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Abstract

We present a novel generalized zero-shot algorithm to rec-
ognize perceived emotions from gestures. Our task is to map
gestures to novel emotion categories not encountered in train-
ing. We introduce an adversarial autoencoder-based repre-
sentation learning that correlates 3D motion-captured gesture
sequences with the vectorized representation of the natural-
language perceived emotion terms using word2vec embed-
dings. The language-semantic embedding provides a repre-
sentation of the emotion label space, and we leverage this
underlying distribution to map the gesture sequences to the
appropriate categorical emotion labels. We train our method
using a combination of gestures annotated with known emo-
tion terms and gestures not annotated with any emotions. We
evaluate our method on the MPI Emotional Body Expres-
sions Database (EBEDB) and obtain an accuracy of 58.43%.
We see an improvement in performance compared to current
state-of-the-art algorithms for generalized zero-shot learning
by an absolute 25–27%. We also demonstrate our approach
on publicly available online videos and movie scenes, where
the actors’ pose has been extracted and mapped to their re-
spective emotive states.

Introduction
Emotion learning as an area of research is integral to
a variety of domains, including human-computer inter-
action, robotics (Liu et al. 2017) and affective comput-
ing (Yates et al. 2017). Existing research in emotion recog-
nition has leveraged aspects such as facial expressions (Liu
et al. 2017), speech (Jacob and Mythili 2015), gestures and
gaits (Bhattacharya et al. 2020a) to gauge an individual’s
emotional state. Studies in psychology indicate that humans
perceive emotions by observing affective features such as
arm swing rate, posture, and frequency of movements. Re-
cent work such as that by Bhattacharya et al. (2020a) com-
bine such affective features with pose dynamics extracted
using spatial-temporal graph convolutional networks (ST-
GCN) (Yan, Xiong, and Lin 2018) to map pose sequences
to labeled emotions.

A major challenge in these machine learning-based
emotion recognition algorithms is the requirement for
significantly-sized, well-labeled datasets to build classifi-
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Figure 1: Generalized zero-shot Emotion Recognition from
gestures1: We use gesture sequences from both seen and
unseen classes of emotions as inputs to our AAE-based
representation learning algorithm. We capture the spatial-
temporal representation of 3D motion-captured gesture se-
quences in our network and correlate them with the seman-
tic representation of the corresponding perceived emotion
term. Our network can accurately recognize emotions not
seen during training and has an overall accuracy of 58.43%.

cation algorithms on previously labeled emotions. How-
ever, considering the wide spectrum of emotions for hu-
mans (Zhou et al. 2016) and different emotion representa-
tions, it is tedious and often prohibitively expensive to de-
velop large-scale datasets with an adequate number of in-
stances for every emotion. Zero-shot learning has recently
drawn considerable attention to overcome such issues where
labels of different classes are unavailable. It provides an al-
ternative methodology that does not rely on existing labels.
Instead, it relies on utilizing the relationships between vari-
ous seen and unseen classes to automatically determine the
appropriate labels.

In the generalized zero-shot learning (GZSL) paradigm,

1https://gamma.umd.edu/unseen gesture emotions
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Figure 2: Public Video Results: In order to validate our re-
sults, we use publicly available videos wherein the individ-
uals are unambiguous in their emotive state. Using the net-
work introduced in (Pavllo et al. 2019), we extract the 3D
pose of the person and then feed that into our network to
recognize the emotion.

a network learns to recognize all classes, seen and unseen,
while being trained with data annotations available only for
seen classes. The model learns to generalize on the unseen
classes by leveraging information from other modalities,
such as language semantics, to create class embeddings cor-
responding to each label. Recent approaches to the zero-shot
problem have used generative models (Mishra et al. 2018)
to synthesize features for the unseen classes, which are then
used for the classification task. GANs and VAEs have been
the most prominent methods to synthesize these features.
However, Shi et al. (Shi et al. 2019) have shown that the
representation of multi-modal distributions by VAEs can re-
sult in sub-optimally learned representations. While GANs
can create higher quality features than VAEs, the latent dis-
tribution spaces they learn can be susceptible to mode col-
lapse(Goodfellow et al. 2014).

On the other hand, adversarial autoencoders (AAEs) cre-
ate more closely aligned latent distributions than VAEs or
GANs (Makhzani et al. 2015). Therefore, we build on the
network by Makhazani et al. (Makhzani et al. 2015) to de-
velop our network architecture.

Main Results. We present a generalized zero-shot algo-
rithm to recognize perceived emotions from 3D motion-
captured gesture sequences represented as upper-body
poses. Zhan et al. (2019) have previously shown emotion
perception from images in a zero-shot paradigm. To cap-
ture the semantic relationships between the emotion classes,
we leverage the rich word embeddings of the pre-trained
word2vec model (Mikolov et al. 2013). A fully supervised
emotion recognition network generates a feature vector cor-
responding to a sequence of gesture inputs. We use an au-
toencoder architecture coupled with an adversarial loss to
generate latent representations for the gesture-based feature
vectors learned from the fully supervised network corre-
sponding and another adversarial loss to align these latent
representations with the semantically-conditioned distribu-
tion space of the emotion classes. Our main contributions
include:

1. A generalized zero-shot learning (GZSL) algorithm,
SC-AAE, based on a semantically-conditioned adversar-
ial autoencoder architecture. We train it to learn a map-
ping between the gesture-feature vectors corresponding
to 3D motion-captured gesture sequences and the seen
and unseen perceived emotion classes expressed in natu-
ral language. To the best of our knowledge, our method
is the first to classify unseen perceptual affective labels
in a zero-shot learning fashion.

2. A fully supervised emotion recognition algorithm,
FS-GER that classifies 3D motion-captured gesture se-
quences to seen emotion classes. We use this architecture
to generate the feature vectors for input to our SC-AAE
for generalized zero-shot learning.

Our fully supervised network achieves a validation accu-
racy of 77.61% with the seen emotion classes in the MPI
Emotional Body Expressions Database (EBEDB) (Volkova
et al. 2014), which outperforms state-of-the-art methods for
fully supervised action and emotion recognition by 7–18%
on the absolute. More importantly, we achieve an accuracy
of 58.43% on EBEDB over the collective set of 11 seen and
unseen emotion classes, outperforming state-of-the-art ZSL
methods by 25–27% on the absolute.

Related Work

We provide an overview of emotion representation, emotion
recognition from non-verbal body expressions, and relevant
developments in zero-shot learning.

Emotion Recognition

Recent works in emotion recognition showcase the
correlation between gaits and inherent psychological
stress (Sanders et al. 2016). Sapiński et al. (2019) use deep
learning methods to identify emotion states from gestures
extracted from videos. Studies by Wegrzyn et al. (2017)
identified peoples’ emotional states through psychological
studies of human facial expressions. With the advent of deep
learning, various works have emerged that use vision-based
methods (Akputu, Seng, and Lee 2013) to determine emo-
tional state from facial expressions or audio signals using
speech (Deng et al. 2017). Recently, a number of works
have used multiple modalities, including speech and facial
expressions, in determining emotions (Albanie et al. 2018).
One distinction that needs to be made is between emotion
recognition from gestures and action recognition. Action
recognition methods learn a latent space fine-tuned for ac-
tions while we learn a latent space fine-tuned for emotions.
Emotion recognition relies more on the relative movements
of adjacent groups of nodes. On the other hand, as stated by
Bhattacharya et al. (2020b), the action recognition methods
STGCN, DGNN, and MS-G3D focus more on the move-
ments of the leaf nodes, i.e., hand indices, toes, and head.
These nodes are useful for distinguishing between actions
such as running and jumping but do not contain sufficient
information to distinguish between perceived emotions.
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Figure 3: Network overview: Our network consists of a feature extraction pipeline that takes the sequence of gestures (T : time
steps, V : joints or nodes) and extracts the relevant high-level features. We feed these features into a semantically-conditioned
adversarial autoencoder, which projects them onto a latent space by aligning it with the word-level semantic features provided
by word2vec. Our network encoder generates two latent vectors corresponding to the embeddings for the gestures and the word
embeddings. We use two discriminators to adversarially train the latent distribution spaces of both the gestures (LAdv-feat) and
the semantic embeddings (LAdv-lang). During inference, we only require the learned latent word embeddings to predict the
emotion labels.

Generalized Zero-Shot Learning
In zero-shot learning (ZSL), both seen and unseen data are
used for training, but label prediction is only attempted and
evaluated on the unseen classes. By contrast, in generalized
zero-shot learning (GSZL), the prediction task is executed
for both seen and unseen classes. GZSL is more challenging
than nominal ZSL because of the hubness problem (Dinu,
Lazaridou, and Baroni 2014), which occurs when the model
overfits to the trained classes. Recently, generative methods
have become popular in GZSL, which uses either generative
adversarial networks (GANs) (Mishra et al. 2018) or varia-
tional autoencoders (VAEs) (Schonfeld et al. 2019) to gener-
ate features for unseen classes. Traditional GZSL generative
models rely on a data augmentation method, which gener-
ates features of interest that have been hitherto unseen by
the model during training.

Hubert et al. (Hubert Tsai, Huang, and Salakhutdinov
2017) have shown that mapping the joint visual-language
features to a joint latent space instead of the language space
gives higher accuracy. Schonfeld et al. (2019) use uncondi-
tional VAEs and achieve multi-modal alignment via cross-
reconstruction and distribution alignment. In our algorithm,
we build on the network used by them to perform our latent
space embedding and classification tasks. Considering the
multiple modalities used to learn the distribution in our ap-
proach, e.g., language semantics for emotions and gestures,
we rely on methods that correlate the learned distributions of
these modalities to estimate the semantic relation between
the classes accurately.

Method
In this section, we define the problem statement and describe
our approach in detail. We present an overview of our pro-
posed algorithm in Figure 3. It consists of two main com-
ponents, the fully supervised gesture emotion recognition
(FS-GER) network and the semantically-conditioned adver-
sarial autoencoder (SC-AAE). We train FS-GER to trans-

form sequences of 3D motion-captured poses at the input
to emotion-aware feature vectors. We also use the word2vec
representation to obtain the semantic word-level embedding
for the specific emotion label names. We use the feature vec-
tors and the corresponding semantic embedding as inputs to
SC-AAE. The encoder part of SC-AAE outputs a class se-
mantic label as well as a latent vector. We pass the generated
label and the latent vector through two corresponding dis-
criminators that use the adversarial loss to discriminate be-
tween the generated and the ground-truth values for both the
labels and the latent vectors. For classification, we use the
encoder to output the corresponding semantic labels, which
we then match with the relevant class labels.

Problem Definition
We formally define our problem statement in this section.
Let

S =
{
(x, y, c (y)) | x ∈ X, y ∈ Y S , c (y) ∈ C

}
(1)

be a set of input data. Here, x denotes an input vector em-
bedding representing a sequence of gestures, y is the corre-
sponding class label, which in our approach is the associated
emotion, and c (y) is the semantic embedding corresponding
to the class label. In our work, we use the word2vec rep-
resentation for the semantic description (described later in
Section ). We also have the auxiliary training set

U =
{
(u, c (u)) | u ∈ Y U , c (u) ∈ C

}
(2)

for all the unseen classes. Here, u denotes an unseen class
from the set Y U , which is disjoint from Y S . Our task at hand
is the GZSL task, which evaluates the network on both seen
and unseen classes, denoted by fGZSL : X → Y S ∪ Y U .

We approach our problem of GZSL in the transductive
setting (Wan et al. 2019). In the transductive setting, the pre-
trained network has access to the unseen classes, but the data
points in these classes do not have any associated labels. We
create a single dummy label for all the gestures belonging
to all the unseen classes during feature extraction using the
fully trained FS-GER network.
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Figure 4: Fully Supervised Network for Emotion Recogni-
tion from Gestures (FS-GER): Our network comprises of
three ST-GCN layers, followed by a single 1×1 convolu-
tion layer. The input data is of the form T : time Steps (510
at 30 fps) × V : nodes (10 joints) × 3 (dimension of nodes).
The convolution output is appended with the affective fea-
tures, A, and then passed through subsequent Fully Con-
nected (FC) layers to generate a 64-dimensional feature de-
scription vector. This layer is passed through an FC of size
7 (total number of classes on which it is trained). The soft-
max layer uses this for classification. The 64-dimensional
embedding is extracted from the network after the fully su-
pervised step for the GZSL task.

Fully Supervised Gesture Emotion Recognition
(FS-GER)
We show an overview of FS-GER in Figure 4. The input to
the network is a sequence of poses of size T (time steps) ×
V (nodes) × 3 (position coordinates). Because gestures are
a periodic sequence of poses, we use ST-GCN (Yan, Xiong,
and Lin 2018) to capture the localized spatial and tempo-
ral relationships between the pose joints for the input gaits.
The first ST-GCN layer has 64-layers while the second and
third have 128 and 256-layers, respectively. We pass the out-
put of each ST-GCN layer through a ReLU activation func-
tion and a BatchNorm layer. We feed the output of last ST-
GCN layer through a 1× 1 convolution layer, giving a 128-
dimensional feature. We append this feature with an affec-
tive feature computed directly from the gestures (described
next). We subsequently pass the appended vector through
three fully connected (FC) layers to give a 7×1 feature vec-
tor for the seven emotion classes in our transductive setting
(six seen classes Y S and one dummy class for all the unseen
emotions Y U ). We use softmax to produce the label proba-
bilities for classification.

Affective features. Affective features are physiological
measures that humans are known to observe when perceiv-
ing others’ emotions. Following prior work (Randhavane
et al. 2019), we consider two kinds of affective features, pos-
ture and motion features.

• Posture features. These consist of distances between
pairs of joints, as well as angles and areas formed by
three joints.

• Motion features. These consist of velocity and acceler-
ation of joints of interest in the gesture.

However, different from prior work, we consider only
the upper-body joints for computing affective features since
gestures are predominantly expressed in the upper part of

Features Description
Volume Bounding Box

Angle

With shoulders at neck
With neck and left shoulder at right shoulder
With neck and right shoulder at left shoulder
With vertical-direction and back at neck
With head and back at neck

Distance Between right wrist and root joint
Between left wrist and root joint

Area Triangle between neck and wrists

Speed
Of left wrist
Of right wrist
Of head

Acceleration
Of left wrist
Of right wrist
Of head

Jerk
Of left wrist
Of right wrist
Of head

Table 1: Affective Features. We extract the posture and the
motion features from an input gait using emotion character-
ization in visual perception and psychology literatures.

the body. Based on visual perception and psychology liter-
ature (Crenn et al. 2016), we use a total of 18 affective fea-
tures as summarized in Table 1.

Language Embedding
The key idea in our zero-shot learning is to utilize the se-
mantic relationship between multiple classes of emotions
to determine the association between various gesture se-
quences and the seen and unseen emotion classes. The
word2vec (Mikolov et al. 2013) representation gives a 300-
dimensional embedding vector based on the semantics of the
word. Using the vector representations for all emotions, we
can ascertain the level of “closeness” or “disparity” between
them. For the unseen classes, these representations give us
the underlying relationship between instances of that class
and other classes in the seen and unseen domains, allowing
us to classify them into the appropriate categories.

We represent the set of emotions as

E = {e1, e2, e3, . . . , en} , (3)

where {ei} ∈ R300 is the word2vec representation of the
emotion-word. This way, we can relate two specific emo-
tions by the Euclidean ℓ2-norm distance to ascertain their
adjacency.

Semantically-Conditioned Adversarial
Autoencoder (SC-AAE)
In our current method, we build on the work of Makhzani
et al. (2015) to create an adversarial autoencoder, which
learns from the semantic distributions of data in the language
space as well as the gesture space. We regularize the VAE in
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such a setting by matching the posterior q (z | x) to a prior
p (z) distribution. The training of the network takes place in
two phases:
• the reconstruction phase, where the autoencoder updates

the encoder and the decoder to minimize the reconstruc-
tion error of the inputs, and

• the regularization phase, where the adversarial network
first updates its discriminative network to separate the
true samples from the generated samples. The generator
we use to compute the adversarial loss in our case comes
from the encoder network of the VAE.

Network Architecture
FS-GER (Figure 3) outputs a 64-dimension feature vec-
tor for the respective gesture input sequence. Correspond-
ingly, we get the 300-dimensional language embedding us-
ing word2vec. The encoder for SC-AAE predicts the latent
vector corresponding to the gesture z and the class semantic
label, ŷ. We pass the generated labels and vectors through
two separate discriminators that help discriminate between
the desired samples from the prior and those generated by
the encoder. After the training, we use the encoder to gen-
erate the relevant semantic labels, which identifies the pre-
dicted emotion labels corresponding to that gesture inputs.

Loss Functions
We aim to minimize the cross-alignment loss between ges-
tures and the word-labels. Since we have two separate
modalities, we utilize two separate VAEs akin to those
in (Schonfeld et al. 2019) to map the inputs to a common
latent space. We write our VAE loss as

LV AE = Eqϕ(z|x)
[
log pθ

(
x(i) | z

)]
− βDKL

(
qϕ

(
z | x(i)

)
∥pθ (z)

)
.

(4)
Here, DKL denoted the Kullback–Leibler (KL) divergence
that aligns the desired distributions. In our algorithm, we fur-
ther use the adversarial losses to align the prior distributions
with the encoder output.

Adversarial Loss. Following standard formulation, we
write the adversarial loss for a discriminator as

LAdv = Ex∼p(x) [logD (x)] + Ex∼pθ(x̃|z,a) [log (1−D (x̃))].
(5)

We use two adversarial losses in our network, corresponding
to the two discriminators. For the label discriminator, a cor-
responds to c (y), which is an element of E , in Equation 3.
We denote this by LAdv-lang . For the feature discriminator, a
corresponds to an element from the generated features from
a prior distribution p (z) and we denote the adversarial loss
for this by LAdv-feat.

Collectively, we can write our net loss as

Lnet = LV AE + γLAdv-lang + δLAdv-feat, (6)

where γ and δ are weighing functions.

Experiments and Results
We present experiments and results for our zero-shot clas-
sification task in this section, including the details of our
network and the hardware configuration.

Dataset
We train and evaluate our network on the MPI Emo-
tional Body Expressions Database (EBEDB) (Volkova et al.
2014). It consists of 1, 447 3D motion-captured sequences
of natural-emotion body gestures from actors as they nar-
rated specific lines. All body movements were captured at
120 fps. The original dataset consists of information regard-
ing 23 joints in the body. However, because we are interested
in gestures made by the upper body, we select V = 10 joints:
the head, neck, right-shoulder, left-shoulder, right-elbow,
left-elbow, right-wrist, left-wrist, backbone, and pelvis. We
ignore the lower-body joints as there is no significant mo-
tion in those joints. Each sequence is annotated with one of
11 categorical emotion classes.

To evaluate our model, we split the 11 available emotion
classes in MPI EBEDB into a roughly equal split of six seen
classes and five unseen classes. To ensure an unbiased eval-
uation, we split the 11 emotion labels randomly into two
sets of seen and unseen labels five times. The results we
present here are the mean values of all five experiments.
During the training phase, the model learns only from the
six seen classes. Since there are multiple possible combina-
tions for choosing these five unseen classes and there are no
fixed criteria in particular for this dataset for zero-shot learn-
ing, we conduct five experiments in which we successively
select five random classes from the available 11 classes. Our
results are averaged over these five experiments. We use a
train-test split of 80%− 20%.

Currently, MPI EBEDB is the only publicly dataset that
maps human gestures to their emotional states. As a result,
we evaluate and discuss our results only on this particular
dataset. However, to validate our results, we use popular on-
line videos and movie scenes that are largely unambiguous
with regard to the emotional states of the people or the char-
acters. For validation, we further labeled these videos with
expert annotators. We show some of these video snapshots
in Figure 2.

Training Details
All our encoders and decoders are multi-layer perceptrons
with two hidden layers. More hidden layers reduce the per-
formance because the gesture-features and language em-
beddings are very high-level representations and generally
sparse; hence more layers would result in loss of crucial fea-
tures for classification.

We use 100 hidden units each for the encoder and the
decoder. The discriminators consist of two hidden layers
with 100 hidden layers each for the language-embedding
model, while the discriminator for the gesture-feature vec-
tor has two hidden layers of size 100 and 32, respectively. In
our work, we use our FS-GER to generate a 64-dimension
feature vector corresponding to the gestures and a 300-
dimension word2vec feature encoding the emotions.

We train the model for 200 epochs by stochastic gradient
descent using the Adam optimizer (Kingma and Ba 2014)
and a batch size of 6 for features. Each batch consists of
pairs of extracted gesture features and matching attributes
from different seen classes. Pairs of data always belong to
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Method Accuracy
ST-GCN (Xian et al. 2018) 59.12%
STEP (Bhattacharya et al. 2020a) 70.38%
FS-GER (Ours) 77.61%

Table 2: Classification accuracies for fully supervised emo-
tion recognition methods on the seen emotion classes (bold
is best).

the same class. We keep the values of γ and δ constant and
discuss how we choose their values in Section . Our net-
work takes around 6 minutes to train on an Nvidia RTX 2080
GPU.

Performance of FS-GER
We compare the performance of FS-GER with previous
methods on emotion recognition (Bhattacharya et al. 2020a),
as well as action recognition (Yan, Xiong, and Lin 2018).
In (Yan, Xiong, and Lin 2018), the authors introduce ST-
GCNs to perform action recognition. The network takes a
sequence of gaits as input and uses the spatial relation be-
tween the various joints and their temporal locations to cre-
ate a mapping between the motion sequences and their ac-
tions. In (Bhattacharya et al. 2020a), the authors develop an
emotion-specific embedding method to augment the graph
convolution network’s ability to map motion patterns to per-
ceived emotions. In addition to capturing the spatial and
temporal variance of the joints, they extract certain affective
features that capture semantics more specific to emotions.

We show the overall network architecture for our network,
FS-GER in Figure 4. We train all networks from scratch
using all the upper-body joints as per their input require-
ments. We classify for the same set of six seen classes and
one dummy class corresponding to the five unseen classes.
Based on the MPI EBEDB (Volkova et al. 2014), we have
T = 510 time steps and V = 10 joints in the upper body.

We report the performance of all the methods in Table 2.
We observe that our method outperforms the other meth-
ods by 7–18% on the absolute, as a result of using the rele-
vant set of joints and affective features. We use our proposed
emotion classifier network to generate features for the sub-
sequent GZSL framework.

Related Methods for GZSL
We compare with GZSL methods for image classification,
which are the closest existing alternatives to our GZSL ap-
proach. Similar to our method, these methods also attempt
to learn mappings from visual as well as spatial-temporal
feature vectors to semantic descriptions.

We compare with state-of-the-art image classifica-
tion problems in the GZSL paradigm, such as CADA-
VAE (Schonfeld et al. 2019), f-CLSWGAN (Xian et al.
2018), and CVAE-ZSL (Mishra et al. 2018). Schonfeld
et al. (2019) implement two separate VAEs and use cross-
reconstruction losses to align them. Xian et al. (2018) use
a GAN-based reconstruction to generate unseen features

and leverage the Wasserstein distance to align the multiple-
distributions. Mishra et al. (2018), the authors implement a
standard VAE architecture and add semantic labels to the in-
puts for calculating the reconstruction loss.

For a fair comparison, we trained all these methods from
scratch on MPI EBEDB (Volkova et al. 2014).

Evaluation Metric for GZSL
Following prior methods in the GZSL paradigm (Schonfeld
et al. 2019; Xian et al. 2018), we evaluate our performance
using the harmonic mean of the accuracies on the seen and
the unseen classes. The harmonic mean is given by

H =
2 · accseen · accunseen
accseen + accunseen

, (7)

where accseen and accunseen represent the accuracy of ges-
tures from the seen and the unseen classes, respectively.
The harmonic mean is preferred over the more conventional
arithmetic mean in this paradigm because the arithmetic
mean gives a large value if the seen class accuracy is much
greater than the unseen class accuracy. By contrast, the har-
monic mean only gives a large value both the seen, and the
unseen class accuracies are large, providing a more accurate
reflection of performance.

Performance of SC-AAE
We evaluate our proposed GZSL approach (SC-AAE) with
the other approaches for the GZSL task in Table 3. We report
the harmonic mean of the accuracies for the seen and the un-
seen classes, as achieved by each method. We observe that
SC-AAE outperforms the other approaches by 25–27% on
the absolute. f-CLSWGAN (Xian et al. 2018), which con-
ditioned GANs on image classification, suffers from mode
collapse. CADA-VAE (Schonfeld et al. 2019), while align-
ing the language-semantic and gesture-feature spaces effec-
tively, fails to create representative features for the unseen
classes, which can help in recognition. CVAE-ZSL (Mishra
et al. 2018), which was built for the action recognition task,
does not generate robust features for emotion recognition.
We show some of the visual results for our method in Fig-
ure 5.

Analysis of the Generalized Zero-Shot Model
In this section, we present an analysis of our zero-shot learn-
ing architecture, including the choice of hyperparameters
and the size of the latent space. For additional analysis and
details, please refer to the technical appendix.

Hyperparameters. We use two hyperparameters, γ and δ,
for regularizing the loss of our network (Equation 6). These
weigh the effect of the adversarial losses of our two discrimi-
nators, for the language embedding and for the extracted gait
features, on the training process. Fixing γ at 1, we varied δ
between 0.1 and 2 during training. On account of the heav-
ier usage of the word2vec embedding in the determination
of classification accuracy, we found δ = 1.5 to give us the
highest harmonic mean of accuracies, and therefore we have
used this value to report our results. Changing γ while keep-
ing δ fixed at 1.5 did not result in any significant changes, as
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Figure 5: Visual Results: The top row shows three sets of gestures in temporal order from left to right, which map to the correct
seen emotions during classification. The bottom row consists of three gestures mapped to the correct unseen emotions during
training.

Method Harmonic Mean
CADA-VAE (Schonfeld et al. 2019) 33.27%
f-CLSWGAN (Xian et al. 2018) 30.18%
CVAE-ZSL (Mishra et al. 2018) 31.74%
SC-AAE(Ours) 58.43%

Table 3: Harmonic mean of classification accuracies on seen
and unseen classes by different methods on our GZSL task
(bold is best).

these changes were largely overshadowed by the gains from
changing δ. Hence, we set γ = 1 for our experiments.

Size of Latent Embedding. The latent embedding refers
to the size of the gesture feature vector used in our latent
space. We changed the sizes of the latent embeddings, d,
from d = 2 to d = 32 in steps of one. We obtained the best
results for d = 16 and used this in our final network.

Conclusion, Limitations and Future Work
In this work, we proposed a novel SC-AAE architecture for
generalized zero-shot learning of perceived emotions from
3D motion-captured gesture sequences. We used an adver-
sarial loss to learn mappings between the gestures and the

semantically-conditioned space of emotion words to clas-
sify gestures into both seen and unseen emotions. We evalu-
ated our approach on the MPI Emotional Body Expressions
Database (EBEDB), using feature-embeddings extracted
from gestures and language-embeddings from word2vec.
Our proposed approach outperforms previous state-of-the-
art algorithms for GZSL by 25–27% on MPI EBEDB.

Our work has some limitations. Since word2vec is a
generic language-embedding model, not specific to emo-
tions, it may not capture all aspects of psychological
and emotional diversity. Therefore, we plan to leverage
affective-based semantics from words in the future. We
also plan to incorporate more affective modalities, includ-
ing speech and eye movements, to ensure a more ro-
bust classification. Furthermore, we plan to use the dimen-
sional emotional space spanned by VAD (Valence-Arousal-
Dominance) to learn relationships between disparate cate-
gorical emotions.
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Sapiński, T.; Kamińska, D.; Pelikant, A.; and Anbarjafari, G.
2019. Emotion recognition from skeletal movements. En-
tropy, 21(7): 646.
Schonfeld, E.; Ebrahimi, S.; Sinha, S.; Darrell, T.; and
Akata, Z. 2019. Generalized zero-and few-shot learning
via aligned variational autoencoders. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 8247–8255.
Shi, Y.; Siddharth, N.; Paige, B.; and Torr, P. 2019. Vari-
ational mixture-of-experts autoencoders for multi-modal
deep generative models. In Advances in Neural Information
Processing Systems, 15718–15729.
Volkova, E. P.; Mohler, B. J.; Dodds, T. J.; Tesch, J.; and
Bülthoff, H. H. 2014. Emotion categorization of body ex-
pressions in narrative scenarios. Frontiers in psychology, 5:
623.
Wan, Z.; Chen, D.; Li, Y.; Yan, X.; Zhang, J.; Yu, Y.; and
Liao, J. 2019. Transductive zero-shot learning with visual
structure constraint. In Advances in Neural Information Pro-
cessing Systems, 9972–9982.
Wegrzyn, M.; Vogt, M.; Kireclioglu, B.; Schneider, J.; and
Kissler, J. 2017. Mapping the emotional face. How individ-
ual face parts contribute to successful emotion recognition.
PloS one, 12(5): e0177239.
Xian, Y.; Lorenz, T.; Schiele, B.; and Akata, Z. 2018. Fea-
ture generating networks for zero-shot learning. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 5542–5551.
Yan, S.; Xiong, Y.; and Lin, D. 2018. Spatial temporal graph
convolutional networks for skeleton-based action recogni-
tion. In AAAI conference on artificial intelligence.
Yates, H.; Chamberlain, B.; Norman, G.; and Hsu, W. H.
2017. Arousal detection for biometric data in built environ-
ments using machine learning. In IJCAI 2017 Workshop on
Artificial Intelligence in Affective Computing, 58–72.
Zhan, C.; She, D.; Zhao, S.; Cheng, M.-M.; and Yang, J.
2019. Zero-shot emotion recognition via affective structural
embedding. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 1151–1160.
Zhou, D.; Zhang, X.; Zhou, Y.; Zhao, Q.; and Geng, X. 2016.
Emotion distribution learning from texts. In Proceedings
of the 2016 Conference on Empirical Methods in Natural
Language Processing, 638–647.

10


