Security of continuous-variable quantum key distribution with coarse-grained detector
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In practical continuous-variable quantum key distribution (CV-QKD) system, the homodyne or
heterodyne detector is cascaded with an analog-to-digital converter (ADC) to sample the measure-
ment results, with only a finite sampling range and resolution. The ADC’s coarse-grained property
can lead to the loss of detailed information with respect to the quadratures, which may potentially
compromise the security if the outputs are directly used for parameter estimation. Here we propose
a method to analyze the security of a CV-QKD system with coarse-grained detectors in finite-size
conditions, which enhances the practical security of a CV-QKD system.

PACS numbers: 03.67.Dd, 03.67.Hk

Quantum key distribution (QKD) can generate secure
keys remotely through an insecure quantum channel,
among which continuous-variable (CV) QKD [1, 2] is one
of the two main branches. CV-QKD using coherent states
[3] shares similar technologies with standard telecommu-
nication systems, however they need to be modified to
fulfill the requirements of quantum security. For instance,
the homodyne or heterodyne detector should be quantum
shot-noise-limited. Therefore, although the theoretical
security of a CV-QKD protocol has been proven in many
conditions [4-8], the practical security of a system relies
on the property of the practical devices.

Among all devices, the receiver’s detector plays a cru-
cial role, since it provides the information of a rough “to-
mography” of the channel which has presumably been
eavesdropped and hence determines the final secret key
length. A practical detector consists of two stages, and
each has its imperfections. The first is the homodyne
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FIG. 1: The model of a practical homodyne or heterodyne
detector, which consists of three main parts. The first is a
beam splitter and thermal noise in order to model the finite
detection efficiency and the electronic noise. The second is an
ideal detector, and the third is a practical analog-to-digital
converter (ADC) with finite sampling range and resolution.
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or heterodyne detection, which has finite detection effi-
ciency, electronics noise and the saturation problem of
the amplifier. The second is the analog-to-digital (ADC)
conversion, which has sampling noise, finite sampling
range and finite resolution.

Thus, we model the practical detector as shown in Fig.
1, which consists of three parts. First, the finite detec-
tion efficiency and the electronics noise are modeled as a
beam splitter, whose transmittance equals the detection
efficiency nget, coupling the signal with a thermal noise,
whose variance is related to the electronics noise and the
sampling noise. The second part is an ideal detector,
which outputs the real quadrature measurement result,
denoted as Y. The third part is a practical ADC, which
only has a finite sampling range (say from —R to R) and
resolution (say L digitized bits).

Suppose the ADC’s digitization map is as follows:

$A— R, -0 <Y <A-R;

Yp=% (i+3)A—R, iA—R<Y < (i+1)A—R;
-3A+R, —A+R<Y < 400,

(1)

where 1 < i < 2% — 1. Generally speaking, the extra loss
and noise in the first part only influences the performance
of the system, which is well studied in previous papers
[9]. On the other hand, the coarse-grained property of
the third part can affect the security analysis, which if
ignored, the practical security of a system may be com-
promised. This is because in current security analyzes it
requires the real quadrature measurement result Y, not
the digitized output Yp which only contains partial in-
formation of Y.

More specifically,

1. The finite sampling range makes Yp lack of the in-
formation about Y when it is out of the range [—R, R].
Each |Y;| > R only gives the output Yp = R or — R,
which makes the estimation of Bob’s variance Vg smaller
than the actual case, and this leads to the underesti-
mation of the excess noise. This may open a security



loophole similar as the saturation attack [10].

2. The finite sampling resolution makes Yp lack of the
information about Y within each sampling interval. This
also influence the estimation of the covariance matrix.

Here, we propose a method to analyze the security of
CV-QKD with a practical ADC under finite-size condi-
tions, which directly comes from the universal compos-
able security analysis given in [8], i.e., a simple modifi-
cation of the parameter estimation step. The relations
between the total data length n, ADC sampling range
R, and the digitized bits L are analyzed. A composition
of (n, R, L) suitable for metropolitan area networks is
found, which can be achieved with current technologies.

First, we note that in the universal composable security
analysis of CV-QKD using Gaussian modulated squeezed
states and homodyne detector [7], the above sampling
problems are automatically solved, because what the un-
certainty principle used is the correlation between Alice
and Bob’s final data. The digitization from Y to Yp only
decreases the performance, and will not influence the se-
curity. Thus, we only focus on the case of CV-QKD using
gaussian modulated coherent states and heterodyne de-
tector [11].

In the universal composable security analysis [8], the
secret key length [ under collective attack is

[ <2n [2I:IJVILE (U) _ f (Z;ﬂax, Elr)nax’ Ercnin):|
—leakpe — Aapp — Aent — 2log (1/2€),

where Apgp and Agy are related to the data length n
and the security parameters €, €5,,. Harrp (U) is the em-
piric entropy of U. f is the Holevo information between
Bob and Eve according to a covariance matrix character-
ized by the pre-set parameters ¥3'%%, 3%, ymin,

The key step of universal composable security analy-
sis is the parameter estimation test, in which Alice first
estimates the parameters as following:
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where X is Alice’s ideal data. Then she com-

pares these three values with the pre-set parame-
ters: Ymax ymax yumin - If the condition [y, < XMaX] A
[ < TP A [, > E2in] s fulfilled, then the secret key
length will be the same as Eq. (2). Otherwise, the pro-
tocol aborts (PE test fails).

In the above parameter estimation step, u,Vs, Ve
should be calculated from the real quadrature measure-
ment result Y[12]. Since we only have the digitized data
Yp, thus we propose to use the following modification

methods of the data Yp to give an upper bound of ~,
and a lower bound of ~..

1) To calculate the upper bound of v, each Yp should
be modified to reach the upper bound of ||Y||* even if it
is infinity:

— 00, YDZ%A—R;
YD—%A, 1A—R<Yp <O0; @)
YD+§A, —%A+R>YD>O;

+00, Yp=—-3A+R

Yh =

2) To calculate the lower bound of 7., if X < 0, then
Yp should be modified as

v [ Yp+iA —IA+R>Yp;
= {"N AR e

If X > 0, then Yp should be modified as

v _ [ Yp—3A JA-R<Yp;
Y) _{ —0Q, YD:%A—R (6)

Then use the upper and lower bounds to do the PE
test. After the above modification, to ensure a high prob-
ability of passing the PE test, the pre-set parameters
ymax yimax ymin ghould choose a worse case, which will
decrease the secret key length. In this way, the calculated
secret key length is secure under the practical ADC con-
dition.

One could note that, if there is one (or more than one)
Yp is the highest output R — %A or the lowest output
—R + %A, then the PE test will fail. Therefore, the
sampling range R should be large enough to make the
probability of having at least one extreme output P|p,r
enough small, to ensure a high probability of passing the
PE test. This means the data length n is no longer the
larger the better. If one needs to increase n to suppress
the finite-size effect, then R should also be enlarged.

When passes the parameter estimation test, the de-
viation of 73,7, caused by the modification of Yp is of
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FIG. 2: Secret key rate of different digitized bits L when the
data length is fixed as n = 10'2. L = 10 to 16 correspond to
the solid lines from left to right.
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FIG. 3: Secret key rate of different data length n when the

digitized bits is fixed as L = 14. n = 108 to 10** correspond to

the solid lines from left to right respectively. 10'° corresponds

to the dashed line.

the first order of A. Thus, when R increases, the digi-
tized bits L should also be enlarged, to make the A small
enough. However, the L and n is constrained by current
technologies, one needs to find a trade-off between these
three parameters.

To explore the possibility of a realizable composition
of (n,R, L), we do the simulation under following con-
ditions: Alice’s variance V4 = 5, channel excess noise
€ = 0.01, reconciliation efficiency 5 = 0.95, channel loss
a = 0.2dB/km, and we choose R = 8y/Vp for each trans-
mission distance.

Fig. 2 shows the secret key rate [/n, when the data
length is fixed as n = 10'2, while the digitized bits L
is changed from 10 to 16 (corresponding to the solid
lines from left to right respectively). As analyzed above,

when L increases, the performance of the protocol gets
enhanced.

Fig. 3 shows the secret key rate, when the digitized
bits is fixed as L = 14, while the data length n changes
from 10% to 10'®. n = 10® to 10™ corresponding to the
solid lines from left to right respectively. 10'® corresponds
to the dashed line. One could find that when the data
length is not too large, as n increases, the performance
of the protocol increases. However, since the R is fixed,
when n is large enough to decrease the probability of
passing the PE test, although the transmission distance
does not decrease, the secret key rate decreases.

From the above simulation, we can find a realiz-
able composition of (n, R, L) = (10'°,8y/Vz,14), which
makes the secret key rate greater than 1073 at 40km,
a typical distance between two stations of classical fiber
communication. For a 1GHz system, it takes around 10s
to gathering enough data for post-processing. And a 14-
bits commercial ADC with 1GS/s sampling rate is also
achievable.

In summary, the coarse-grained property of a hetero-
dyne detector, due to the finite sampling range and reso-
lution of a practical ADC, may open a security loophole
of CV-QKD protocol using Gaussian modulated coher-
ent states. We propose a simple modification method
of Bob’s data to solve this loophole under the univer-
sal composable framework, which enhances the practical
security of a CV-QKD system.
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