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Successful transmission of quantum information over
long distances is a cornerstone of quantum cryptographic
protocols and remains a daunting experimental challenge.
Photons remain the medium of choice for facilitating such
transmissions, and the community has typically focused
on transmitting information in only a small number of
“flying” photons. Common examples include encoding a
qubit in two orthogonal polarizations of a single photon
or encoding two qubits in a pair of photons entangled in
energy and time [1]. If any such photons are lost during
flight, the corresponding encoded information is unrecov-
erable. However, the large (i.e., infinite) Hilbert space of
a photonic mode offers the possibility of utilizing encod-
ings which allow for recovery of the information despite
photon loss (or other errors) occurring mid-flight. Need-
less to say, such encodings are also useful for storing and
protecting quantum information in stationary photonic
media (e.g., microwave cavities [2]).

In contrast to qubit-based schemes, error correction for
the infinite bosonic Hilbert space in principle requires
the consideration of an infinite number of error opera-
tors. For example, during a finite time interval in a lossy
system, there is a finite probability of an arbitrary num-
ber of photons being lost, completely annihilating any
finite code state. Similar to quantum error-correcting
codes correcting only the single-qubit errors of a channel
containing both single- and multi-qubit errors, photonic
error-correction techniques are “approximate” [3] in the
sense that they will only be able to correct against a sub-
set of all errors of a physical channel. Furthermore, the
action of physical error operators such as the photon loss
operator is strongly correlated across different Fock states
(i.e., photon number eigenstates), making the straightfor-
ward transfer of multi-qubit schemes to a single bosonic
mode impossible.

Two classes of single-mode codes have previously
been proposed to achieve recoverability: the seminal
Gottesman-Kitaev-Preskill (GKP) codes [4, 5], con-
structed to protect from small shifts in photonic quadra-
tures, and cat-codes [6, 7], consisting of superpositions of
evenly distributed coherent states. Code states of both
classes consist of superpositions of an infinite number of
Fock states, making encoding arguably more complex as
compared to code states defined on a finite subspace.
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Here, we propose a new class of bosonic codes, the bi-
nomial codes [8]. The binomial code states are formed
from a finite superposition of Fock states weighted with
square roots of binomial coefficients. The codes can ex-
actly correct errors that are polynomial up to a specified
degree in photonic creation and annihilation operators,
including amplitude damping and displacement noise as
well as photon addition and dephasing errors. Besides
being conceptually simple and highly customizable, bi-
nomial codes can protect quantum information from cer-
tain errors using a smaller average photon number than
the corresponding cat codes. The binomial codes are tai-
lored for detecting photon loss and gain errors by means
of measurements of the generalized photon number par-
ity, which is favorable for implementation in state-of-the-
art experimental schemes [9]. In Ref. [8], we present an
explicit quantum error recovery operation based on pro-
jective measurements and unitary operations.

Additionally, we relax the aforementioned generalized
parity structure of the binomial codes and numerically
obtain codes with even lower unrecoverable error rates
and smaller average photon number. Interestingly, some
of these numerically optimized photonic codes can be ex-
pressed in closed form.

Below we describe the main features of both sets of
codes, emphasizing the binomial codes’ customizability
for correcting arbitrary combinations of photonic cre-
ation and annihilation operators. Both the binomial
and numerically optimized codes should prove useful in
several quantum technologies, including photonic quan-
tum communication, optical-to-microwave up- and down-
conversion, and bosonic quantum memories.

NEW CLASSES OF PHOTONIC CODES

Suppose that flying quantum information is subjected
to a error/noise channel Eγ that can be expanded in a
small parameter γ � 1. The goal of quantum error cor-
rection is to find an encoding (denoted by projection P )
and a recovery operation R such that the effect of the er-
ror is suppressed to some higher order L after application
of the recovery:

ρ = PρP −→ REγ (ρ) = ρ+O
(
γL+1

)
. (1)

For many physical error channels acting on multi-qubit
systems, the γ-expansion of the error channel’s Kraus op-
erators consists of sums of products of single-qubit Pauli
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operators whose weight increases with the order in γ [10].
If the first few terms in the expansion take the code
states to distinct subspaces of orthogonal error states,
then those terms are correctable and the corresponding
order in γ is suppressed after recovery. Quantitatively,
this is represented by the Knill-Laflamme quantum error
correction conditions [11]. For example, a pair of ele-
ments {E1, E2} in the expansion of Eγ is correctable if
and only if

PE†kE`P = ck`P (2)

for `, k ∈ {1, 2}. If the above is satisfied, then there exist
syndromes which allow one to detect and correct the two
corresponding errors during the recovery operation R.

While a single mode does not consist of multiple phys-
ical qubits, we develop a similarly useful expansion in
terms of the raising (â†) and lowering (â) operators of
the mode (with

[
â, â†

]
= 1). Analogous to a multi-qubit

code which protects from all single-qubit errors (i.e., op-
erators of weight 1), there exists a binomial code which
protects from single powers of â and â†. We can also carry
over the principle of superposition that is so prominent in
multi-qubit error correction. Just as a multi-qubit code
protecting against Pauli X and Z single-qubit errors also
protects against arbitrary single-qubit errors, a binomial
code protecting against operators â†kâ` for k, ` ≤ L also
protects against any operators which can be written as a
superposition of â†kâ`.

Binomial codes: simple example

A simple example of the above framework is the small-
est binomial code

|W↑〉 =
1√
2

(|0〉+ |4〉) and |W↓〉 = |2〉 , (3)

where |n〉 with n ≥ 0 are the photonic Fock states. This
code protects either against the pair {I, â} or

{
I, â†

}
,

where I is the identity (i.e., no error). One readily ob-
serves that the codes consist of Fock states of even pho-
ton numbers. This spacing guarantees that, upon loss (or
gain) of a photon, the resulting error states remain or-
thogonal to the code space. Upon action of â on the code
states, the resulting states â|W↑〉 ∝ |3〉 and â|W↓〉 ∝ |1〉
are located in the odd-photon-number subspace and are
thus orthogonal to the even-subspace code words. In ad-
dition, the two error states are spaced far enough to be
orthogonal to each other. The corresponding syndrome
used to detect a photon loss (or gain) event is simply the

photon number parity (−)
â†â

.
However, since the code space projection is P =

|W↑〉〈W↑| + |W↓〉〈W↓|, quantum error correction condi-
tions (2) also require that 〈W↑|â†â|W↑〉 = 〈W↓|â†â|W↓〉.
This condition is equivalent to the code words having the
same average photon number, which can be verified by
direct observation of Eq. (3). We will show this in a

different way to demonstrate why the codes are named
as such. Superimposing the code words yields

|W±〉 =
1

2

(
|0〉 ±

√
2|2〉+ |4〉

)
, (4)

where the coefficients are square roots of the binomial
coefficients “1 2 1” from the third line of Pascal’s trian-
gle. Note that in this basis, the quantum error correction
conditions (2) can be proven using the binomial formula:

〈W+|â†â|W±〉 =
1

2

2∑
n=0

(
2

n

)
n (±)

n
=
x

2

d

dx
(1± x)

2

∣∣∣∣
x=1

.

Binomial codes: general case

The family of binomial codes is expressed as

|WN,S
↑/↓ 〉 =

1√
2N

[0,N+1]∑
p even/odd

√(
N + 1

p

)
|p(S + 1)〉 , (5)

with spacing S > 0, order N > 0, and p ranging from
0 to N + 1. The example from the previous Subsection
is the N,S = 1 case. The previous analysis and use of
the binomial formula can be straightforwardly extended
to show that a code space spanned by the two codewords
satisfies the quantum error correction conditions (2) for
all â†kâ` such that |k − `| ≤ S and k + ` ≤ 2N . This
means that any elements of the small γ expansion of the
error channel Eγ which consist of a linear superposition of
such â†kâ` can be corrected. Therefore, codes at different
points of the two-dimensional parameter space {N,S} are
tailored to protecting against different types of errors.
Codes with S � N protect against error channels which
cause large photon losses while codes with S = 1 � N
protect against “dephasing” error channels expressible in
powers of â†â.

As a real-world example, we can consider the photonic
amplitude damping channel whose Kraus operators are

E` =
√

(1−e−γ)`
`! e−

1
2γâ
†ââ`. For an optical fiber, the

damping factor γ = l/latt with l being the length of the
channel and latt being the attenuation length. For a sta-
tionary cavity, γ = κδt with δt being time and κ being
the photon loss rate. The Kraus operators in the order-L
expansion in γ for such a channel are of the form â†kâ`

with k, ` ≤ L. Therefore, setting L = S = N allows one
to satisfy Eqs. (1-2) and recover the information to the
desired order.

Numerically optimized codes

The spacing between binomial code words which pro-
vides correction against photon losses comes at a price
— an average photon number increasing linearly with S.
We have used several numerical schemes which utilize the

2



quantum error conditions (2) for the first few powers of â
and obtained codes which do not have a spacing, have a
smaller average photon number, and still correct against
the chosen errors to the desired order. Surprisingly, some
of these codes can be obtained analytically. For example,
the code

|W↑〉 = 1√
6

(√
7−
√

17|0〉+
√√

17− 1|3〉
)

|W↓〉 = 1√
6

(√
9−
√

17|2〉 −
√√

17− 3|4〉
) (6)

has an average photon number of approximately 1.56,
compared to 2 for the smallest binomial code (3). A
careful calculation ([8], Appx. H) reveals that this code
is capable of correcting errors to first order in the γ-
expansion of the amplitude damping channel.

OUTLOOK

With the advent of binomial and numerically opti-
mized codes in addition to the existing GKP and cat
code families, there are currently (at least) four fami-
lies of single-mode encodings. This raises the question:
Which encoding is best? Expanding in the small pa-
rameters of the channel may not be sufficient to answer
this question since there are many other degrees of free-

dom not taken into account. These include the aver-
age photon number, the employed recovery channel R,
fidelity metric, and overall experimental feasibility. In
the case of GKP codes, another obstacle is the error
model: those codes have not yet been thorough analyzed
in terms of the photon loss and creation operators â and
â†. An implementation-independent appraisal of the var-
ious codes could begin by making use of channel-adapted
quantum error recovery [12, 13]. A comparison of the
best case recovery fidelities for the various codes should
prove helpful in determining code applicability to various
error channels.

ACKNOWLEDGMENTS

We are grateful for useful discussions with Huaixiu
Zheng, Reinier W. Heeres, Philip Reinhold, Hendrik
Meier, Linshu Li, John Preskill, N. Read, Konrad W.
Lehnert, Mazyar Mirrahimi, Barbara M. Terhal, Michel
H. Devoret and Robert J. Schoelkopf. We acknowl-
edge support from ARL-CDQI, ARO W911NF-14-1-
0011, W911NF- 14-1-0563, NSF DMR-1301798, DGE-
1122492, AFOSR MURI FA9550-14-1-0052, FA9550-14-
1-0015, Alfred P. Sloan Foundation BR2013-049, and the
Packard Foundation 2013-39273.

[1] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev.
Mod. Phys. 74, 145 (2002).

[2] N. J. Cerf, G. Leuchs, and E. S. Polzik, Quantum In-
formation with Continuous Variables of Atoms and Light
(World Scientific, London, 2007).

[3] D. W. Leung, M. A. Nielsen, I. L. Chuang, and Y. Ya-
mamoto, Phys. Rev. A 56, 2567 (1997).

[4] D. Gottesman, A. Yu. Kitaev, and J. Preskill, Phys. Rev.
A 64, 012310 (2001).

[5] D. Gottesman and J. Preskill, Phys. Rev. A 63, 022309
(2001).

[6] Z. Leghtas, G. Kirchmair, B. Vlastakis, R. J. Schoelkopf,
M. H. Devoret, and M. Mirrahimi, Phys. Rev. Lett. 111,
120501 (2013).

[7] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, New J. Phys.

16, 045014 (2014).
[8] M. H. Michael, M. Silveri, R. T. Brierley, V. V. Al-

bert, J. Salmilehto, L. Jiang, and S. M. Girvin,
arXiv:1602.00008.

[9] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas,
B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang,
M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf,
arXiv:1602.04768.

[10] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, 2011).

[11] E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).
[12] A. S. Fletcher, Channel-Adapted Quantum Error Correc-

tion, Ph.D. thesis (2007), arXiv:0706.3400.
[13] A. S. Fletcher, P. W. Shor, and M. Z. Win, Phys. Rev.

A 75, 012338 (2007).

3

http://dx.doi.org/ 10.1103/RevModPhys.74.145
http://dx.doi.org/ 10.1103/RevModPhys.74.145
http://dx.doi.org/10.1142/9781860948169
http://dx.doi.org/10.1142/9781860948169
http://dx.doi.org/10.1103/PhysRevA.56.2567
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.63.022309
http://dx.doi.org/10.1103/PhysRevA.63.022309
http://dx.doi.org/ 10.1103/PhysRevLett.111.120501
http://dx.doi.org/ 10.1103/PhysRevLett.111.120501
http://arxiv-web3.library.cornell.edu/abs/1312.2017
http://arxiv-web3.library.cornell.edu/abs/1312.2017
http://arxiv.org/abs/1602.00008
http://arxiv.org/abs/1602.00008
http://arxiv.org/abs/1602.00008
http://arxiv.org/abs/1602.04768
http://arxiv.org/abs/1602.04768
http://arxiv.org/abs/1602.04768
http://www.amazon.com/Quantum-Computation-Information-Anniversary-Edition/dp/1107002176
http://www.amazon.com/Quantum-Computation-Information-Anniversary-Edition/dp/1107002176
http://dx.doi.org/10.1103/PhysRevA.55.900
http://arxiv.org/abs/0706.3400
http://arxiv.org/abs/0706.3400
http://dx.doi.org/10.1103/PhysRevA.75.012338
http://dx.doi.org/10.1103/PhysRevA.75.012338

