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Time-energy high-dimensional quantum key distribution (HD-QKD) leverages the high-dimensional nature
of time-energy entangled biphotons and the loss tolerance from the discrete nature of single-photon detection
thus enabling long-distance key distribution with high photon information efficiency (PIE). However, the secu-
rity of HD-QKD has only been proven in the asymptotic regime, or in the finite-key regime against a limited
set of attacks. Here we fill this gap by providing a rigorous HD-QKD security proof for general (coherent)
attacks in the finite-key regime. The proof follows from a novel uncertainty relation for time and conjugate-
time measurements, which bounds the secure information, and an efficient decoy-state protocol for parameter
estimation. For the first time, we prove the feasibility of realizing secure and composable HD-QKD against the
most powerful eavesdropping attacks across metropolitan-area distances.

Introduction: Current work on quantum key distribution
(QKD) focuses on patching security holes in practical imple-
mentations, improving key rates and transmission distances,
and unifying understanding of the plethora of different proto-
cols. Existing QKD protocols can be divided into two major
categories: discrete-variable (DV) [1] and continuous-variable
(CV) [2] QKD. The predominant DV-QKD is more robust to
loss than CV-QKD, and thus offers longer transmission dis-
tance. CV-QKD, on the other hand, offers higher photon in-
formation efficiency (PIE) than DV-QKD, and thus potentially
higher key rates at short distances [3].

High-dimensional QKD (HD-QKD) protocols exploit the
best features of DV and CV protocols to simultaneously
achieve high PIE and long transmission distance [4]. Signif-
icant efforts in both theory and experiment have pushed for-
ward the development of HD-QKD protocols over the past
decade [5, 6]. One of the most appealing candidates for im-
plementation is time-energy HD-QKD [6–10]. It generates
keys using the detection times of time-energy entangled pho-
ton pairs, whose continuous nature permits encoding of ex-
tremely large alphabets. The security analysis of time-energy
HD-QKD has been improving ever since its first proposal [7–
10]. Nonetheless, a rigorous security proof that satisfies the
composable definition [11] and takes full account of the finite-
size effects against general attacks has been missing. For this
reason, the feasibility and security of metropolitan-scale HD-
QKD within a reasonable time-frame for signal transmission
has remained undemonstrated.

The main contributions of this work are two-fold. First, in
contrast to existing results for time-energy HD-QKD, we pro-
vide, for the first time, a security proof in the finite-key regime
that is valid against general attacks and meets the composabil-
ity requirement. Second, we derive a new uncertainty relation
between time and conjugate-time measurements through non-
local dispersion cancellation. That relation is indispensable
for analyzing coherent attacks. Although an entropic uncer-
tainty relation for quadrature fields has been developed [12],
and applied recently to CV-QKD security analysis [13], it can-

not be directly applied to time-energy HD-QKD because time
and conjugate-time measurements cannot be simply described
by maximally incompatible operators [14], such as position
and momentum. Facing this challenge, we construct a new
uncertainty relation specifically for time and conjugate-time
measurements. With this relation, we show that time-energy
HD-QKD can permit a 140 kbits/s key rate over an 80-km-
long optical fiber under realistic conditions. Consequently,
two advantages of the HD-QKD protocol are demonstrated:
(1) The maximum transmission distance of HD-QKD for co-
herent attacks (e.g., 160 km) substantially exceeds that of CV-
QKD [13, 15], even in the case of reverse reconciliation (e.g.,
16 km [16]). (2) HD-QKD can generate a much higher PIE
(e.g., 4.3 bits/photon) than does decoy-state BB84 (e.g., 0.1
bits/photon [17]).

Protocol: In each round, Alice generates a time-energy
entangled photon pair from a spontaneous parametric down-
conversion (SPDC) source, sends one photon to Bob and re-
tains the other one. Alice and Bob each choose independently
at random to measure their photons in either the time ba-
sis (T) or the conjugate-time basis (W), where the latter is
a dispersive-optics proxy for a frequency measurement [8].
The process repeats for N rounds until Alice and Bob obtain
enough detection counts for post-processing. At the end of all
measurements, the two sides reveal their basis choices and dis-
card all data measured using mismatched bases. Secret keys
are extracted from the events in which Alice and Bob both
chose the T basis, while the W basis outcomes are publicly
announced for parameter estimation. Using the decoy-state
method [10, 17], Alice and Bob estimate the number of de-
tections in T generated from the single-pairs of SPDC and the
corresponding L1 code distance dW in the W basis. They abort
the protocol if dW exceeds a predetermined value d0. Other-
wise, they perform error correction and privacy amplification
to generate the secure key. A detailed account of the protocol,
including its use of decoy states, appears in Sec. I of [18].

The conjugate-time measurement for the W basis is real-
ized by direct detection after sending photons through nor-
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mal and anomalous group-velocity dispersion (GVD) ele-
ments, respectively, on Alice’s and Bob’s side [8]. If Alice
and Bob both choose the W basis and their GVD elements
have equal-magnitude, opposite-sign GVD coefficients, then
group-velocity dispersion is nonlocally canceled [19]. As a
result, their measurement outcomes in the W basis are as
strongly correlated as those in the T basis. The dispersion
transformation enables us to perform spectral measurement
with only time-resolved single-photon detection [8].

Security Definitions: Given that the parameter-estimation
test is passed with probability ppass, Alice and Bob end
up with two classical random vectors, KA and KB, which
might be correlated with a third quantum system, E, held by
Eve. Mathematically, this situation corresponds to a classical-
quantum state ρKAE =

∑
s |s〉〈s| ⊗ ρsE, where {|s〉} denotes

an orthonormal basis representing Alice’s key space, and the
subscript E indicates Eve’s quantum state. We characterize a
QKD protocol by its correctness and secrecy. For that we use
a notion of security based on the approach developed in [11].
A protocol is called εc-correct if the probability that KA dif-
fers from KB is smaller than εc. We say that a protocol is
εs-secret if the state ρKAE is εs-close to the ideal situation
described by the tensor product of uniform distribution of all
keys on Alice’s side and Eve’s quantum state, UKA

⊗ρE, such
that ppass‖ρKAE − UKA ⊗ ρE‖1 ≤ εs. Following the above
definition, a QKD protocol is said to be ε-secure if it is both
εc-correct and εs-secret, with εc + εs ≤ ε. Our security defini-
tions ensure that the protocol remains secure in combination
with any other protocol, i.e., the protocol is secure in the uni-
versally composable framework [11].

Security analysis: The essential insight of our security
analysis is to exploit the entropic uncertainty relations for
the smooth entropies [20] of time-energy HD-QKD. In par-
ticular, we derive an uncertainty relation for the time and
conjugate-time measurement operators (see Sec. III of [18])
by generalizing the uncertainty relation for position and mo-
mentum [12] to half-bounded measurement operators such as
time and frequency. Moreover, based on [17], we extend the
previous decoy-state method [10] for parameter estimation in
HD-QKD.

Our principal result is that a time-energy HD-QKD protocol
is ε-secure with secret-key length (see Sec. II in [18]):

` ≥ −(nT,0 + nT,1) log2[c(δ, βD)]− nT,1 log2[γ(d0 + ∆)]

− leakEC + log2[εcε
2
s]. (1)

Here: nT,0 lower bounds the vacuum coincidences; nT,1
lower bounds the single-photon-pair coincidences; and d0 is
a predetermined threshold that upper bounds the L1 distance,
dW,1, in the W basis. The parameters nT,0, nT,1, and dW,1 can
be estimated using the decoy-state method from the observed
statistics (see Sec. IV of [18]). The overlap, c(δ, βD), between
conjugate measurements in the T and W bases is given by (see
Sec. III of [18])

c(δ, βD) ≈ 1.37
δ2

2π2βD
, (2)

in terms of the GVD coefficient βD and the time-bin duration
δ. The function γ(d0 + ∆) is an upper bound on the smooth
max-entropy given d0 and ∆, the statistical fluctuation in the
distance measure that quantifies how well the data subset used
for parameter estimation represents the entire dataset [13].
The leakEC term represents the amount of information that is
leaked to Eve during error correction.

ηd Y0 σjit α βD Rrep

90% 1 kHz 18 ps 0.21 dB/km 1000 ns/nm 55.6 MHz
σcor σcoh δ βe q ε

2 ps 6 ns 20ps 0.91 0.9 10−10

TABLE I: List of parameters, mostly from [6], used in numerical
evaluation: detection efficiency ηd, dark count rate Y0, detector time
jitter σjit [21], fiber-loss coefficient α, GVD coefficient βD , system
repetition rateRrep, biphoton correlation time σcor, pump coherence
time σcoh, time-bin duration for decoding δ, reconciliation (error-
correction) efficiency βe, probability of choosing the time basis q
and overall security bound ε.

Parameters BB84 [17] CV-QKD [16] HD-QKD
PIE (bits) ≈0.1 0.5 4.3

Key rate (bits/s) ≈8 Ma ≈10 Mb 10 M
Max Dist. (km) 170 16 140

aAssumes a decoy-state BB84 system with 1 GHz clock rate [23].
bAssumes a CV-QKD system with 100 MHz clock rate [22].

TABLE II: Performance comparison for different protocols with
finite-key analysis against general attacks. The first and second rows
compare the PIEs and the secret keys rate at 0 km fiber length: HD-
QKD can generate a key rate that is comparable to BB84 and CV-
QKD, but it can produce a much higher PIE. The third row compares
the maximum transmission distance: although HD-QKD’s range is
slightly shorter than BB84’s, it it greatly exceeds CV-QKD’s.

Numerical evaluation: We numerically evaluated the per-
formance of the time-energy HD-QKD protocol in the finite-
key regime under general attacks. See Table I for the param-
eters that were assumed. The calculated secret key rates and
PIEs at different lengths of standard telecom fiber are shown
in Figs. 1(a) and 1(b). We see that HD-QKD can easily tol-
erate a 100 km standard fiber within a reasonable running
time for transmission (e.g., 1–30 minutes). This transmission
distance significantly exceeds that of CV-QKD (less than 10
km [16]). In addition, HD-QKD can produce key rates that
are comparable to those of CV-QKD and decoy-state BB84.
In particular, the secure key rate of HD-QKD at zero distance
is about 10 Mbits/s (see Table II), which similar to CV-QKD
and decoy-state BB84 performance, even assuming the state-
of-the-art 100 MHz [22] and 1 GHz clock rates [23] for those
protocols. However, HD-QKD can offer a much higher PIE,
up to 4.3 bits/photon, than does decoy-state BB84. More-
over, we show the secure key rate as a function of running
time in Fig. 1(c), where we see that the minimum required
block size for HD-QKD is only slightly larger than that of
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FIG. 1: Numerically evaluated performance of HD-QKD. (a) Secure key rate (bits/s) versus transmission distance (km) for different to-
tal running time of transmission. (b) PIE (bits/coincidence) versus transmission distance (km) for different running times. (c) Secure key
rate (bits/s) versus block size (running time/repetition rate) for different transmission distances. (d) Secure key rate (bits/s) versus transmission
distance (km) for different time-bin durations δ, where the running time is fixed at 30 mins. The parameters assumed are listed in Table I.

decoy-state BB84 [17], but it is comparable to that for CV-
QKD [16]. Furthermore, Fig. 1(d) plots the secure key rate
versus transmission distance for different time-bin durations,
showing that shorter duration time bins offer higher key rates
for a given biphoton source. We remark that detectors with
about 20 ps jitter have already been demonstrated in recent ex-
periments [21]. In time-energy HD-QKD based on dispersive-
optics the secure key rate also depends on the GVD coeffi-
cient βD: higher βD gives higher secure key rate (see Sec. III
of [18] for details). These results provide motivation for in-
creasing the GVD coefficient of dispersive elements and re-
ducing the time jitter of single-photon detectors.

Conclusion: We have completed the general-attack se-
curity analysis for the time-energy HD-QKD protocol in
the finite-key regime by combining the entropic uncertainty-
relation security analysis of CV-QKD with the decoy-state
technique from DV-QKD. In particular, we derived a new un-
certainty relation for the time and conjugate-time operators
using optical dispersion transformations. With the new un-
certainty bound, we showed that under general attacks HD-
QKD can produce a higher PIE than conventional decoy-state
BB84, and still tolerate long-distance fiber transmission. Our
results constitute an important step toward unified understand-
ing of distinct QKD schemes that is crucial for practical long-
distance high-rate quantum communication.
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