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Abstract
We discuss the problem of parameter optimization in a three-party measurement-device-independent quantum key

distribution network and propose a new optimization methodwhich will improve the performance of the whole system
comparing to the method normally used in the two-party system.

1. Introduction

Quantum key distribution (QKD) allows communication parties to share secret keys through an unsecure quantum
channel in theory, however, the practical security of QKD protocols is still critical issue due to the imperfections of the
devices. The measurement-device-independent (MDI) QKD [1] is proposed to remove all the loopholes in detectors,
which enhances the security of a practical system. Nevertheless, most of the researches on MDI QKD are about
only two communication parties, while the real practical MDI QKD system should be applied in a multi-party QKD
network, for instance, a three parties MDI network [3].

In this work, we discuss the parameter optimization problemof the three-party MDI network. When the location
of each party is fixed, the parameters, including the averagephoton numbers (APN) of the signal states and the de-
coy states of each party, and the location of the detection part, should be optimized to increase the performance.
However, the optimization method proposed for the two-party condition, which uses the relationµi/µ j = νi/ν j =
ti/t j (whereti means the channel transmittance ofi-th party) to enhances the Hong-Ou-Mandel effect [2], is not
effective in the three-party condition. Here we propose a new optimization method about the APNs using the rela-
tion µi/µ j = νi/ν j, which is independent oft. The optimization result using the new relation will provide a higher
total key rate for the multi-party MDI QKD system.

A total key rate of a multi-party MDI system is defined as

R = ∑i, j
wi jRi j (1)

to evaluate the performance of the whole network, whereRi j means the key rate between thei-th party and thej-th
party, andwi j means the weight betweeni and j. Besides the total key rate, we require the system between each
two parties to meet a threshold conditionRi j > Rth, in order to guarantee a minimum applicable key for each two
nodes. The goal is to find the optimal APNs ofi-th party’s signal and decoy statesµi,νi, and the optimal location
of the detection part(xc,yc). By using the new relation, the optimization procedure is simplified by three parameters
comparing to the fully optimization method which traverse all the adjustable parameters.

2. Simulation results

We discuss about the three-party system in both caseswi j = 1 (balanced case) andw12 = w13 = 5,w23 = 1 which
means that the 1-st party is a more important user in the network (unbalanced case). The threshold key rateRth is
set to be 10−5. The location of the 3 parties are fixed, and we also consider two different structures, one is an acute
triangle with three approaching edges, i.e., the distance between thei-th party and thej-th party |AiA j| are nearly
equal (symmetric case), the other is an obtuse triangle withone edge much shorter than others (asymmetric case).
The total key rates of the above cases are optimized by using the relationµi/µ j = νi/ν j for different locations of the
detection part (here we only consider the locations inside the triangle formed by the three parties since it can be proved
that for any outside location an inside location can be foundwith a higher total key rate). We compare our results with
the results of using the HOM-method (short for the previous method with the relationµi/µ j = νi/ν j = ti/t j), which is
shown in Fig. 1 (asymmetric case) and Fig. 2 (symmetric case).
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Fig. 1. The total key rate with two different optimal methodsfor the asymmetric case. The locations
of 3 parties are fixed at(0,0), (70,0) and(20,25) (Unit: km). The weights are set to bewi j = 1 for
the balanced case andw12 = w13= 5,w23= 1 for the unbalanced case. Other simulation parameters
are set ased = 0.01,Y0 = 1×10−6,ηd = 0.15, f = 1.16 (the definition of the above parameters are
the same as [2]). The areas marked by different colors correspond to different levels ofR, and the
brown, red, orange, yellow, green, blue area refers to the level of 90% , 80% , 70% , 60% , 50% and
less than 50% of the highest total key rateRmax. The point C refers to the optimal location of the
detection part. In each figure, the top one is the result of theHOM-method and the bottom is of the
proposed method. (a) The unbalanced case; (b) The balanced case.

As a result, the performance of our method is better than the HOM-method. For the asymmetric case, the total secret
key rate of our method is about 60% (40%) higher than the HOM-method’s for the unbalanced (balanced) case, which
shows the advantage of our method.
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Fig. 2. The total key rate with two different optimal methodsfor the symmetric case. The locations
of 3 parties are fixed at(0,0), (50,0) and(20,45) (Unit: km). Other parameters are set the same as
in Fig. 1. The color correspond to the same key rate level as Fig. 1 as well. (a) The unbalanced case;
(b) The balanced case.

For the symmetric case, although the optimal total key rate of our method is nearly the same as the HOM-method’s,
the total key rates for most of other locations are higher than the HOM-method’s, and the areas marked by brown (the
level is 90% ofRmax) in our method are also larger, which means that our method provides more optional locations of
the detection part when a total key rate close toRmax is acceptable, i.e.,R > 90% of theRmax.



3. Summary

The optimization method we proposed here is more effective for a three-party MDI QKD system, it can provide a
higher optimal total key rate and more options for the location of the detection part.
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