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Face to Face: Evaluating Visual Comparison

Brian Ondov, Nicole Jardine, Niklas Elmqvist, Senior Member, IEEE, Steven Franconeri

Fig. 1. Evaluation methods for visual comparison. Left: Participants were asked to pick the most similar pair of bar charts for a variety
of arrangements and degrees of correlation. Center: Participants were asked to find the maximum delta, or “biggest mover,” between
pairs of datasets. Additional arrangements not shown are vertical small multiples and animated transitions. Right: Domain experts
were interviewed after trying various comparative arrangements in Krona, an interactive sunburst display for biological data.

Abstract—Data are often viewed as a single set of values, but those values frequently must be compared with another set. The
existing evaluations of designs that facilitate these comparisons tend to be based on intuitive reasoning, rather than quantifiable
measures. We build on this work with a series of crowdsourced experiments that use low-level perceptual comparison tasks that arise
frequently in comparisons within data visualizations (e.g., which value changes the most between the two sets of data?). Participants
completed these tasks across a variety of layouts: overlaid, two arrangements of juxtaposed small multiples, mirror-symmetric small
multiples, and animated transitions. A staircase procedure sought the difficulty level (e.g., value change delta) that led to equivalent
accuracy for each layout. Confirming prior intuition, we observe high levels of performance for overlaid versus standard small multiples.
However, we also find performance improvements for both mirror symmetric small multiples and animated transitions. While some
results are incongruent with common wisdom in data visualization, they align with previous work in perceptual psychology, and thus
have potentially strong implications for visual comparison designs.

Index Terms—Graphical perception, visual perception, visual comparison, crowdsourced evaluation.

1 INTRODUCTION

While the visualization designer has myriad ways to represent infor-
mation graphically, experimental evaluation has shown us that not all
representations are equal [9, 19, 33]. These perceptual studies are of-
ten motivated by tasks that are typical for analyzing a single data se-
ries, e.g. averages, trends, extreme values, and outliers [13]. When
comparing more than one dataset, however, the goals of the visualiza-
tion can be fundamentally different [26]. For example, instead of look-
ing for the largest or smallest data point, we may look for the largest
delta from one set to another [52], or for an overall level of correla-
tion [4]. While many of the perceptual lessons learned from single
series no doubt extend to these tasks, introducing comparison can tax
a substantially capacity-limited aspect of our visual system [25].

We present a series of graphical perception experiments designed
to evaluate designs for visual comparison tasks. We choose two prim-
itive tasks specific to the goals of comparison: (1) identification of a
maximum delta (or “biggest mover”) between data series, and (2) es-
timation of overall correlation between two series. We embed Task
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1 in various stimuli (Figure 1, center): (a) length, represented as bar
charts, (b) slope, represented as simple line graphs, and (c) angle, rep-
resented as donut charts. We embed Task 2 in a forced-choice between
two pairs of bar charts (Figure 1, left). For each embedding, we ex-
plore performance of 5 layouts: (i) ‘stacked’ small multiples with a
common baseline, (ii) ‘adjacent’ small multiples with a non-common
baseline [62],1 (iii) superposition, or ‘overlaid’ charts, (iv) adjacent
small multiples that are mirror symmetric, and (v) animated transi-
tions. The first three of these are commonly used and are associated
with intuitive—but rarely measured—differences in efficacy [37]. The
last two are less common but may leverage the visual system’s sen-
sitivity to motion [47], and in particular common motion [41], in ad-
dition to the sensitivity of the visual system to mirror symmetry of
objects [65], making them valuable to evaluate.

Many of our results confirm prior expectations for common lay-
outs (overlaid > horizontal multiples > vertical multiples). Surpris-
ingly, however, in some cases we also find significant performance
improvements when arranging small multiples in a mirror-symmetric
fashion. Furthermore, counter to many prior studies, we observe ani-
mation having high performance for the biggest mover task. To vali-
date our results in a more realistic setting, we also present a practical
application of both animation as well as symmetry via mirroring in
a visual comparison task for a taxonomic hierarchy browser, called

1We only examine a subset of (i) and (ii) for donut charts, as they have
no inherent orientation. However, recent work on performance assymetries
between vertical vs. horizontal display layouts [7, 44] suggests that this case
merits future study.
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Krona [48], based on sunburst displays [58] (Figure 1 right).
Our contributions are the following: (i) results from two graphi-

cal perception experiments measuring participant performance for (a)
a maximum delta task in bar, slope, and donut charts, and (b) a cor-
relation task for bar charts; (ii) data generation procedures designed
specifically for graphical perception studies on visual comparison; and
(iii) a practical application of animation and mirroring to Krona.

These results serve both to bolster existing guidelines with empiri-
cal evidence and to suggest reexamination of seldom used layouts.

2 BACKGROUND AND RELATED WORK

It is not enough to make visualizations that are pleasing or engaging—
empirical evaluation is a crucial part of the analytical process [63].
Cleveland & McGill informed decades of design by ranking basic vi-
sual channels by their quantitative accuracy [19]. Specific visual facul-
ties, like the detection of outliers and salient elements, have been also
been well studied [23, 36, 61, 66], and the widespread application of
color theory to visualization has helped designers avoid skewed inter-
pretations [10, 55, 70]. These types of studies typically involve rela-
tionships within a single data series, with tasks such as estimating size
differences [68] or determining if points in the series are equal [2].
Often, however, real data are not so simple, requiring more complex
comparisons across multiple series [27].

Expanding from a single data series to multiple constitutes a mul-
tivariate analysis, i.e. adding rows to a table in Bertin’s synoptic [8].
Comparative visualization can be thought of as multivariate analysis
in which a categorical variable is used to slice the data. For example,
we may want to compare time series of the popularity of various baby
names or the prices of a variety of goods in different countries. The
goals of comparison are often different than those of single-series anal-
ysis and can be described as compounds of more primitive tasks [3].
Gleicher et al. provide taxonomies of tasks, as well as comprehensive
reviews of techniques and best-practice guidance [26, 27]. While these
reviews provide valuable intuition about the efficacy of various com-
parative strategies, quantitative user studies are less common in this
area. Qu et al. explore the importance of consistent scale and coloring
across small multiple displays, but not the efficacy of the arrangements
themselves [49, 50]. Roberston et al. compare animation to a rela-
tively high number of small multiples (8 to 80) for conveying trends
in GapMinder data [1, 52]. Heer et al. compare variants of time-series
representations within the context of vertical juxtaposition [34]. Javed
et al. also evaluate various methods of displaying multiple time series
and include both juxtaposition and superposition, but with tasks simi-
lar to those of single-view evaluations [38]. We build on these studies,
taking inspiration from perceptual psychology research that is relevant
to visual comparison.

3 PERCEPTUAL FACTORS IN COMPARISON

We weighted three themes from the perceptual psychology literature
in considering which comparison arrangements to evaluate.

3.1 Co-location
Within a single region of space, visual features such as length, ori-
entation, and motion can rapidly convey information about stimulus
deltas. Comparison between two regions is a more difficult task for
the observer, because it may require an active process of storage of
one region before being able to compare it with another region. “Spot
the difference” games, in which observers try to detect small changes
between two otherwise identical images, illustrate the difficulty of this
task. Mental storage capacity, even for basic visual features like shapes
and colors, is around four at maximum [12], and observer comparisons
between mentally stored features and currently visible features may be
subject to multiple bottlenecks [56]. Detecting a difference between
two sets of data may only be possible for large change sizes, even for
small datasets (e.g., 5-10 values).

3.2 Symmetry
An additional consideration for multiple displays is that the human vi-
sual system is sensitive to symmetry, and especially mirror symmetry

located at the focal point [39, 65]. Specifically, the system’s ability to
detect visual differences is more efficient between two regions that are
otherwise mirror images of each other, compared to repeated trans-
lations of each other [6, 60] and when the symmetric information is
spatially close rather than far [20]. Juxtaposed datasets (e.g. small
multiples) are typically translated horizontally, and with common ax-
ial directions in order to reduce the cognitive burden of understanding
the different polarities of each side of the horizontal axes [26]. But
mirror symmetry is occasionally used when comparing two data series
that are similar, for example in population pyramids [40], suggesting
that designers have an implicit awareness that this arrangement may
hold benefits. We hypothesize that advantages for human symmetry
detection could convey benefits for comparisons of data in mirrored
arrangements.

3.3 Movement
Motion is a primitive and fundamental element of vision [47]. Esti-
mates of velocity can originate in the retina itself [28], and at higher
levels of visual processing motion can be used to extract statistics and
structure from scenes [30, 41], and may be a useful cue for statistical
extraction of patterns in data visualizations [59].

But motion processing is not all-powerful. In particular, when a
viewer is asked to process multiple moving objects simultaneously,
performance can fall drastically for more than 2-4 objects [53, 67].
When used to demonstrate processes in diagrams in teaching, its use
can confuse students [64],

Evidence for the usefulness of motion in visualization is early and
mixed. Animation can fill a wide variety of roles and may have simi-
larly varied utility [18], and has shown promise in the role of maintain-
ing context during configurational changes [5, 22, 29, 35]. Because
the visual system encodes motion speed and direction as a primitive
and direct feature [47] similar to orientation or length, it may be espe-
cially useful for detecting changes to values, because larger changes
should co-vary with motion speed, and change direction with motion
direction. Prior studies have assigned animation questionable value
in similar tasks, for example when conveying correlation via oscilla-
tion [42], conveying trends in time series [52], or linking two views in
a scatterplot [17]. However, these are specific instances among a wide
variety of possible tasks, graphical representations, and layouts.

4 METHODS

To investigate our hypotheses, we evaluated performance on two tasks
(maximum delta and correlation) across multiple visualization types
(bars charts, slope charts, and donut charts; see Figure 4), and ar-
rangements (stacked, adjacent, mirrored, overlaid, and animated; see
Figure 2), using a series of crowdsourced experiments. Our goal is
to measure the degree of precision with which human observers can
make judgments about visualized data. Because response time mea-
sures can be contaminated, or at least made noisier, by variance in a
participant’s level of conservatism for how certain to be before making
a response, we instead relied on an accuracy-based method.

4.1 Tasks
We choose two main tasks as case studies for visual comparison: one
that simulates the goal of finding single values that have changed, and
another that simulates the goal of noting more global similarities be-
tween two sets of series data. They are otherwise not intended to be
representative of the real-world suite of visual comparison tasks.

• MAXDELTA: From one series to the next, which data point
changed the most? This could be an increase or decrease, de-
fined by absolute change, as opposed to percent change. Diffi-
culty is increased by reducing the largest delta while increasing
distractor deltas, so the maximum is less distinguishable. A bi-
modal distribution of absolute values decouples the largest delta
from the largest or smallest absolute value in any single set (Ap-
pendix A.1).

• CORRELATION: Out of two pairs of charts, which pair exhibits
the most correlation between its two series? Difficulty is adjusted
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Stacked Adjacent Mirrored Overlaid Animated

Fig. 2. Comparative arrangement methods examined. The direction of the arrows represents the orientation of the x-axis (or, in the case of donut
charts, clockwise versus counterclockwise).

by varying the correlation of the target series pair, while leaving
the control pair at a low, fixed correlation (Appendix A.2). Since
correlation may be too esoteric of a concept for crowdsourcing,
we instructed participants to choose the “most similar pair” and
ensured that each chart in a pair had comparable means and stan-
dard deviations. See past studies [31, 51] for similar tasks.

4.2 Titer Staircase Method

Our goal was to quantify the magnitude of the stimulus difference re-
quired to perform the MAXDELTA task, and the magnitude of the cor-
relation difference for the CORRELATION task, for each arrangement.
To do this, instead of pre-selecting and factorially manipulating stim-
ulus magnitudes, stimulus difficulty was titrated dynamically, using a
staircase method. This method is commonly used in perceptual psy-
chology because it provides a more precise measure of performance:
it quantifies a titer, a value between 0 and 1 that scales the magnitude
of the difference between stimuli to determine the stimulus threshold
at which a participant can barely perform a discrimination task. This
method is also practical because, by the nature of our tasks and charts,
we had no a-priori hypotheses about the stimulus properties that would
sufficiently span from lower to higher accuracy across arrangements.

In the MAXDELTA task, the correct answer (true biggest mover)
by definition changed more than the distractors (non-biggest movers).
How much more, however, makes a big difference for task difficulty.
The titer controlled how much the correct answer stood out from the
distractors in two ways: with a larger titer (easier), the biggest mover
moved more, while the distractors moved less; with a lower titer
(harder), the biggest mover moved less, while the distractors moved
more. At top difficulty, the biggest mover barely moved more than the
distractors. In the CORRELATION task, the titer controlled the differ-
ence in correlation between the baseline data (0.2) and the test data:
larger titers indicate higher correlations of the test pair, and thus larger
differences between baseline and test pairs. At the highest titer (eas-
iest) the two series in the test pair were almost identical (Fig. 1, left;
orange), making this pair stand out more from the baseline pair.

Titers and stimulus datasets changed trial-by-trial depending on par-
ticipant performance for the previous trial (Appendix A). For each ar-
rangement, the first trial had a titer of 0.5. Over the remainder of trials,
the titer adapted to participant accuracy. An erroneous response made
the next trial easier (larger titer), and a correct response made the next
trial harder (smaller titer). The titer was increased three times as much
following an incorrect answer as it was decreased for a correct answer.
This 3:1 modulation of the signal should affect performance accord-
ingly. By the end of the experimental trials, the titer reflects a stable
magnitude of signal that allows the participant to perform with 75%
accuracy for that layout. See Figure 3 for an example that shows how
this method titrates the stimulus based on participant performance.

At the end of the staircase procedure, a larger titer indicates that the
conditions of the given experiment made the task more difficult, re-
quiring larger signals (and thus easier trials) to maintain accuracy. We

perform within-subjects comparisons of the means of the titer values
of the final 5 trials per arrangement.
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Fig. 3. During titration, the titer value (stimulus signal) increases if an
erroneous response is made, and decreases if a correct response is
made. Titers are calculated independently for each arrangement, and
are analyzed to determine how chart arrangement affected the final
staircased titer values.

4.3 Chart Types
Bar charts are versatile and intuitive, making them a natural choice for
evaluating both tasks. However, since the choice of visual encoding
channel could interact with the choice of arrangement, we also evalu-
ated slope charts and donut charts for the MAXDELTA task, for a total
of three chart types. To ensure each chart type provided an appropri-
ate range of difficulty, parameters such as the number of data points
had to be adjusted. These parameters were determined during internal
piloting, resulting in the following configurations:

• Bar charts: (both tasks) Standard charts in which the length cor-
responds to the datum. Each series contains 7 data points.

• Slope charts: (MAXDELTA only) Simplified line charts with just
two points in each line, (0 and a generated datum), reducing them
to slopes. Each series contains 3 data points.
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• Donut charts: (MAXDELTA only) Rings in which the data are
represented by angular sector. For the purposes of experimental
control, they differ form standard donut charts in several ways:
(i) gray distractors are used as buffers to allow adjacent data
to change size while remaining in the same position, (ii) over-
laid arrangements, which are non-standard for donut charts were
implemented with concentric rings, aligning the centers of cor-
responding colors, and (iii) mirrored arrangements were imple-
mented by limiting each chart to 180 degrees, allowing the two
series to form a complete circle. Each series had 4 data points.

(a)

(b)

Fig. 4. Overlaid layout for (a) the MAXDELTA task for bar (Exp. 1A), slope
(1B), and donut (1C) charts, and (b) CORRELATION task for Exp. 2.

4.4 Arrangements
Each chart type was presented in 5 different layouts (Fig. 2):

• Stacked: Vertically arranged small multiples (i.e. one chart is
placed above the other). Cleveland & McGill posit the aligned
baselines helps judgment [19]; but this design also makes it
tougher to find correspondance between paired values from each
series [7, 44]. We thus include it as an expected floor to which
performance of other arrangements can be compared.

• Adjacent: A more commonly used instance of small multiples,
in which data series are placed side-by-side, allowing each pair
of items to align vertically. This arrangement serves as a more
realistic baseline than stacked.

• Mirrored: This “mirrored” variation of adjacent opposes the di-
rection of the x-axis in each chart. For bar charts, this simply
amounts to right-aligning the left chart and vice versa. For slope
charts, the x-axis is reversed in the left chart, essentially negating
the slope. For donut charts, we restrict each series to a semicir-
cle. The Gestalt nature of bilateral symmetry suggests this layout
could improve performance versus standard small multiples.

• Overlaid: A combined chart depicting both data series within
the same space. Past work has claimed that overlaying values,
or superposition, minimizes eye movements and memory load,
and may lead to efficient comparison [27]. This technique has

proven effective in a design study setting [45], but, to our knowl-
edge, not directly confirmed empirically. We expect this condi-
tion to serve as a ceiling for performance in the context of the
MAXDELTA task (Figure 4).

• Animated: In this “arrangement,” a single chart is transitioned,
or morphed, from one data series to another over time. As all
marks transition for the same amount of time, the maximum ve-
locity of a given mark becomes an emergent signal that directly
encodes its delta. Movement is broadly processed as a primi-
tive feature in the vision system, suggesting that this signal is
potentially beneficial for MAXDELTA task. We used cubic in-
terpolation to ease the transitions [21], so the maximum velocity
was reached at the midpoint of the impression time.

4.5 Task and Procedure
Before each trial began, the screen contained a centrally placed fixa-
tion dot and outlines of where the charts would appear. Participants
clicked a button to start the trial. After a countdown, the visualization
appeared for a short, fixed time. For the MAXDELTA task, the time for
both static charts and animation was 1.5 seconds. For the CORRELA-
TION task, static charts were shown for 3 seconds, to account for the
doubled number of charts, while animation remained at 1.5 seconds to
preserve velocity. At the end of the impression, one of the data sets of
the comparison was removed, while the other remained.2

Participants then clicked on the appropriate portion of the remaining
chart or charts to provide a response. For the MAXDELTA task they
were instructed to “Click on the bar that had the biggest difference in
the two charts”; for CORRELATION to “Click on the color that had
the most from similarity before to after.” Participants were informed
if they were correct and, if incorrect, what the correct answer was.
This feedback was provided to make the task more engaging and to
reinforce the goal. Between trials, the titer was adjusted based on the
response (if incorrect, the titer was made larger for the next trial; if
correct, the titer was made smaller). Each participant completed one
experiment, each with five arrangements. There were twenty trials
for each arrangement (thirty for donut charts), and arrangements were
blocked. The order of the arrangement blocks was changed between
participants.

4.6 Training
Before training, participants were shown examples of stimuli and the
task. Before each arrangement block of trials, participants were given
a time-unconstrained version of the task, which they were required to
answer correctly before proceeding (once for the MAXDELTA task,
3 times for the CORRELATION task). Additionally, the first non-
animated arrangement given to a participant followed untimed training
with 3 timed training trials, which were identical to the real trials ex-
cept that they always had the easiest (largest) titer. Data were regener-
ated on incorrectly answered training answers to minimize answering
by elimination.

4.7 Participant Recruitment
We recruited participants through the Amazon Mechanical Turk Plat-
form. Based on power analyses from initial pilots, we recruited 50 new
participants for each experiment. Participants were asked to self-select
out of the study if they had color vision deficiencies. Each participant
completed all arrangements (4 for donut, 5 for others) for a single com-
bination of stimulus type (bar, slope, donut) and task (MAXDELTA,
CORRELATION). Worker IDs were used to ensure uniqueness of par-
ticipants across all such combinations. All 200 workers recruited for
participation in these 4 experiments were adults in the United States.
61.3% were male, 36.4% female, 1.10% other, 0.6% no response.
Ages varied from 18-25 (7.7%), 26-40 (60.8%), 41-60 (28.7%), and
61-80 (2.2%).

2For slope charts, since the mirror metaphor is more important for inter-
pretation, the x-axis included arrows conveying axial direction during training
trials, both timed and static.
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5 RESULTS

We evaluated the magnitude of differences required in the data (i.e.,
titers) for 200 non-expert participants to reliably identify the individ-
ual data item with the largest magnitude change (Experiments 1A-C:
bar, slope, and donut charts) or identify the overall data series that
was more correlated (Experiment 2, bar charts). To preview the find-
ings, these perceptual data largely dovetail with prior recommenda-
tions arrangements (overlaid > adjacent > stacked) [27, 7, 44]. But
some findings are surprising. First, animation conferred significantly
improved detection of the most different data point in bar and donut
charts, though not for slope charts. Second, task mattered: anima-
tion did not accrue performance benefits for participants detecting the
most correlated data set. Finally, for bar charts, horizontally mirrored
bar charts afforded better performance in both MAXDELTA and COR-
RELATION tasks.

5.1 Accuracy-based Outlier Exclusion
After data collection was completed, we assessed each participant’s
overall proportion of correct trials (in which the biggest-mover data
point or most-correlated data series was correctly identified). A par-
ticipant was excluded if their overall proportion correct was lower
than two standard deviations from the mean of other workers, because
this indicates that the staircase method failed to allow accurate per-
formance. For Experiments 1A-C and 2, this procedure resulted in
exclusion of 3, 4, 2, and 2 participants.

5.2 Titer Analysis
To evaluate whether arrangement affected the precision with which
participants could identify the maximum delta, we computed each ob-
server’s mean titer values from the final 5 trials for each arrangement.
Titers are inversely related to difficulty: smaller titers for a chart ar-
rangement indicate that subtler, rather than larger, differences were
required to elicit a mixture of correct and incorrect responses.

5.3 Exp. 1A: Bar charts (MAXDELTA task)
Figure 5 (upper) displays the mean final 5 titer values for Experiment
1A. In bar charts, two patterns in participant titer values were striking.
First, the Animated bars outperformed bars that were Overlaid and
all other arrangements. Second, within Small Multiples, a Mirrored
arrangement is better than a Horizontal or Vertical one.

These observations were validated in a within-subjects ANOVA.
Final titer values for bar charts were affected by arrangement,
F(2.98,137.23) = 103.23, p < .001, η2

p = 0.69, Greenhouse-Geisser
corrected for violations of sphericity. Planned comparisons assessed
pairwise differences between arrangement types. Titers for animated
bars were significantly more precise than those that were overlaid,
t(46) = 3.42, p = .001. Participants also achieved more precise titer
values with horizontally mirrored small multiples compared to non-
mirrored small multiples that were horizontally arranged, t(46) =
2.73, p = .009, and vertically arranged, t(46) = 4.82, p < .001.

5.4 Exp. 1A Floor Effect
For the final five trials, accuracy was low for stacked (57%), adja-
cent (61%), and mirrored (64%) arrangements, with large titers near
the maximum titer of 0.75 (0.68, 0.64, and 0.59, respectively). By
comparison, for animated arrangements, accuracy was 74.6% and the
mean titer was 0.35. Participants reached the maximum titer on 28%
of stacked trials and 15% of adjacent trials. By comparison, the maxi-
mum titer was reached on 6% of mirrored trials, 5% of overlaid trials,
and 0% of animated trials. The histograms in Appendix C illustrate
titer distributions for all trials for each arrangement. These floor ef-
fects suggest that for stacked and adjacent charts, subjects reached the
artificial floor (max titer) and continued making errors without sub-
sequent adjustments to the titer value, such that their final titer value
reflects not their ability to do the task but the capped titer value. As
such, Experiment 1A is not able to quantify the true floor of perfor-
mance for these arrangements.

Note that this floor issue is unavoidable for many tasks. One solu-
tion for future research is a longer display time, but that could make

Fig. 5. Mean of final 5 titer values across participants performing the
MAXDELTA task. Gray bars represent 95% confidence intervals.

more effective arrangements (e.g. overlaid) too easy, resulting in a
ceiling effect and preventing comparison. Another solution is to con-
duct secondary tests of arrangements that are close in performance,
using combinations of titer ranges and timings that best drive apart
performance.

In summary, although this data set cannot be appropriately used
to directly compare the mean titers between stacked and adjacent ar-
rangements, it is clear that the MAXDELTA task was highly difficult in
stacked and adjacent bar charts.

There was no evidence for floor effects in subsequent experiments.

5.5 Exp. 1B: Slope charts (MAXDELTA task)
In slope charts, titer values were generally more precise and there were
slightly different observations as a function of arrangement. First,
Overlaid slopes outperformed all other arrangements (including An-
imated). Second, different types of Small Multiple arrangements did
not yield differing titer values (Fig. 5, center).

These observations were validated in a within-subjects ANOVA.
Final titer values for slope charts were affected by arrangement,
F(4,180) = 101.87, p < .001, η2

p = 0.69. Titer histograms did not
indicate floor effects. Planned comparisons assessed pairwise differ-
ences between arrangement types. Titers for overlaid slopes were sig-
nificantly more precise than those that were animated, t(45) = 10.13,
p < .001. There was no evidence that participants achieved more
precise titer values with horizontally mirrored small multiples com-
pared to non-mirrored small multiples that were horizontally arranged,
t(45) = .25, p = .8, or vertically arranged, t(45) = .77, p = .45. Ac-
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Fig. 6. Mean of final 5 titer values across participants performing the
CORRELATION task with bar charts (Experiment 2). Gray bars represent
95% confidence intervals.

curacy exhibited similar patterns as titer values.

5.6 Exp. 1C: Donut charts (MAXDELTA task)

The mean final 5 titer values for donut charts were affected by ar-
rangement, F(3,141) = 22.96, p < .001, η2

p = 0.33 (Fig. 5, lower).
Titer histograms did not indicate floor effects. Animated donuts out-
performed all other arrangements for the max-delta task. There was no
evidence that the split mirrored hemifields arrangement outperformed
the horizontal small-multiple donuts, t(47) = 1.26, p = .21. Accuracy
exhibited similar patterns of titer values.

5.7 Exp. 2: Bar charts (CORRELATION task)

For this task, participants saw two pairs of bar charts (Fig. 1, left,
Fig. 4(b)) and selected which pair had the highest correlation between
its two series of values. One pair was fixed at a Pearson’s R correlation
of 0.2, and the other pair was titrated such that its correlation became
closer to 1.0 (higher titer) or closer to 0.2 (lower titer; see Methods).

The mean final 5 titer values for Experiment 2 were affected by
arrangement, F(3.22,144.95) = 6.50, p < .001, η2

p = 0.13, with no
indication of floor effects (Fig. 6).

In contrast to Experiment 1, it is apparent there was no benefit of
animation over other arrangements: participants struggled to use mo-
tion to extract and compare correlations between data sets. Observer
performance had resulted in staircasing of the mean correlation (Pear-
son’s R) to 0.74 for observers to reliably choose it over the base pair
correlation of 0.20.

We conducted planned comparisons to assess whether mirrored
small multiples yielded more precise titers than the other small multi-
ple arrangements. Participants achieved more precise titer values with
mirrored compared to adjacent arrangements, t(45) = 2.13, p = .04.
They were able to perform correlation comparison when the target
correlation was 0.70 in mirrored charts, but needed a correlation of
0.75 for the same performance in adjacent chart arrangements. Ad-
jacent bar charts outperformed stacked ones, t(45) = 3.31, p = .002,
such that for these trials the correlation of the correct pair was 0.82 for
stacked charts.

Accuracy exhibited largely similar patterns as titer values, with the
exception that there was only marginally significantly higher accuracy
for mirrored compared to adjacent charts, t(45) = 1.95, p = .057.

6 DISCUSSION

In the MAXDELTA task of Experiments 1A-C, in which participants
identified the data series that had the most substantial change rela-
tive to other data series, animated charts consistently outperformed
all small multiple arrangements. Findings were mixed for overlaid
visualizations: they outperformed all other arrangements (including
motion) for slope charts, were better than any arrangement of multi-
ple bar charts, and did not seem to confer strong benefits over small
multiple arrangements. Finally, mirrored small multiple arrangements

marginally allowed participants to better identify the max-delta se-
ries (compared to other horizontal arrangements) only in bar charts.
Although animated charts outperformed others for the goal of the
MAXDELTA task, and as such is useful if an analyst’s goal is to rapidly
identify individual data points with the largest improvement or im-
pairment, it might not be an optimal encoding for other goals of the
observer or designer. Specifically, a maximum delta task may be a
special case in which velocity information directly encodes individual
data deltas but does not directly encode the visual information that ob-
servers use to inform other judgments, such as the overall correlation
or mean. In Experiment 2, participants judged which of two pairs of
charts had the most correlated data set. Here, animation did not lend
itself to detection of correlation. Instead, mirrored bar charts outper-
formed all other arrangements for detection of correlated data.

6.1 Limitations
There are several limitations that should be taken into account when
assessing our results. First of all, we limited our study to two data
series at a time, which provided consistency across arrangements and
allowed for a tractable number of combinations. In reality, however,
comparative techniques often must be applied to three or more sets,
adding another potential factor to the equation. This has additional
repercussions for a few of the visualizations in particular: For ani-
mated charts, there is clearly an upper bound on the number of anima-
tions that a person can meaningfully perceive at the same time [53, 67].
In other words, the high performance exhibited by the animated chart
may not generalize past a few charts. It is possible that animated charts
did less well for the correlation task in Experiment 2, which involved
two simultaneous animations, because of this limitation.

Mirroring implies only two datasets at a time, which means that this
arrangement is unlikely to scale. One can imagine four data sets that
are horizontal and vertical mirrors of each other. One way to scale
up this method would be to test different arrangements of quadrants
of data sets in biggest mover, correlation, and other tasks. Juxtaposed
(adjacent/stacked) as well as overlaid arrangements could probably in-
volve a higher number of datasets. However, as the number of simul-
taneous datasets increases, increasing screen distances between com-
pared values will likely start to have an impact. Our study did not test
any of these factors.

As with any graphical perception study, there are limitations how
these results generalize to actual visualization tasks. First of all, the
biggest mover and correlation tasks we studied here may not be rep-
resentative of high-level visual comparison tasks that users of data vi-
sualization actually perform in practice. While we believe that our
low-level tasks are building blocks for such higher-level tasks, we can
only motivate this with intuition. Second, even if our tasks do gener-
alize in this manner, it is not clear that measuring low-level difficulty
translates to better sensemaking performance. Sometimes, spending
more time to get a more accurate answer may be necessary for a spe-
cific task; sometimes it may be the inverse. Third, our study only in-
volved three representations: bar charts, slope charts, and donut charts.
While we think these are reasonably representative of many visualiza-
tions used in practice, we again do not claim to be exhaustive. Finally,
our data generation process is highly controlled and may not gener-
alize to real data. This is especially true of the MAXDELTA task, in
which animated performance clearly benefits from a lack of distrac-
tions. Though CORRELATION data are more randomly distributed, we
still constrain means and standard deviations to isolate similarity. In
reality, a variety of statistics of interest may vary across data series.

6.2 Implications for Visualization
The present results do not suggest an easy set of guidelines that spec-
ify a best arrangement or encoding for a given task. Instead, they
suggest that we are unlikely to discover such simple rules. This is not
surprising if one considers that the mapping from raw data to visual
comparison is mediated by a suite of visual features that the eye hap-
pens to extract and compare, and that set is determined by how the
visual system evolved and develops to perceive the natural world. To
produce guidelines, it will likely be necessary to empirically evaluate
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multiple tasks, across several types of visualizations, and several types
of arrangement designs. We suspect that some general guidelines will
arise, but each will have exceptions. But if this effort is combined
with attention to the visual features that could mediate [69] compari-
son judgments in each case (e.g., motion signals for animation; serial
inspection for stacked arrangements), the inclusion of those features
in a model may facilitate the generation of concrete guidelines.

We therefore consider a primary contribution of this paper to be a
demonstration of a method for empirically evaluating a given arrange-
ment design, for a given task, in a given visualization. Contrary to
widely held belief, we found animation to be extremely effective for
conveying salient differences between two datasets. While this is a
highly controlled instance, and thus may not extend to more complex
or dynamic data, our experiments at least show that animation can be a
valuable addition to the designer toolbox when the emphasis of differ-
ences is a priority. However, animation is not always a feasible method
of comparison, because its ephemeral nature requires constant interac-
tion and attention. If, instead, a small multiple display is desirable,
and it is only necessary to compare two datasets, our results support
the intuition that center-aligning horizontal, space-filling comparisons
inform the selection of axial directions to maximize preattentive detec-
tion of salient differences. Perhaps the most basic case of mirroring,
in which bar charts are simply center-aligned, is already in use and
has intuitive advantages. However, we provide here, for the first time,
an experimental validation of the utility of this practice. Further, our
results align with a hypothesized mechanism based on current under-
standing of the perception of symmetry.

7 CASE STUDY: MICROBIOME COMPARISON IN KRONA

While highly controlled experimental conditions are crucial to empir-
ical evaluation, they can often be at odds with the ecological validity
of the results [24]. In this case, for example, our studies show that
both mirror symmetry and animation can be beneficial in certain, spe-
cific contexts, but do those benefits extend to applications in the real
world? While it is nearly impossible to capture both aspects in the
same study, we sought to answer this question by complementing our
controlled study with a more ad hoc review by expert users.

7.1 Background
For an application, we chose exploration of the human microbiome, or
the communities of microorganisms that live in and on us. This do-
main is an extremely challenging one for visualization and an area
of active development and interest. Since a community of organ-
isms can be described at various levels of taxonomic granularity (i.e.
genus, species, etc.), even single datasets are complex and challeng-
ing to represent. Various hierarchical techniques have been employed
for the task, including Sunburst charts (as in Krona), Treemaps [54]
(as in MetaTreeMap [32]), and Sankey/flow diagrams [15] (as in Pa-
vian [14]). However, in each case, additional variables, such as change
between datasets, are difficult to introduce. For scientific data, which
often have control groups, the comparison of multiple data series is
nonetheless critical to making sense of the underlying information.

7.2 Method
Echoing our empirical studies, we adapted Krona, which already sup-
ported transitions similar to the animated arrangement, to implement
two additional comparative strategies reviewed above:3 adjacent and
mirrored (Fig. 7). We introduced the three techniques to two scientists
studying the microbiome at the National Human Genome Research In-
stitute in Bethesda, MD, USA. Both had prior experience with the tool
for exploration of single datasets.

7.3 Task
The main goal in exploring this type of data, as stated by the experts,
is to find significant differences in the fractions of particular organ-
isms, especially if they are pathogenic ones. Inherent in this task is

3Note that we did not include overlaid as it is not clear how to implement
this type of arrangement for sunburst charts, which are already nested hierar-
chically.

(a)

(b)

Fig. 7. Comparative modes implemented in Krona, an interactive sun-
burst display commonly used for biological data. Here, the skin micro-
biome of an individual is represented across two time points. Higher lev-
els (i.e. innermost rings) represent more general taxonomic categories,
allowing differences to be observed across various levels of granularity.
In (a), a single circle is split to provide mirror symmetry, corresponding
to the mirrored arrangement in the above experiments. In (b), the stan-
dard small multiple view of the same data is shown, corresponding to
the adjacent arrangement.

searching for the largest delta or deltas in any given view, making it an
appropriate setting for the MAXDELTA task in our earlier experiments.
The participants were presented with real data comparing human skin
microbiomes from two time points (“M3 skin” days 0 and 1) [16]. The
charts show the relative proportion of various species within each time
point as well as the aggregated proportions of more general taxa. We
asked the microbiologists to find significant differences between the
same two time points using all three arrangements (animated, adja-
cent, and mirrored). For example, in Figure 7(a), Gammaproteobacte-
ria (red wedges) decreases a large amount from day 0 to day 1 (left to
right), but looking more specifically within this group, Pseudomonas
actually increases. Rather than seeking a specific set of correct an-
swers, however, we instead gathered more qualitative feedback about
performing the task under the various conditions.
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7.4 Results
Consistent with the results of our perceptual studies, both participants
found that animation made differences particularly salient. However,
they also noted that, if the change was large, it shifted the other wedges
in a disorienting way. This is because, unlike in those studies, the po-
sitioning of the wedges could not be controlled using distractors. This
is an example of a caveat of extending the lessons of the perceptual
studies to a more ecological valid environment. However, it also could
suggest work to be done to take advantage of the benefits of animation
seen in those studies—for example, perhaps wedge ordering could be
optimized to minimize offsetting during a transition, as has been done
for stability in Treemaps [57].

It was also noted by the experts that animation could be engaging
for an audience when highlighting a specific difference, reiterating the
findings of Robertson et al. [52]. However, both participants preferred
static views when performing their own exploration or investigation.
One participant preferred small multiples due to its consistency with
standard sunburst charts and the ability to represent more than two
samples. The other, however, preferred the mirrored split view due to
the better use of space and smaller eye travel distance when making
direct comparisons between constituent taxa. Additionally, the case
study illuminated practical considerations of implementing these ar-
rangements. For example, the experts pointed out that small multiples
may be ideal for dissemination, which is often static and must reach a
wide audience that may not be familiar with the split mirrored view.

While this case study did not necessarily suggest an ideal arrange-
ment, it did help to bridge our empirical results to a more realistic
setting. Unsurprisingly, there was a consensus that each method had
strengths and weaknesses, and would be more appropriate for specific
contexts. If any conclusion can be made, it is perhaps that this plat-
form, and others, should have the flexibility to support many layouts,
allowing the user to switch between them to aid the task at hand.

8 CONCLUSION AND FUTURE WORK

The present results merely scratch the surface of potential insights
to be gained through empirical evaluation of combinations of visual
tasks, visualization types, and comparison arrangement designs. Even
that large testing space does not capture all of the important poten-
tial questions. For example, the advantages of mirror symmetry could
depend on other factors, such as displacement of the values being com-
pared, mark shape, axial distance, and the viewer’s comprehension of
the mirror metaphor. Further, while it was crucial for us to choose op-
erationalized tasks to perform quantitative analyses, real users of com-
parative visualizations can have multiple and nuanced goals, making
it important to explore more varied assays of visual efficacy.

Using very similar methods, reasonable next steps might include
asking participants to perform tasks more akin to what analysts do with
real data sets, such as selecting the chart with the highest overall mean
value (similar to the MAXDELTA task) or the most consistent change
between pairs (similar to CORRELATION). These methods could be
used to match efficacies of arrangements. For example, the results
of Experiment 1A suggest that in cases when animated charts are not
possible (such as for handouts), the best static alternative is one that
is overlaid—at least for the purposes of a max delta task. The fac-
tors we consider are also by no means the only, or even necessarily
the most important, elements of vision that could impact comparative
tasks. One could even test how multiple factors combine in a single ar-
rangement, for example animation in the context of mirrored displays.

While the possibilities for additional study are so myriad as to be
somewhat daunting, we hope that the initial excursion presented here
can serve both as a template and motivation for discoveries to come.
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A DATA GENERATION

Data were generated dynamically to allow real-time difficulty adjust-
ments. Each task required its own strategy for randomization, but both
were parameterized by a titer value, which represented a relative dif-
ficulty level, with higher values being easier. The STAIRCASE proce-
dure takes a number of trials until performance stabilizes around a titer
value. To determine how many trials would be suffice for titer stabil-
ity across arrangements for most participants, we conducted pilot tests
and analyzed the standard deviations of titer values, per arrangement,
in bins of every 5 trials. Standard deviations will be highest while
the titer is unstable, and decrease until reaching a stable plateau. This
method suggested that 20 trials for the MAXDELTA task and 30 for
CORRELATION would suffice so that the final 5 trials of reflect stable
titers.

A.1 MAXDELTA Task
A pair of datasets with controlled deltas was generated by varying
points of one dataset to create another. However, simply increasing
or decreasing one data point more than others—out of, say, of a nor-
mal distribution—would make it much more likely to be the largest
or smallest, circumventing the task. It was thus necessary for proper
evaluation of the task to devise a novel data generation algorithm. Our
method creates a bimodal distribution corresponding to the two ex-
tremes of a chosen maximum delta, ensuring that these points are well
masked by other data. The magnitude of this delta, and thus the dif-
ficulty of the task, is controlled parametrically by the titer value pro-
vided to the generation algorithm. In addition to changing the maxi-
mum, changing the titer also changes deltas of distractors. At the min-
imum (smallest difference) titer, every data point is changed a small,
equal amount (note that it is, by design, impossible to do better than
chance at this level, and in practice it is never reached). At the max-
imum (largest difference) titer, there are only two possible values for
the data points—the maximum uses both, while the others stay at one
and do not change at all. The data generation routine is depicted at a
high level in Algorithm 1. In summary, for a given titer value t, the
biggest mover will change by t times the chart’s range (from minimum
value to maximum value). The biggest moving distractor will change
by 1− t of that, the next biggest moving distractor 1− t of the first
distractor, and so on. For example, at a titer of 0.75, the delta of the
biggest mover will cover 3/4 the full range of the chart, the delta of
the first (randomly placed) distractor will cover 0.75× 0.25 = 3/16,
and that of the next will cover 0.75×0.25×0.25 = 3/64. The outputs
of this algorithm were linearly transformed as appropriate for the stim-
uli, e.g. to add minimum width to bars. Though higher titers should
always be easier, in practice, we found that difficulty increased above
0.75 due to alignment of bars. We thus capped the titer at 0.75 to
prevent participants from getting stuck in a valley of (ostensibly) low
difficulty. We confirmed the regularity of the data before the experi-
ment by running multiple iterations of the data generation routine and
observing the ordinal ranking of the answers among the distractors.
While there do appear to be areas of bias, we deem it highly unlikely
that detection of these patterns would be easier for a participant than
performing the task as intended.

A.2 CORRELATION Task
Randomized pairs of series with given correlations were created using
simulated annealing in an algorithm inspired by Matejka and Fitzmau-
rice [43]. Means and standard deviations were fixed within 10 per-
cent of the range to ensure correlation was analogous to “similarity”,
as described in the instructions. Correlation between the series was
calculated using Pearson’s correlation coefficient and transformed ac-
cording to the optimal formula for perceptual estimation according to
Rensink & Baldridge [51]. Titers we report for this experiment thus
correspond to g(r) in Equation 7 of the latter study.

B RENDERING

Charts were rendered in the participant’s web browser in real time
using the D3 [11] JavaScript library. Each individual chart (that is,
for a single data series), had a square dimension of 256 pixels for
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Algorithm 1 Max-delta data generation
1: procedure MAXDELTA(c, t) . c:=cardinality, t:=titer
2: a← [],b← []
3: for i = 0 to c−1 do
4: r← rand() . r ∼U,r ∈ R,0≤ r ≤ 1
5: x← t ·

√
r

c−i

6: y← x+ t(1− t)i

7: if i%2 == 1 then
8: x← 1− x
9: y← 1− y

10: if rand()< 0.5 then
11: push a,x
12: push b,y
13: else
14: push a,y
15: push b,x
16: return a,b

all MAXDELTA experiments. For CORRELATION experiments, ren-
derings with four charts used a square dimension of 200 pixels, while
renderings with two charts used a square dimension of 141 pixels (pro-
ducing equivalent total chart area). Note that the actual number of
screen elements corresponding to a “pixel” can vary with hardware
configuration, due to the advent of HDPI (high dot-per-inch) displays.
Bar charts would not be affected by this variable because of their or-
thogonal nature, and we chose sufficient line thickness to mitigate the
effect for slope charts. Subsets of the Tableau 10 [46] were chosen to
maximize (qualitatively) perceived uniqueness; 7 for bars, 3 for slopes,
and 4 for donuts. For the overlay arrangement, the saturation and lumi-
nance of each color were slightly reduced in one dataset to distinguish
adjacent elements. Other arrangements kept the original colors consis-
tently across pairs of data sets. All charts were drawn on white back-
grounds, with faint gray boundaries delimiting the chart areas. The
web page automatically initiated full-screen browsing mode to avoid
distraction during the study, though the persistence of this state was
not enforced programmatically.

C TITER FREQUENCIES FOR EXPERIMENT 1A
Frequency counts of titers (across all trials) by arrangements from
Experiment 1A are shown in Figure 8, for all non-excluded partic-
ipants. Participants disproportionately reached the maximum titer
value (0.75) for stacked (vertical small multiple) and adjacent (hori-
zontal small multiple) arrangements.
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