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Abstract
This paper examines potential biases and inconsistencies in the
emotions evoked by images produced by generative artificial in-
telligence (AI) models and their potential bias toward negative
emotions. We assess this bias by comparing the emotions evoked
by an AI-produced image to the emotions evoked by prompts used
to create those images. As a first step, the study evaluates three
approaches for identifying emotions in images—traditional super-
vised learning, zero-shot learning with vision-language models,
and cross-modal auto-captioning—trained on and compared with
a large dataset of image-emotion annotations that categorizes im-
ages across eight emotional types. Results show fine-tuned mod-
els, particularly Google’s Vision Transformer (ViT), significantly
outperform zero-shot and caption-based methods in recognizing
emotions in images. For a cross-modality comparison, we then
analyze the differences between emotions in text prompts—via ex-
isting text-based emotion-recognition models—and the emotions
evoked in the resulting images. Findings indicate that AI-generated
images frequently produce images with negative emotions, particu-
larly fear, regardless of the original prompt. This emotional skew
in generative models could amplify negative affective content in
digital spaces, perpetuating its prevalence and impact. The study
advocates for a multidisciplinary approach to better align AI emo-
tion recognition with psychological insights and address potential
biases in generative AI outputs across digital media.

CCS Concepts
• Human-centered computing → Empirical studies in HCI; •
Computing methodologies→ Computer vision problems.
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1 Introduction
The information environment increasingly relies on visual media,
with visual-first platforms like YouTube, Instagram, Pinterest, and
TikTok comprising four of the top five most-used social media plat-
forms in the US [16]. In studying these online spaces, the academic
consensus has increasingly solidified around two findings: 1) the
presence of visual media increases online engagement [1, 13], and
2) highly emotional content—especially negative—also increases
this engagement [27, 33]. At the same time, generative AI models’
ever-growing hunger for training data has lead to increased use
of social media and creator-content as training data for modern
large- and visual-language models. Together, these factors have the
potential to produce an “unvirtuous cycle” between generative AI
models and the information environment fromwhich large volumes
of training data are collected. In this cycle, content creators produce

more emotionally evocative visual media to gain more engagement,
generative AI systems then over-represent negative emotions in the
media they produce, which then feeds back into the information
environment, receives more engagement, gains a larger share of
visual media we see, and gets ingested in the next round of training
generative-AI systems.

This paper begins an investigation of this unvirtuous cycle by de-
veloping scalable emotion-recognitionmethods for images and com-
paring these emotions to those present in the underlying prompts.
To support the emotion-recognition task, we evaluate three ap-
proaches: traditional supervisedmethods using pre-trained computer-
vision models, zero-short learning with state-of-the-art vision-
language models, and cross-modal auto-captioning approaches.
Leveraging the EmoSet dataset [38], which contains manually la-
beled image-emotion pairs for 118,102 images, we demonstrate
that fine-tuning computer vision models—particularly Google’s Vi-
sion Transformer (ViT) [10]—substantially outperforms zero-shot
and auto-captioning approaches, with textual auto-captioning ap-
proaches performing particularly poorly in comparison. Using this
fine-tuned ViTmodel coupled with a state-of-the-art model for emo-
tion recognition in text [4, 5], we compare the emotions present
in a text-based generative-AI prompt to the emotions evoked by
the produced image. Ideally, the distributions of emotion present
in generated images should mirror the distribution in the under-
lying prompt used to generate this image. We suspect, however,
that this unvirtuous cycle between generative AI and the informa-
tion environment instead produces an anti-social outcome: that
generative-AI systems are biased toward producing images that
evoke negative emotions regardless of the underlying prompt.

Results show that, for the task of emotion recognition in im-
ages, fine-tuning off-the-shelf computer vision models, particularly
Google’s ViT (𝐹1 = 0.7343), substantially outperforms zero-shot
learning using vision-language models (best 𝐹1 = 0.3150) and au-
tomated captioning approaches (best 𝐹1 = 0.2154)—zero-shot and
auto-captioning are much closer to each other performance-wise.
Then, to assess the potential biases between the emotions evoked by
AI-generated images and the text prompts that are used to generate
them, we apply thesemodels to image-prompt pairs fromWang et al.
[36]. We find, for at least one popular generative AI text-to-image
model (i.e., StableDiffusion), the emotions evoked by an image do
appear more negative than their source prompts, where the Sta-
bleDiffusion images from the dataset substantially over-represent
fear, whereas the prompts primarily show excitement. To extend
this analysis beyond one generative model, we also sample 200
prompts from the DiffusionDB dataset and use GPT-4o to generate
new images using state-of-the-art generative processes; our results
are consistent for this subset as well, where GPT-4o images also
over-represent fear relative to the source prompts. These results
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yield evidence of the concerning hypothesis above, namely that
a AI-based image-generation models may nudge their users and
audiences toward negative emotions. This finding is particularly
concerning given the state of our modern information environment,
where we know negative emotions are contagious [19]. Hence, we
advocate for a multidisciplinary approach to better align AI emo-
tion recognition with psychological insights and address potential
biases in generative AI outputs across digital media.

2 Related Work
This investigation builds on work from two main communities:
scholars of fairness and bias in AI systems, and computational so-
cial science scholars of the information environment. From the
first community—which includes many aspects of AI evaluation
and auditing—major concerns have arisen over the potential for
unintended harms caused by AI systems, such as the unvirtuous
cycle we outline. Raji et al. [32] frames such concerns as an “ac-
countability gap” between system development and deployment,
where such systems are generally not evaluated until after they have
been deployed and have potentially “already negatively impacted
users.” Many instances of related work have focused on gender and
ethnic biases in generative systems, such as findings outlined in
Currie et al. [7], where “generated images included a disproportion-
ately high proportion of white male medical students” compared
to the actual population. Likewise, the study of DALL-E in Cheong
et al. [3] demonstrates pervasive gender and racial biases across
depictions of occupations. These issues are not limited to image
generation either, as Choudhury [6] illustrates language-specific
biases as well. Hence, strong academic consensus exists concerning
generative AI’s potential “to reproduce, exacerbate, and reinforce
extant human social biases” [3].

To date, however, few studies have examined how these systems
are biased in the kind of emotional content they produce. Worry-
ingly, Kramer et al. [19] shows how negative emotions spread in
online spaces, such that increasing the supply and exposure to neg-
ative emotional content can impact the psychological well-being of
those exposed and downstream audiences. This effect and others
concerning emotion in the modern information environment are
complex, covering a wide variety of fields. Journalism has reckoned
with the role of emotion in its field, as Kotisova [18] describes an
erosion of traditional objectivity-focused journalism in the face
of crisis reporting, and Wahl-Jorgensen [35] further advances this
shift as part of a reaction to the new media environment, where
audiences are generally more emotionally engaged. Similarly, polit-
ical science has long engaged with the role of emotion in politics,
with multiple competing theories driving continued research [22].
Understanding the intersection of emotion and political science
in the modern, online information environment has increasingly
garnered attention as well, with new findings on the role of emo-
tion in information quality and mobilization. Casas and Williams
[1], for example, finds online audiences are particularly mobilized
to engage in protest when exposed to images of their friends and
images that evoke enthusiasm and fear.

Further, studies of information quality in online spaces increas-
ingly point to the role of emotion in mediating consumption of
high-quality content. We have strong evidence that emotion drives

online engagement with political content [27], and political elites
benefit from highly hostile and emotionally engaging content [33].
Martel et al. [23] further demonstrates how emotionality increases
susceptibility to uptake of low-quality content.

Given these biases toward and effects of negative emotions, our
hypothesis that generative AI systems trained using the vast vol-
umes of online, digital-trace data would, as Cheong et al. [3] sug-
gests, “reproduce, exacerbate, and reinforce” this anti-social bias.
Understanding—and by extension controlling—this bias is critical
to advancing solutions to the AI accountability gap Raji et al. [32]
describes, while also necessary for enhancing the quality and re-
siliency of our information space.

3 Methods
3.1 Datasets for Images, Emotion, and AI

Prompts
For model finetuning and initial evaluation, we leverage the EmoSet
dataset. Each of the 118,102 images in themulti-class dataset is anno-
tated as one of 8 discreet emotions: Amusement, Awe, Contentment,
Excitement, Anger, Disgust, Fear, or Sadness.

To evaluate our central hypothesis that generative AI systems
are biased towards negative emotions, we leverage the DiffusionDB
dataset: a text-to-image prompt dataset containing 14 million im-
ages generated by Stable Diffusion using prompts and hyperparam-
eters specified by real users. We evaluate the salience of emotions
within both the prompts and images contained in the 2m-first-5k
subset of this dataset.

3.2 Emotion Identification in Images
We seek to explore and evaluate different approaches for identifying
emotions in AI-generated images, aiming to find the most effective
strategies for capturing complex emotional cues. To this end, we
leveraged three distinct mechanisms, each targeting a different as-
pect of emotion recognition. First, we employed zero-shot image
classification models (BLIP [20], CLIP [31], and ALBEF) to estab-
lish a baseline without task-specific fine-tuning. These models were
chosen to assess the potential of large-scale pre-trained models to
generalize across a wide variety of emotional contexts. Second,
we fine-tuned image classification models such as Google ViT,
Microsoft SWIN Transformer, and ConvNeXT [10, 21, 37], fo-
cusing on training these models on specialized emotion datasets to
enhance their ability to recognize subtle and context-specific emo-
tions. Finally, we implemented an auto-captioning pipeline using
BLIP-2 and GPT-4 Vision to generate detailed captions for each
image, which were then analyzed by text-based emotion classifiers
to evaluate whether adding contextual information could improve
emotion recognition accuracy. This presents insights into the curi-
ous empirical question of how emotion insight/characteristics are
transferred across modalities

To rigorously assess the effectiveness of each approach, we
measured macro-average precision, macro-average recall, and
macro-average F1 scores. These metrics allowed us to evaluate
not only how accurately each model predicted emotions but also
how well they generalized across different emotional categories.
This three-pronged methodology provided a comprehensive analy-
sis, allowing us to compare the strengths and weaknesses of each
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approach and gain insights intowhich strategies weremost effective
for capturing the diverse range of emotions present in AI-generated
images. By combining zero-shot models, fine-tuned classifiers, and
a hybrid captioning approach, we aimed to explore the interplay
between visual features and textual context in emotion recognition
tasks.

3.2.1 Zero-Shot Learning with Vision-Language Models. As an ini-
tial step in our study, we employed zero-shot image classification
models—BLIP, CLIP, and ALBEF—from the LaViS (Language and
Vision) toolkit to establish benchmark results for emotion recogni-
tion in AI-generated images. These models were selected for their
ability to perform image-text alignment tasks without requiring
task-specific fine-tuning, allowing us to rapidly assess the baseline
capabilities of general-purpose vision-languagemodels in capturing
emotional content.

CLIP (Contrastive Language-Image Pretraining), developed
by OpenAI, is trained on a vast dataset of image-text pairs to learn
a shared embedding space for images and text. By measuring the
similarity between an image and textual descriptions, CLIP can
perform zero-shot classification by selecting the label whose text
best matches the image. This makes it a powerful tool for tasks
requiring semantic understanding without additional training.

ALBEF (Align Before Fuse) enhances image-text alignment
through contrastive learning before fusing the modalities for down-
stream tasks. By aligning visual and textual representations prior
to fusion, ALBEF captures nuanced cross-modal relationships, mak-
ing it effective for tasks like image-text retrieval and, in our case,
preliminary emotion recognition.

BLIP (Bootstrapping Language-Image Pre-training) focuses
on bootstrapping the learning of vision-language representations
using large-scale, noisy web data. It employs a bootstrapping ap-
proach that iteratively refines the model’s predictions, improving
its understanding of the relationship between images and text. BLIP
is versatile for tasks such as image captioning and zero-shot im-
age classification, bridging the gap between vision and language
without extensive fine-tuning.

By utilizing these models, we aimed to quickly evaluate the fea-
sibility of extracting emotional content from images using models
that leverage large-scale pre-training on diverse datasets. Although
these zero-shot models performed less effectively than the fine-
tuned image classifiers, their use was instrumental in establishing
initial benchmark results. They highlighted the limitations of ap-
plying general-purpose models to specialized tasks like emotion
recognition, emphasizing the need for models trained on domain-
specific data. This initial benchmarking informed our subsequent
decision to fine-tune more specialized models.

3.2.2 Fine-Tuning VisionModels for Classification. In this study, we
selected Google’s Vision Transformer, ConvNeXT, and Microsoft’s
Swin Transformer for fine-tuning on the task of extracting emotions
from AI-generated images. These models were chosen due to their
diverse architectural designs, strong performance on benchmark
datasets, and potential to capture the nuanced features associated
with emotional content. By selecting these three models, we aimed
to explore a spectrum of architectural paradigms—pure transform-
ers (ViT), modernized CNNs (ConvNeXT), and hybrid architectures

(Swin)—to assess their effectiveness in extracting emotions from
images.

The Vision Transformer (ViT) applies the transformer ar-
chitecture to computer vision by treating images as sequences of
patches. This allows ViT to leverage self-attention mechanisms
to capture global context and long-range dependencies within an
image, which is crucial for recognizing emotions that emerge from
the overall composition and interrelationships of different regions.

ConvNeXT was selected as a modernized convolutional neural
network (CNN) that incorporates design principles from transform-
ers while retaining the efficiency of traditional CNNs. Its convo-
lutional layers excel at capturing local features and fine-grained
details, essential for identifying subtle emotional cues conveyed
through textures and small visual elements.

The Swin Transformer introduces a hierarchical architecture
with shifted windows, enabling it to process images at multiple
scales. This multi-scale representation is particularly useful for
capturing both coarse and fine details associated with different
emotional expressions. Its efficient computation balances modeling
power with practical resource usage, making it suitable for complex
tasks like emotion recognition.

This diversity in design allows us to evaluate how different
approaches handle the emotion extraction task, leveraging their
unique strengths. Additionally, all three models have demonstrated
state-of-the-art performance on image classification benchmarks,
indicating their strong feature extraction capabilities essential for
our study. The availability of pre-trained weights for these models
facilitates effective fine-tuning on our specialized dataset, which
is crucial given the complexity of emotion recognition. Further-
more, the combination of global context modeling (ViT), local fea-
ture extraction (ConvNeXT), and multi-scale representation (Swin
Transformer) provides a comprehensive toolkit for capturing the
multifaceted and subtle nature of emotional content in images.

After fine-tuning, we gather macro-precision, macro-recall, and
macro-f1 scores for each base model architecture and select the one
with the highest macro f1.

3.2.3 Auto-Captioning Models. To test cross-modality emotion
capture, we implement an auto-captioning pipeline to generate
textual descriptions of images, which were then analyzed using
textual emotion classification models (results evaluated on the De-
MuX/MeMO [4, 5] model with Semeval [26], Paletz [28], and GoE-
motions [9] models, explained in the following section). We selected
BLIP-2 and GPT-4 Vision as our captioning models for this task.
The choice of these models was driven by their advanced capabil-
ities in image captioning and their potential to enhance emotion
recognition through detailed and context-rich descriptions.

By incorporating BLIP-2 andGPT-4 Vision into our auto-captioning
pipeline, we aimed to leverage their respective strengths in gener-
ating high-quality image captions to enhance emotion recognition
accuracy. BLIP-2’s proven effectiveness in zero-shot tasks and its
upgraded capabilities made it a suitable choice for autonomous
caption generation. In contrast, GPT-4 Vision’s advanced vision-
language integration and the use of a specific prompt allowed us to
explore the impact of detailed and exhaustive captions on emotion
classification outcomes. This strategic selection enabled us to inves-
tigate how the quality and depth of image captions influence the
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performance of textual emotion classification models, contributing
valuable insights to the fields of affective computing andmultimodal
analysis.

Our decision to include BLIP-2 was influenced by the strong
performance of its predecessor, BLIP, in our initial zero-shot model
tests for emotion recognition. BLIP demonstrated superior ability
among zero-shot models to capture relevant features associated
with emotional content in images. Building on this success, we
opted to use BLIP-2, the upgraded version, to leverage its improved
performance and enhanced capabilities in image captioning.

BLIP-2 excels in generating descriptive and contextually rich
captions without the need for supplementary prompts, allowing for
an unbiased and autonomous interpretation of the visual content. Its
bootstrapping approach iteratively refines predictions, improving
the model’s understanding of complex visual cues, including those
related to emotions. By utilizing BLIP-2 in our pipeline, we aimed to
generate accurate captions that effectively represent the emotional
nuances present in the images, providing a solid foundation for
subsequent textual emotion classification.

We also selected GPT-4 Vision for its state-of-the-art vision
capabilities and proficiency in generating comprehensive and de-
tailed image captions. GPT-4 Vision integrates advanced language
understanding with visual processing, enabling it to produce ex-
haustive descriptions that capture subtle and complex aspects of
the image content.

Our rationale for including GPT-4 Vision was to assess whether
the exhaustiveness and detail in the captions would significantly
impact the accuracy of emotion recognition when analyzed by
textual emotion classification models. Given that GPT-4 Vision is at
the forefront of current technology, we anticipated that its ability
to generate more detailed and nuanced captions would enhance
the detection of emotional content by providing richer context and
capturing subtle visual cues associated with different emotions.

To focus the captioning process on emotional aspects, we pro-
vided GPT-4 Vision with the prompt: "Generate a descriptive caption
for this image that can help a model identify the emotion present."
This directive was intended to guide the model toward highlighting
elements relevant to emotion recognition, potentially improving
the performance of the subsequent classification models.

Down-Sampling toMinimize GPT Costs. Restricted byAPI pricing,
we opted to only caption 200 images rather than the full validation
subset that BLIP2 captioned, allowing us to cost-effectively generate
benchmarks.

3.2.4 Validating Automatic Emotion Recognition in Images. To as-
sess the validity of our highest-performing emotion-recognition
model for visual media, we follow a method outlined in De Bruyne
et al. [8]. We sample 𝑛 = 200 image-label pairs from our automati-
cally labeled images and assess whether we agree (A), agree with
doubt (D), or disagree (N) with the emotion label. From these mea-
sures, we compute the acceptance rate as (𝐴 + 𝐷)/(𝐴 + 𝐷 + 𝑁 ).
For comparison, we also measure this acceptance rate against the
original EmoSet dataset. For EmoSet, we see an acceptance rate =
0.96, and for Google’s ViT, we see 0.86, lower but still quite high.

3.3 Emotion Identification in Text
Two points in this research require emotion extraction from text.
Firstly, our Auto-captioning pipelines utilize visual image caption-
ing tools to caption a series of images. Those captions are then
processed through text-emotion extraction models. Secondly, to
extract emotion distributions from the prompts in the DiffusionDB
dataset, which we later compare with emotion distributions from
the corresponding images.

We leverage three models from the DeMuX-MEmo models to
classify text into discrete emotions due to its state-of-the-art ability
to handle complex, multi-label emotion recognition tasks. These
models were specifically designed to leverage the relationships
between emotions, making it an ideal choice for classifying the
emotional content present in text. We specifically test models pre-
trained on the Semeval-2018, Paletz, and GoEmotions benchmarks.

One of the core reasons for selecting DeMuX-MEmo is its su-
perior performance in multi-label settings, where more than one
emotion may be present in a single piece of text. Unlike traditional
models that treat each label independently, DeMuX-MEmo inte-
grates the correlations between emotions, understanding that cer-
tain emotions often co-occur. For instance, emotions like fear and
sadness are frequently linked, and recognizing such connections is
critical for accurate emotion classification. This capability is par-
ticularly valuable in our work, where texts often convey complex
emotional states, rather than single, isolated emotions.

DeMuX-MEmo also includes a regularization mechanism that
leverages both global and local emotion correlations. By under-
standing these relationships, the model reduces the risk of making
contradictory predictions. For example, if a text is classified as ex-
pressing both "joy" and "sadness," the model will use its learned
correlations to resolve these conflicting predictions more intelli-
gently than models without this capability. This level of sophistica-
tion is essential for our work, where subtle emotional nuances are
common.

3.4 Comparing Emotion Across Modalities
Assessing whether substantial bias exists in emotions evoked by
AI-generated images compared to those that are evoked by the
prompts that create them is a key motivation for this work. Directly
measuring this divergence is problematic, however, given the dif-
ferent emotions present in the EmoSet dataset versus those in our
text-based methods (e.g., the GoEmotion-based pretrained DeMuX-
MEmo model includes “joy” and “surprise”, which are not present
in the EmoSet labels, and conversely, EmoSet includes “awe”, which
is not present in the GoEmotion pretrained dataset). Consequently,
we measure two related values: First, we assess Spearman’s 𝜌 rank
correlation between emotions in images and the emotions in text,
following the validation process outlined in Paletz et al. [28]. In this
assessment, we expect positive and significant correlations among
related emotions.

As our second evaluation, we directly compare the prevalence of
positive and negative emotions present in each modality provided
by the Wang et al. [36] dataset. If our central hypothesis about
potential biases toward negative emotions among generative AI
systems, the DiffusionDB dataset should over-represent negative
emotions in the images compared to text.
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4 Results
4.1 Emotion Classification in Images
Table 1 shows results for the emotion-recognition task across our
three learning modalities—via multimodal zero-shot models, fine-
tuned computer vision models, and automatic image captioning.
The zero-shot models in Table 1a—BLIP-base, CLIP-ViT-B-16, and
ALBEF-base—served as our initial benchmark for emotion recog-
nition without fine-tuning. Across all three models, the overall
macro-averaged F1-scores were notably low, indicating limited ef-
fectiveness in generalizing emotional cues from the images. Notably,
some models demonstrated a tendency to heavily over-predict par-
ticular emotions, as evidenced by high class recall but poor class
precision for those emotions (emotion recognition performance is
provided in the supplemental material). For example, CLIP-ViT-B-
16 achieved a recall of 0.722 for “Amusement” but had near-zero
recall for “Contentment” and “Disgust”. The model identified a
disproportionately high number of images as “Amusement” while
struggling to recognize other emotions accurately.

The fine-tuned image classifiers in Table 1b—Google’s ViT, Mi-
crosoft’s SWIN Transformer, and ConvNeXT—performed signifi-
cantly better in recognizing emotions than the zero-shot models.
These results suggest task-specific training greatly enhanced their
ability to capture the diverse range of emotions present in images.
Among these models, Google ViT emerged as the strongest per-
former, with an overall macro-averaged F1-score higher than all
other methods.

Lastly, Table 1c shows results of the novel use of auto-captioning
methods to translate images into text-based captions, where we
can leverage the many text-based emotion-recognition models. To
assess performance in emotion extraction across the EmoSet dataset,
we primarily relied on BLIP-2 (Table 1c), as we could run this model
on-premises across the full dataset. To assess performance across a
variety of text-based emotion-recognition models, we make use of
three pre-trained configurations in the Demux-MEmo [5] package,
each of which is trained on a separate text-based emotion dataset:
GoEmotions [9], Paletz et al. [28], and SemEval [26]. Regardless of
the selected pre-trained model configuration, however, we see that
auto-captioning is less performant than the zero-shot multimodal
models.

4.1.1 Comparing BLIP2 versus GPT-4o. To investigate potential per-
formance implications from our selection of BLIP2 for automatic
captioning, we also generated a sample of image captions using the
more expensive and performance GPT-4o interface. Results using
GPT-4o are shown in Table 2, where we see that the pre-trained
version of Demux-MEmo on the GoEmotions data outperforms the
equivalent model using BLIP-2, but the results are not sufficiently
higher compared to the zero-shot model to change our approach.
This difference in performance may be attributable to more de-
tailed captions compared to BLIP-2. This outcome suggests that
the increased descriptiveness of GPT-4o’s captions, which were
expected to provide more context and detail for emotion classifi-
cation, did not lead to a substantial improvement in performance.
Looking within specific emotions for instance, the F1-scores for
key emotions like “Excitement" and “Fear” were similar across both
pipelines. The comparable performance between the BLIP-2 and

GPT-4o pipelines indicate that the descriptiveness of captions may
not be the primary factor influencing emotion recognition accuracy.
Instead, the challenge appears to stem from the inherent difficulty
in accurately transferring emotional cues from visual to textual
modality.

4.2 Comparing Emotions in Prompts and
Generated Images

4.2.1 Cross-Correlations Between Modalities. Figure 1 shows the
Spearman correlations among pairs of emotions extracted from
the prompt (using DeMuX) and from the image (using the Google
ViT). This figure suggests negative emotions (anger, disgust, fear,
and sadness) align relatively well across these modalities compared
to positive emotions. For the positive emotions, joy in prompts
corresponds to both amusement and contentment in images, and
excited correlates with awe, but surprise and amusement in prompts
is less correlated with the positive emotions in images. For context,
the scale of correlations seen here—[−0.2, +0.2]—is close to that in
Paletz et al. [28], where most correlations within the positive and
negative sets of emotions are in the 0.3 range.
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Figure 1: Cross-Modality Spearman 𝜌 Correlations Between
DeMuX and EmoSet. Results show general alignment for the
negative emotions (anger, disgust, fear, and sadness). Align-
ment is less clear in the positive emotions, where joy in
prompts corresponds to both amusement and contentment
in images, and excited correlates with awe, but surprise and
amusement in prompts is less correlated with the positive
emotions in images.
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Model Precision Recall F1
BLIP-base 0.4039 0.3275 0.3150
CLIP-ViT-B16 0.3809 0.2417 0.1695
ALBEF-base 0.3459 0.2371 0.2033

(a) Zero-Shot

Model Precision Recall F1
Google ViT 0.7380 0.7313 0.7343
MS SWIN 0.7065 0.6932 0.6973
ConvNeXT 0.6865 0.6685 0.6740

(b) Fine-Tuned

Model Precision Recall F1
GoEmotions 0.2552 0.2197 0.2154
Paletz 0.1425 0.1808 0.1225
SemEval 0.1525 0.2081 0.1406

(c) Auto-Captioning

Table 1: Image-based Emotion-Recognition Macro-Average Performance Across Learning Strategies (bolded results are highest).
Results show fine-tuned computer vision models outperform zero-shot and caption-based methods by a substantial margin
when predicting emotion classes in EmoSet [38]. Auto-captioning methods use BLIP2 to generate captions and Demux-MEmo
[5] for text-based emotion extraction.

Model Precision Recall F1
GoEmotions 0.2932 0.2610 0.2236
Paletz 0.1171 0.1531 0.0799
SemEval 0.1224 0.1513 0.0896

Table 2: Sampled Auto-Captioning via GPT-4o. Results are
comparable to BLIP-2-based auto-captioning for the GoEmo-
tions pre-trained Demux-MEmo model but are appear sub-
stantially below the BLIP-2 for the other pre-trained model
configurations.

For comparison, we also take the highest-performing model by
macro-F11 from the Papers with Code leaderboard on text classifica-
tion in emotions,2 a RoBERTa derivative. This model uses Amazon’s
SageMaker and its Hugging Face Deep Learning container. Results
for the negative emotions are quite similar, though the positive
emotions do not exhibit as high correlations as with DeMuX (poten-
tially an artifact of a difference in DeMuX’s multi-label approach
to discrete emotion classification versus the sagemaker-RoBERTa-
base-emotion multi-class construction).

4.2.2 Comparing Most Prevalent Emotions. Table 3 compares the
rankings of most prevalent emotions in images (via Google ViT) to
those present in the prompts. Comparing the emotions evoked by
the images to either the DeMuX- or RoBERTa-based models, fear
is far more prevalent in the images than in the prompts. Looking
specifically at the comparison between Google ViT’s image labels
and DeMuX’s prompt labels (where cross correlations are stronger
than with the RoBERTa model), fear goes from the most prevalent
in the images to the second-to-least prevalent in the prompt. This
result yields evidence that, for at least the images from DiffusionDB,
AI-generated visuals tend to produce more negative and fearful
content than the prompt may otherwise suggest.

As a post-hoc analysis using a more recent generative AI model,
we sample an additional 200 prompts from the DiffusionDB dataset
and use OpenAI’s GPT-4o system to generate new images from
these prompts. Applying our Google ViT emotion recognition
model to these newly generated images yields the emotion distribu-
tion in Table 4. Again, fear dominates the images, and excitement
dominates the prompts. These results are largely consistent with
those from DiffusionDB-generated images.

In both cases, these results are likely not attributable solely to
modeling errors, as our manual validation of our fine-tuned ViT
model still has a high acceptance rate (0.86). A resulting interval

1Jorgeutd/sagemaker-roberta-base-emotion
2https://paperswithcode.com/sota/text-classification-on-emotion
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Figure 2: Cross-Modality Spearman 𝜌 Correlations Between
Amazon’s SageMaker and EmoSet. Negative emotions appear
similarly aligned compared to DeMuX, but positive emotions
show less alignment.

Table 3: Cross-Modality Emotion Rankings Between Images
and Prompts. Values in the parentheses show average propor-
tions. At least for the DiffusionDB-produced images, those
images appear to over-represent fear relative to the emotions
evoked by the text-based prompts.

Image Text

Google ViT DeMuX RoBERTa
1 Fear (0.33) Excitement (0.43) Joy (0.54)
2 Amusement (0.20) Joy (0.18) Anger (0.24)
3 Awe (0.12) Surprise (0.11) Fear (0.10)
4 Anger (0.09) Amusement (0.09) Sadness (0.06)
5 Sadness (0.08) Anger (0.06) Surprise (0.04)
6 Excitement (0.07) Disgust (0.05) Love (0.03)
7 Contentment (0.06) Fear (0.05) - -
8 Disgust (0.04) Sadness (0.04) - -

https://paperswithcode.com/sota/text-classification-on-emotion
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Table 4: Cross-Modality Emotion Rankings Between Images
and Prompts Using ChatGPT-4o. GPT-4o-generated images
also over-represent fear relative to the emotions evoked by
the text-based prompts.

Image Text

Google ViT (GPT-4o Images) DeMuX
1 Fear (0.38) Excitement (0.43)
2 Amusement (0.24) Joy (0.17)
3 Awe (0.11) Surprise (0.11)
4 Sadness (0.08) Amusement (0.09)
5 Anger (0.07) Anger (0.07)
6 Excitement (0.06) Fear (0.06)
7 Contentment (0.05) Disgust (0.05)
8 Disgust (0.02) Sadness (0.04)

around the fear emotion in both StableDiffusion and GPT-4o would
not alter its top ranking in prevalence.

5 Discussion and Limitations
5.1 Unvirtuous Cycles and Emotional Bias
While work from affective computing, psychology, communications,
AI, and journalism have all studied various aspects of emotions,
emotional inducement, and emotionality in imagery, the modern
information ecosystem presents challenges at the intersection of
these spaces. In isolation, findings from HCI show images tend to
increase engagement with content in online spaces, findings from
psychology show emotional elicitation varies by modality [34], and
still other findings show journalistic sources’ preference for violent
visuals are both influence by and can impact real-world loss of
life [25]. Likewise, studies of generative AI systems show clear
non-conscious racial and gender biases[11, 17] . Given the feedback
loop between humans and the AI systems governing our tools and
online spaces, one should anticipate large, generative AI systems
that are trained on extensive collections of digital trace data will
reflect similar biases.

Our results find evidence for such emotional biases in the au-
tomated production and generation of visual media. These find-
ings persist in images generated by both StableDiffusion and by
DALL-E, suggesting a result endemic to generative models rather
than an isolated incident; naturally, a larger sample of models is
needed to examine this possibility further, but these two methods
are broadly available to the general public. This availability, while
valuable for democratizing content creation, increases the potential
harms negative emotional bias may wrought. As Kramer et al. [19]
demonstrates, negative emotion is contagious in online spaces; this
contagious is especially problematic in light of increasing trends of
anxiety disorder in the US, especially among youths [15], with such
harms especially impacting young women [12]. These unintended
consequences are not limited to emotional well-being and mental
health either. Casas and Williams [1] also demonstrates the implica-
tions of negative imagery for political mobilization and instability,
where exposure to negative—especially fear-inducing—visuals in-
creased likelihood to protest.

5.2 Breaking Unvirtuous Cycles
We hope a main outcome of this work is to stimulate additional
work in addressing emotional bias in generative AI systems and
raising emotional bias to an important dimension of studies in bias.
Crucially, however, a first step in breaking this unvirutous cycle
is raising awareness of such emotional bias, as this awareness can
empower users to acknowledge and account for its existence. We
need not rely solely on individual awareness though, as we can also
adapt interfaces from the fairness literature [29] into new tools that
empower users and designers to create more robust, intentional,
and pro-social generative-AI systems.

5.3 Limitations in Emotion Labeling: Mapping
Across Diverse Emotion Sets

EmoSet employs the Mikel model with eight categories, i.e., amuse-
ment, awe, contentment, excitement, anger, disgust, fear, sadness,
where the former four are positive emotions and the latter four
are negative ones. The Paletz model, however, contains 22 distinct
emotions; GoEmotions contains 27 distinct emotions; and SemEval
contains 11 emotions. Additionally, there are inconsistencies across
different datasets and model configurations in terms of which emo-
tions are even contained. GoEmotions, Paletz, and SemEval all lack
awe and contentment, and SemEval furthermore lacks amusement
and excitement. These inconsistencies pose a minimal concern in
our prompt-image emotion comparison analysis, as 𝜌 correlations
are evaluated regardless of emotion synonymity and are left to fur-
ther analysis by the reader. However, in evaluating auto-captioning
pipelines, this poses a notable challenge, as discreet emotions in
Paletz, GoEmotions, and SemEval need to be mapped to correspond-
ing emotions in EmoSet even if they aren’t directly present in order
to evaluate F1 scores.

To resolve these inconsistencies, we discard extraneous emotion
configurations from the models that don’t map to EmoSet Labels.
For EmoSet labels that do not have an exact match to a DeMuX-
MeMO configuration, we map a corresponding emotion from the
configuration. Table 5 identifies mappings made across models and
datasets for pipeline evaluation.

The cause behind low F1 scores for the auto-captioning pipeline
could lie within the fundamental multi-class vs. multi-label modality
issue, the mapping inconsistency issue, or a tertiary, unidentified
issue.

5.4 Limitations in Emotion Labeling:
Multi-Class Versus Multi-Label

This investigation has revealed a key limitation in the current
datasets available, particularly in the mismatch between the com-
putational task’s structure and the underlying psychological theory.
Namely, EmoSet’s annotation process constrains every image to
evoke a single emotion. In this process, images first automatically
receive an emotion label based on keywords associated with Mikels’
eight-category model [24], retrieved during a web-scraping process.
Human annotators then assess these labels for validity (rather than
independently generating these labels manually). To finalize an
image’s emotion label, at least 7 out of 10 annotators must agree.
Although Yang et al. [38] recognizes the inherent ambiguity of
emotion recognition, this process still assigns only a single emotion
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Table 5: Emotion mappings across models and datasets. Dis-
tributions for emotions in the lower half were not analyzed.
*Embarrassment, **Dissapointment

EmoSet GoEmotions Paletz SemEval 2018
amusement amusement amusement joy
awe surprise wonder surprise
contentment joy happiness trust
excitement excitement excitement optimism
anger anger anger anger
disgust disgust disgust disgust
fear fear fear fear
sadness sadness sadness sadness

love love anticipation
optimism surprise love
embar* hate pessimism
admiration contempt
pride embr*
gratitude admiration
relief sexual attraction
confusion cuteness/kama muta
annoyance pride
approval nostalgia
caring empathic pain
curiosity gratitude
desire envy
disapt** relief
disapproval confusion
grief
nervousness
realization
remorse

to each image, creating a multi-label classification problem. Addi-
tionally, because annotators merely confirm emotions, they may
assign an image to a certain emotion even if that emotion does not
dominate the image’s overall emotional impact. For example, if an
emotion evokes mostly contentment and some joy, but is automati-
cally assigned the emotion of joy, annotators will confirm that the
emotion evokes joy even while disagreeing that joy is the image’s
primary emotion.

While the EmoSet annotation process ensures consistency and
scalability while paralleling existing emotion-recognition tasks
from natural language process [2], it oversimplifies the complexi-
ties of emotional evocation. Specifically, as outlined in Paletz et al.
[28], emotions are states that can be experienced and evoked simul-
taneously, and emotion annotation should reflect this multi-label
structure inherent to the task. This difference in multi-class ver-
sus multi-label structure also has important implications for the
modeling of emotion and its impact on social media engagement.

We can also point to instances in the EmoSet dataset where
such deviations are present, such as in Figure 3a, which shows a
statue of the Buddha. The associated EmoSet label for this image
is one of “awe”, though depictions of the Buddha are often asso-
ciated with themes of joy, contentment, awe, and other positive
emotions. Similarly, Figure 3b shows a yawning cat, labeled “anger”
in EmoSet, but this image may also evoke contentment, amusement,
or cuteness/kama muta, the last of which a particularly important

(a) Image Awe_07047, contain-
ing a smiling Buddha figure.
Annotated as "Awe”.

(b) Image Anger_07047, con-
taining a stretching cat. Anno-
tated as "Anger”.

Figure 3: EmoSet Images and Single Emotion Labels.

dimension in online spaces [14]. This issue is not new, as images
have long been understood to evoke similar yet distinct emotions
between various viewers, both in the computer vision space [30]
and in psychology [34]—where different modalities have shown
varying efficacy in emotional inducement.

This mismatch is not specific to EmoSet—as the foundation in
Mikels et al. [24] explicitly seeks to identify the most salient emotion
in a given image—but structuring the emotion recognition task as
a multi-class one is problematic for two key reasons:

(1) Images are known to evoke multiple similar and distinct
emotions, and two annotators may disagree on which emo-
tion is the most salient. Forcing one emotion then impacts
the validity of the label.

(2) Emotions are not easily distinguishable, as we see signifi-
cant overlap between Amusement, Awe, Contentment, and
Joy. Similarly, other emotion classifications beyond those
used by EmoSet contain both positive and negative emo-
tions with much overlap. Training models to identify sin-
gular emotions within images without considering overlap
between alternate emotions raises similar validity concerns.

5.5 Limitations in Emotion Labeling: Lacking a
“Neutral” Class

Image classification models fine-tuned on EmoSet (i.e this paper’s
ViT, ConvNeXT, and SWINmodels) treat multi-class image emotion
classification as a zero-sum task and confidently project that a
given image contains a significant amount of at least one emotion.
In reality, many images may be neutral or may strongly evoke
multiple separate emotions. Further complicating the matter is that
EmoSet has no "neutral" classification for training purposes and
similarly doesn’t quantify how evocative a given emotion is. This
creates skewed comparisons with the text emotion classification
models, which identify multiple distinct emotions without treating
the task as zero-sum. While the text models can identify relatively
low amounts of multiple emotionswithin a single prompt, the image
models are forced to identify high levels of only a single emotion,
even if there are other emotions within the same image and/or the
identified emotion is relatively minimal within the image because
the image is primarily neutral.

5.6 Future Work
5.6.1 Auto-Captioning. A key area for future work involves ex-
amining the impact of caption length and descriptiveness on the
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accuracy of emotion recognition in images. Longer, more descrip-
tive captions—such as those generated by ChatGPT— are richer in
detail and contextual information. For example, the smiling Buddha
image in Figure 3a is captioned as:

BLIP a buddha statue with a colorful ribbon around it
ChatGPT A serene and weathered statue of the Buddha in a

meditative pose, draped with a colorful fabric sash, exuding
a sense of peace, tranquility, and timeless wisdom. The aged
stone and soft expression of the figure evoke an aura of calm
reflection and spiritual depth.

Thus, we hypothesize that ChatGPT as an auto-captioning model
should bemore effective. However, the results did not alignwith this
expectation. Table 2 and Table 1c demonstrate that ChatGPT cap-
tions led to only a marginal improvement in the GoEmotions model,
and the other models performed worse with ChatGPT-generated
captions compared to BLIP. Considering a smaller sample size of
evaluated GPT captions, we essentially see a negligible effect from
the descriptiveness of the captions.

We propose three potential explanations for these results: (1)
ChatGPT may hallucinate emotions not present in the image, lead-
ing to inaccurate captions; (2) the task itself may mismatch with the
training paradigms of the emotion recognition models, which are
not explicitly designed to identify emotions from cross-modal data;
and (3) inherent challenges, such as the multi-class versus multi-
label nature of emotion recognition and cross-modality limitations,
may contribute to the observed discrepancies.

Based on these results and hypothesized rationales, we call for
further investigation and research into the broader effectiveness of
auto-captioning techniques for emotion identification and whether
the descriptiveness of captions meaningfully impacts model accu-
racy.

5.6.2 Novel Datasets. To address the limitations identified in sec-
tions 5.2 - 5.4, we call for the construction of a new, comprehensive
image-emotion dataset. Each image should be annotated with a
numerical rating for a set of distinct emotions; i.e any given image
should have a rating 0-10 for amusement, awe, contentment, etc.
Treating emotions in images in this multi-label manner and fur-
thermore quantifying the emotions should allow models to more
comprehensively identify emotional salience and classify images
with unclear salience.

6 Conclusions
Though this paper assesses and selects multiple methods for rec-
ognizing emotions in images and text, this work is in service of
the larger question concerning the potential for an unvirtuous cy-
cle emerging in the feedback loop between content created for/or
online spaces and the content produced by generative AI systems.
Our analysis finds evidence that at least two generative AI models,
one of which is at or near current state of the art, are likely to
over-represent negative emotion in the images that they generate
compared to the prompts from which these images were generated.
This bias towards negative emotion has substantial implications for
the health of the online information environment and the emotional
and psychological well-being of the users of these generative AI
systems.While these results may only be specific to Stable Diffusion
and ChatGPT-4o/DALL-E, the popularity and ease of general access

to these models may exacerbate this emotional biases. Through
this work, we hope to shed light on this potential unvirtuous cycle
and anti-social feedback loop so that future work can establish new
measures to correct for it and educate and empower users of these
technologies.
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