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Secure random numbers are a fundamental element of many applications in science, statistics,
cryptography and more in general in security protocols. We present a method that enables the
generation of high-speed unpredictable random numbers from the quadratures of an electromag-
netic field without any assumption on the input state. The method allows to eliminate the numbers
that can be predict due the presence of classical and quantum side information. In particular, we
introduce a procedure to estimate a bound on the conditional min-entropy based on the Entropic
Uncertainty Principle for position and momentum observables of infinite dimensional quantum sys-
tems. By the above method, we experimentally demonstrated the generation of secure true random
bits at a rate greater than 1 Gbit/s.

In the last few years there has been an increasingly
growing interest in randomness. Randomness is indeed
an essential ingredient not only in Cryptography but also
in experiments of Foundations of Quantum Mechanics.
In the first case randomness is necessary to guarantee
the security of the protocols, being them classical, quan-
tum or even post-quantum. In the second case, random-
ness is necessary to rule out pre-determinism in experi-
ments such as for the violation of Bell’s inequalities [1]
and “Wheeler’s delayed choice”. In both these applica-
tions, it is indispensable that the source of randomness
generates a random variable X which identically and in-
dependently distributed with respect to any other vari-
able E, outside the future light cone of X.

In this respect, quantum random number generators
(QRNGs), i.e. devices which generate a random variable
by suitably measuring some observables of a quantum
system, have always been regarded as the perfect source
of randomness. The typical example is the “which way”
(WW) QRNG [2–4] where a photonic qubit is prepared
as a polarization eigenstate of the observable σZ . The
random variable X, associated to the outcome of the
measurement of σX , is therefore unpredictable because
the preparation and measurement are performed on two
mutually unbiased bases.

In general for real QRNGs implementations, the un-
predictability of X is limited by the non-ideality of the
devices. Perfect state purity and perfect projective mea-
surements are indeed hardly achievable. For example, a
WW-QRNG with an optical source emitting photons in
a completely mixed polarization state, is just the pho-
tonic version of a fair coin [5]. In this case, the observed
randomness is just apparent, as it can be attributed to
the observer ignorance about the source degrees of free-
dom. However, the outcomes are perfectly predictable to
someone who knows the coin’s equations of motion.

More formally, mixedness leaves room for quantum
side information. An eavesdropper, Eve, holding a quan-
tum system correlated with the QRNG, might be able
to retrieve side information E and then become able to
guess X by measuring her system.

However, by using randomness extractors, the QRNG

user, Alice can still be able to distill unpredictable ran-
dom numbers from X [6, 7]. For this purpose, it is
of fundamental importance that Alice correctly evalu-
ates the quantum conditional min-entropy Hmin(X|E),
i.e. the maximal achievable amounts of bits which are
uniform and uncorrelated from any classical or quantum
side-information accessible to Eve [8].

In this work we therefore propose and experimentally
realize [9] a protocol which enables the user to evaluate a
lower bound to the conditional min-entropy for a contin-
uous variable (CV) QRNG [12–14], where the generated
random variable, P , is associated to the measurement
outcomes of the momentum P̂ quadrature observable of
the electromagnetic field.

The method assumes a trusted measurement device
and a complete untrusted source, i.e. a source-device-
independent (SDI) scenario where no assumptions are re-
quired on the dimension of the Hilbert space of the source
(cf. [10]). The rationale behind the SDI approach is its
closeness to the experimental reality: as a real quantum
system is difficult to prepare and keep in a pure state,
as the hardware can be optimized to minimize its impact
on the numbers.

In the untrusted source scenario, the state ρA of the
quantum system is in general mixed : it can be purified
by a state ρAE , namely ρA = TrE [ρAE ] where E can
be identified with the already mentioned eavesdropper,
or with the system “environment”. We note that the
mixedness of ρA corresponds to common physical situa-
tions: any decoherence or imperfection in the state prepa-
ration leads to correlations with the environment E. In
this general case, Alice can estimate the exact value of
Hmin(P |E) only by performing a complete quantum state
tomography.

However, an alternative and simpler approach consists
in estimating a lower bound, HLOW(P |E). This can be
obtained by exploiting the entropic uncertainty princi-
ple (EUP) for conditional min- and max-entropies in the
presence of infinite dimensional quantum memories in-
troduced by Furrer et al. [? ].

Our method to estimate the content of true random
bits for source-device-independent CV-QRNG is summa-
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FIG. 1. Random numbers are obtained by measuring the position quadrature of a Gaussian state with optical homodyne.
These numbers are “secured” by applying a strong randomness extractor calibrated on a conservative bound of Hmin(Pδp|E).
Such bound is obtained by randomly measuring the complementary quadrature, i.e. the momentum one. Part of the secure
bits are “re-invested” in the process to sustain the random quadrature switching.

rized in Fig. 1 and works as follows: I) Alice prepares
the state ρA (the vacuum or a squeezed vacuum), mea-

sures it in the P̂ quadrature (called data quadrature)
with precision δp and generates raw random numbers; II)

the measurement is randomly swapped to the Q̂ quadra-
ture (called check quadrature): Alice estimates the Rényi

entropy of order 1/2, H1/2(Q) = 2 log2

∑
k

√
p(qk), by

using the measured (with precision δq) outcomes prob-
abilities of the check measurements III); the bound of
Hmin(P |E) is therefore evaluated by using the EUP
which reads

HLOW(P |E) ≡ − log2 c(δq, δp)−H1/2(Q) , (1)

where the term c(δq, δp) is the “incompatibility” of the
measurement operators, i.e. it is maximal if the operators
are maximally complementary; IV) a quantum random-
ness extractor calibrated on the bound is applied to the
raw random numbers. An initial random seed for the
measurement switching is required, but the protocol is
able to quadratically expand the initial randomness as in
the protocol introduced in [5].

The measurement of the Q̂ operator can be regarded
as a tool to estimate, with a partial tomography, whether
the state ρA is pure or not. As an example, in Figure 2 we
show the Wigner functions of the squeezed and thermal
state with the same momentum distribution for the ran-
dom variable P . The difference between the two position
distribution is evident. The impurity of the thermal state
may be indeed detected by Alice by observing that that
the (check) position quadrature variance is not squeezed.
However, it is not necessary to abort the protocol: Alice
can still extract random bits by calibrating a quantum
randomness extractor with a lower bound conditional of
the conditional min-entropy estimated with the protocol
presented above.

A proof of principle of the generation protocol was
given by realizing a homodyne detection setup for the

FIG. 2. left: Wigner function for a Q-squeezed vacuum state
(ζ = 2) and the relative discretized probability distribution
(yellow histograms) for the two conjugate quadratures. Since
the outcome distribution for P is wider, the outcomes of mo-
mentum measurements (performed with precision δp) are used
as random numbers. This is an ideal input state for a CV-
QRNG: the state is pure and the randomness extractor can
be calibrated by the classical min-entropy Hmin(Pδp). right:
Wigner function of a thermal state, that can be purified by
a two-mode squeezed vacuum. The probability distribution
for the P outcomes coincides with the distribution obtained
with the Q-squeezed vacuum state. In this case, the classical
min-entropy over-estimates the true content of randomness,
because it does not take into account the quantum side infor-
mation possessed by Eve.

measurements of the vacuum state quadratures. Com-
mercial large bandwidth detectors and a fast oscilloscope
were used to collect the data. In this regard it is worth
to stress that, in the estimation of the conditional min-
entropy, the protocol takes automatically into account
also the classical noise introduced by the hardware. In
fact, the classical noise added by the hardware to the
quantum noise of the vacuum, makes the check quadra-
ture variance to be larger than the value of 1/2 corre-
sponding to a pure vacuum state. In this way it was pos-
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sible to obtain a equivalent rate of secure random bits
higher than 1 Gbit/s.

In terms of security and performances, this generation
method is halfway between the device independent (DI)
and the “full trust” protocols. The DI framework lets
the user to achieve the ultimate security, as the condi-
tional min-entropy is related to violation of a Bell’s in-
equality. However, at present time, the typical protocols
of randomness expansion and amplification are very de-
manding from the experimental point of view, since they

require loophole-free Bell tests [15, 17, 18].
On the other side, fully trusted generators where the

purity of the state is assumed might be faster than our
protocol. However, they might also feature lower level
of security as they do not provide any means to check
whether the state is pure or mixed.

Our protocol therefore results promising for the fu-
ture applications in Cryptography and for the testing of
the foundations of Quantum Mechanics, where both high
generation rate and unpredictability are will become in-
dispensable features.
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