,
it would be natural to consider some version of approximate commutativity. This appears to be an
intricate topic (see section 4.1 of [5]).

Another aspect of our result is that it contains a notion of certified erasure of information. Note
that in the optimal CHSH strategy example above, if Bob were asked before his turn to guess
Alice’s output given her input, he could do this perfectly. (Indeed, this would be the case in any
strategy that uses a maximally entangled state and projective measurements.) Contrary to this,
when Bob is compelled to carry out his part of the strategy before Alice’s input is revealed, he
loses the ability to perfectly guess Alice’s output. Requiring a superclassical score from Alice and
Bob amounts to forcing Bob to erase information. Different variants of certified erasure are a topic
of current study [11, 17]. An interesting research avenue is to determine the minimal assumptions
under which certified erasure is possible.

We also note that the scenario in which the second player tries to guess the first player’s output
after computing his own output fits the general framework of sequential nonlocal correlations [10],
an interesting class that unifies Bell inequalities (constraints on spatially separated measurements)
with Leggett-Garg inequalities (constraints on sequential measurements). In [8] such correlations
are used for ordinary (non-blind) randomness expansion. Another interesting avenue is to explore
sequential nonlocal games more deeply in the context of device-independent cryptography.
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