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Abstract

We present M3ER, a learning-based method for emotion
recognition from multiple input modalities. Our approach
combines cues from multiple co-occurring modalities (such
as face, text, and speech) and also is more robust than other
methods to sensor noise in any of the individual modali-
ties. M3ER models a novel, data-driven multiplicative fu-
sion method to combine the modalities, which learn to em-
phasize the more reliable cues and suppress others on a per-
sample basis. By introducing a check step which uses Canon-
ical Correlational Analysis to differentiate between ineffec-
tive and effective modalities, M3ER is robust to sensor noise.
M3ER also generates proxy features in place of the ineffec-
tual modalities. We demonstrate the efficiency of our net-
work through experimentation on two benchmark datasets,
IEMOCAP and CMU-MOSEI. We report a mean accuracy of
82.7% on IEMOCAP and 89.0% on CMU-MOSEI, which,
collectively, is an improvement of about 5% over prior work.

1 Introduction
The perception of human emotions plays a vital role in
our everyday lives. People modify their responses and be-
haviors based on their perception of the emotions of those
around them. For example, one might cautiously approach
a person they perceive to be angry, whereas they might be
more forthcoming when approaching a person they perceive
to be happy and calm. Given the importance of emotion
perception, emotion recognition from sensor data is impor-
tant for various applications, including affective comput-
ing (Yates et al. 2017; Atcheson, Sethu, and Epps 2017),
human-computer interaction (Cowie et al. 2001), surveil-
lance (Clavel et al. 2008), robotics, games and entertain-
ment, and more. In this work, we address the problem of
perceived emotion recognition rather than recognition of the
actual emotional state.

One of the primary tasks in developing efficient AI sys-
tems for perceiving emotions is to combine and collate in-
formation from the various modalities by which humans ex-
press emotion. These modalities include, but are not limited
to, facial expressions, speech and voice modulations, written
text, body postures, gestures, and walking styles. Many re-
searchers have advocated combining more than one modal-
ity to infer perceived emotion for various reasons, including:
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Figure 1: Multimodal Perceived Emotion Recognition: We use
multiple modalities to perform perceived emotion prediction. Our
approach uses a deep learning model along with a multiplicative
fusion method for emotion recognition. We show results on two
datasets, IEMOCAP and CMU-MOSEI both of which have face,
speech and text as the three input modalities. Above is one sample
point extracted from the IEMOCAP dataset.

(a) Richer information: Cues from different modalities can
augment or complement each other, and hence lead to
more sophisticated inference algorithms.

(b) Robustness to Sensor Noise: Information on different
modalities captured through sensors can often be cor-
rupted due to signal noise, or be missing altogether when
the particular modality is not expressed, or cannot be
captured due to occlusion, sensor artifacts, etc. We call
such modalities ineffectual. Ineffectual modalities are es-
pecially prevalent in in-the-wild datasets.

However, multimodal emotion recognition comes with
its own challenges. At the outset, it is important to de-
cide which modalities should be combined and how. Some
modalities are more likely to co-occur than others, and there-
fore are easier to collect and utilize together. For exam-
ple, some of the most popular benchmark datasets on mul-
tiple modalities, such as IEMOCAP (Busso et al. 2008) and
CMU-MOSEI (Zadeh et al. 2018b), contain commonly co-
occurring modalities of facial expressions with associated
speech and transcribed text. With the growing number of
social media sites and data on internet (e.g., YouTube), of-
ten equipped with automatic caption generation, it is eas-
ier to get data for these three modalities. Many of the



Figure 2: The Pleasure Arousal Dominance Emotion Model:
Discrete emotions mapped into a 2D coordinate space of arousal
and valence (Ekman and Friesen 1967). Our multiplicative fusion
model uses these relationships to map the emotion labels to discrete
emotions in this 2D space. As a result, our approach is applicable
to a wide variety of emotion datasets.

other existing multimodal datasets (Ringeval et al. 2013;
Kossaifi et al. 2017) are also a subset of these three modali-
ties. Consequently, these are the modalities we have used in
our work.

Another challenge is the current lack of agreement on the
most efficient mechanism for combining (also called “fus-
ing”) multiple modalities (Baltrusaitis, Ahuja, and Morency
2017). The most commonly used techniques are early fusion
(also “feature-level” fusion) and late fusion (also “decision-
level” fusion). Early fusion combines the input modalities
into a single feature vector on which a prediction is made. In
late fusion methods, each of the input modalities is used to
make an individual prediction, which is then combined for
the final classification. Most prior works on emotion recog-
nition works have explored early fusion (Sikka et al. 2013)
and late fusion (Gunes and Piccardi 2007) techniques in ad-
ditive combinations. Additive combinations assume that ev-
ery modality is always potentially useful and hence should
be used in the joint representation. This assumption makes
the additive combination not ideal for in-the-wild datasets
which are prone to sensor noise. Hence, in our work, we
use multiplicative combination, which does not make such
an assumption. Multiplicative methods explicitly model the
relative reliability of each modality on a per-sample basis,
such that reliable modalities are given higher weight in the
joint prediction.

Main Contributions: We make the following contribu-
tions:

1. We present a multimodal emotion recognition algorithm
called M3ER, which uses a data-driven multiplicative fu-
sion technique with deep neural networks. Our input con-
sists of the feature vectors for three modalities — face,
speech, and text.

2. To make M3ER robust to noise, we propose a novel pre-
processing step where we use Canonical Correlational
Analysis (CCA) (Hotelling 1936) to differentiate between
an ineffectual and effectual input modality signal.

3. We also present a feature transformation method to gener-
ate proxy feature vectors for ineffectual modalities given
the true feature vectors for the effective modalities. This
enables our network to work even when some modalities
are corrupted or missing.

We compare our work with prior methods by testing our per-
formance on two benchmark datasets IEMOCAP and CMU-

MOSEI. We report an accuracy of 82.7% on the IEMO-
CAP dataset and 89.0% on the CMU-MOSEI dataset, which
is a collective 5% accuracy improvement on the absolute
over prior methods. We show ablation experiment results
on both datasets, where almost 75% of the data has at least
one modality corrupted or missing, to demonstrate the im-
portance of our contributions. As per the annotations in
the datasets, we classify IEMOCAP into 4 discrete emo-
tions (angry, happy, neutral, sad) and CMU-MOSEI into 6
discrete emotions (anger, disgust, fear, happy, sad, surprise).
According to the continuous space representations, emo-
tions are seen as points on a 3D space of arousal, valence,
and dominance (Ekman and Friesen 1967). We depict two
of these dimensions in Figure 2. Our algorithm is not lim-
ited for specific emotion labels, as any combination of the
emotions can be used to represent other emotion.

2 Related Work
In this section, we give a brief overview of previous works
on unimodal and multimodal emotion recognition, as well
as modality combination techniques that have been used in
the broader field of multimodal machine learning.
Emotion Recognition in Psychology Research: Under-
standing and interpreting human emotion is of great interest
in psychology. The initial attempts (Russell, Bachorowski,
and Fernández-Dols 2003) at predicting emotion only from
facial expressions were not considered very reflective of
the human sensory system and were questioned. There is
also unreliability in using facial expressions, because of the
ease of displaying “mocking” expressions (Ekman 1993),
especially in the presence of an audience (Fernández-Dols
and Ruiz-Belda 1995). Psychology research also points
to the importance of considering cues other than facial
expressions to make more accurate predictions. Sebe et
al. (2011), Aviezer et al. (2012) and Pantic et al. (2005)
highlight the fact that an ideal system for automatic human
emotion recognition should be multimodal, because that is
more closer to the actual the human sensory system. Meeran
et al. (2005) suggest that the integration of modalities is an
inevitable step learned very early-on in the human sensory
system.

Unimodal Emotion Recognition: The initial at-
tempts in human emotion recognition have been
mostly unimodal. Even in that domain, the most
predominantly explored modality has been fa-
cial expressions (Saragih, Lucey, and Cohn 2009;
Akputu, Seng, and Lee 2013), owing to the availability of
face datasets and advances in computer vision methods.
Other modalities that have been explored include speech
or voice expressions (Scherer, Johnstone, and Klasmeyer
2003), body gestures (Navarretta 2012), and physiological
signals such as respiratory and heart signals (Knapp, Kim,
and André 2011).

Multimodal Emotion Recognition: Multimodal emo-
tion recognition was initially explored using classifiers
like Support Vector Machines, and linear and logistic
regression (Sikka et al. 2013; Gunes and Piccardi 2007;
Castellano, Kessous, and Caridakis 2008), when the size
of the datasets was less than 500. As bigger datasets were
developed, deep learning architectures (Yoon et al. 2019;
Kim, Lee, and Provost 2013; Majumder et al. 2018;



Figure 3: M3ER: We use three modalities, speech, text and the facial features. We first extract features to obtain fs, ft, ff from the raw
inputs, is, it and if (purple box). The feature vectors then are checked if they are effective. We use a indicator function Ie (Equation 1) to
process the feature vectors (yellow box). These vectors are then passed into the classification and fusion network of M3ER to get a prediction
of the emotion (orange box). At the inference time, if we encounter a noisy modality, we regenerate a proxy feature vector (ps, pt or pf ) for
that particular modality (blue box).

Zadeh et al. 2018c; Lee et al. 2018; Sahay et al. 2018)
were explored. All multimodal methods also perform
feature extraction steps on each of the input modalities,
using either hand-crafted formulations or deep learning
architectures. Some of the architectures that have been
explored are Bi-Directional Long Short Term Memory
(BLSTM) networks (Yoon et al. 2019), Deep Belief
Networks (DBNs) (Kim, Lee, and Provost 2013), and
Convolutional Neural Networks (Lee et al. 2018). Other
methods are based on hierarchical networks (Majumder
et al. 2018) and Relational Tensor Networks (Sahay et al.
2018).

Modality Combination: Prior works in emotion recog-
nition (Sikka et al. 2013; Gunes and Piccardi 2007;
Castellano, Kessous, and Caridakis 2008; Yoon et al. 2019;
Kim, Lee, and Provost 2013) using either late or early fusion
have relied on additive combinations. The performance of
these additive approaches relies on figuring out the relative
emphasis to be placed on different modalities. However, in
the real-world, not every modality is equally reliable for
every data point due to sensor noise, occlusions, etc. Recent
works have also looked at variations on more sophisticated
data-driven (Lee et al. 2018), hierarchical (Majumder et al.
2018), and attention-mechanism based (Yoon et al. 2019;
Lee et al. 2018) fusion techniques. Multiplicative com-
bination methods (Liu et al. 2018) explicitly models the
relative reliability of each modality, such that more reliable
modalities are given more weight in the joint prediction.
Reliable modalities can also change from sample to sample,
so it is also important to learn which modalities are more
reliable on a per sample basis. This method has previously
been shown to be successful on tasks like user profiling and
physical process recognition (Liu et al. 2018).

Canonical Correlational Analysis (CCA): The objective
of CCA (Hotelling 1936) is to project the input vectors into
a common space by maximizing their component-wise cor-
relation. There have been extensions to CCA, namely Deep
CCA (Andrew et al. 2013), Generalized CCA (Kettenring
1971), and Kernel CCA (Welling 2005), which learn para-
metric non-linear transformations of two random vectors,

such that their correlation is maximized. CCA approaches
have also been explored for the task of multimodal emotion
recognition (Shan, Gong, and McOwan 2007), to get max-
imally correlated feature vectors from each input modality
before combining them. In our work, we use CCA to check
for correlation among the input modalities and to check for
effective and ineffective modalities.

3 M3ER: Our Approach

3.1 Notation

We denote the set of modalities as M =
{speech, text, face}. The feature vectors for each modality
are denoted as ft, ff , and fs, respectively. We denote the set
of predicted emotions as E = {happy, sad, angry, neutral}.
The proxy feature vectors generated for speech, text, and
face vectors are represented by ps, pt, pf , respectively.
Finally, we define an indicator function, Ie(f) that outputs
either a vector of zero or one of the same dimension as f ,
depending on the conditions of the function definition.

3.2 Overview

We present an overview of our multimodal perceived emo-
tion recognition model in Figure 3. During training, we first
extract feature vectors (fs, ft, ff ) from raw inputs (is, it, if )
(purple box in the Figure 3). These are then passed through
the modality check step (yellow box in the Figure 3) to dis-
tinguish between effective and ineffectual signals, and dis-
carding the latter if any (See Section 3.3). The feature vec-
tors as returned by the modality check step go through three
deep-layered feed-forward neural network channels (orange
box in Figure 3). Finally, we add our multiplicative fusion
layer to combine the three modalities. At test time, the data
point once again goes through the modality check step. If a
modality is deemed ineffectual, we regenerate a proxy fea-
ture vector (blue box in Figure 3) which is passed to the
network for the emotion classification. In the following sub-
sections, we explain each of the three novel components of
our network in detail.



Figure 4: Qualitative Results on CMU-MOSEI: We qualitatively show data points correctly classified by M3ER from all the 6 class labels
of CMU-MOSEI. The labels as classified by M3ER in row order from top left, are Anger, Disgust, Fear, Happy, Sad, Surprise.

3.3 Modality Check Step
To enable perceived emotion recognition in real world sce-
narios, where sensor noise is inevitable, we introduce the
Modality Check step which filters ineffectual data. It has
been observed in emotion prediction studies (Shan, Gong,
and McOwan 2007), that for participants whose emotions
were predicted correctly, each of their corresponding modal-
ity signals correlated with at least one other modality signal.
We directly exploit this notion of correlation to distinguish
between features that could be effective for emotion classi-
fication (effective features) and features that are noisy (inef-
fectual features).
More concretely, we use Canonical Correlation Analysis
(CCA) to compute the correlation score, ρ, of every pair of
input modalities. (Refer to AppendixA. We compare the cor-
relation against a heuristically chosen threshold, τ and intro-
duce the following indicator function,

Ie(fi) =

{
0 ρ(fi, fj) < τ, (i, j) ∈M, i 6= j,
1 else.

(1)

For all features, we apply the following operation, Ie(f)�f ,
which discards ineffectual features and retains the effective
ones. Here, � denotes element-wise multiplication.

3.4 Regenerating Proxy Feature Vectors
When one or more modalities have been deemed ineffectual
at test time in the modality check step, we generate proxy
feature vectors for the ineffectual modalities using the fol-
lowing equation, pi = T fi, where i ∈ M and T is any
linear transformation. We illustrate the details below.

Generating exact feature vectors for missing modalities
is challenging due to the non-linear relationship between
the modalities. However, we empirically show that by relax-
ing the non-linear constraint, there exists a linear algorithm
that approximates the feature vectors for the missing modali-
ties with high classification accuracy. We call these resulting
vectors: proxy feature vectors.
Suppose that during test time, the feature vector for the
speech modality is corrupt and identified as ineffectual,

while ff is identified as effective during the Modality Check
Step. Our aim is then to regenerate a proxy feature vector,
ps, for the speech modality. More formally, we are given,
say, a new, unseen face modality feature vector, ff , the set
of observed face modality vectors, F = {f1, f2, . . . , fn},
and the set of corresponding observed speech modality vec-
tors, S = {s1, s2, . . . , sn}. Our goal is to generate a proxy
speech vector, ps, corresponding to ff . We begin by prepro-
cessing the inputs to construct bases, Fb = {v1, v2, . . . , vp}
and Sb = {w1, w2, . . . , wq} from the column spaces of F
and S . Under the relaxed constraint, we assume there ex-
ists a linear transformation, T : Fb → Sb. Our algorithm
proceeds without assuming knowledge of T :

1. The first step is to find vj = argminj d(vj , ff ), where d
is any distance metric. We chose the L2 norm in our ex-
periment s. We can solve this optimization problem using
any distance metric minimization algorithm such as the
K-nearest neighbors algorithm.

2. Compute constants ai ∈ R by solving the following linear
system, ff =

∑p
i=1 aivi. Then,

ps = T ff =

p∑
i=1

aiT vi =
p∑
i=1

aiwi.

Our algorithm can be extended to generate proxy vectors
from effective feature vectors corresponding to multiple
modalities. In this case, we would apply the steps above to
each of the effective feature vectors and take the mean of
both the resulting proxy vectors.

3.5 Multiplicative Modality Fusion

The key idea in the original work (Liu et al. 2018) for mul-
tiplicative combination is to explicitly suppress the weaker
(not so expressive) modalities, which indirectly boost the
stronger (expressive) modalities. They define the loss for the



Dataset Method F1 MA

IEMOCAP

Kim et al. (2013) - 72.8%
Majumdar et al. (2018) - 76.5%

Yoon et al. (2019) - 77.6%
M3ER 0.824 82.7%

CMU-MOSEI

Sahay et al. (2018) 0.668 -
Zadeh et al. (2018c) 0.763 -
Choi et al. (2018) 0.895 -

M3ER 0.902 89.0%

Table 1: M3ER for Emotion Recognition: We compare the F1
scores and the mean classification accuracies (MA) of M3ER on
the two datasets, IEMOCAP and CMU-MOSEI, with three prior
SOTA methods. Numbers not reported by prior methods are
marked with ‘-’. We observe around 5-10% increase in MA and
1-23% increase in F1 score.

ith modality as follows.

c(y) = −
M∑
i=1

∏
j 6=i

(
1− p(y)j

)β/(M−1)
log p

(y)
i (2)

where y is the true class label, M is the number of modal-
ities, β is the hyperparameter that down-weights the unreli-
able modalities and p(y)i is the prediction for class y given by
the network for the ith modality. This indirectly boosts the
stronger modalities. In our approach, we reverse this con-
cept and propose a modified loss. We explicitly boost the
stronger modalities in the combination network. The differ-
ence is subtle but has key significance on the results. In the
original formulation, the modified loss was given by Equa-
tion 2. We empirically show that the modified loss gives bet-
ter classification accuracies than the originally proposed loss
function in Section 5. The original loss function tries to ig-
nore or tolerate the mistakes of the modalities making wrong
predictions by explicitly suppressing them, whereas in our
modified version, we ignore the wrong predictions by sim-
ply not addressing them and rather focusing on modalities
giving the right prediction. In the original loss, calculating
the loss for each modality depends on the probability given
by all the other modalities. This has a higher computation
cost due to the product term. Furthermore, if either of the
input modalities produces an outlier prediction due to noise
in the signal, it affects the prediction of all other modalities.
Our proposed modified loss is as follows:

c(y) = −
M∑
i=1

(
p
(y)
i

)β/(M−1)
log p

(y)
i (3)

This fusion layer is applied to combine the three input
modalities.

M3ER is a modular algorithm that can work on top of ex-
isting networks for multimodal classification. Given a net-
work for multiple modalities, we can replace the fusion step
and incorporate the modality check and proxy vector regen-
eration of the M3ER and improve classification accuracies.
In the next Section, we demonstrate this point by incorporat-
ing M3ER in SOTA networks for two datasets, IEMOCAP
and CMU-MOSEI.

4 Implementation Details
We state the implementation and training details for train-
ing with M3ER on the CMU-MOSEI dataset in this section.
Details on the network, implementation, and training on the
IEMOCAP dataset can be found in Appendix B.

Figure 5: Confusion Matrix: For each emotion class, we show
the percentage of inputs belonging to that class that were correctly
classified by M3ER (dark green cells) and the percentage of in-
puts that were misclassified into other classes (pale green and white
cells) for both the datasets. Left: Confusion matrix for classification
on IEMOCAP dataset. Right: Confusion matrix for classification
on CMU-MOSEI dataset.

4.1 Feature Extraction
To extract ft from the CMU-MOSEI dataset, we use the
300-dimensional pre-trained GloVe word embeddings (Pen-
nington, Socher, and Manning 2014). To compute fs from
the CMU-MOSEI dataset, we follow the approach of Zadeh
et al. (2018c) and obtain the 12 Mel-frequency cepstral coef-
ficients, pitch, voiced/unvoiced segmenting features, glottal
source parameters among others. Lastly, to obtain ff , we use
the combination of face embeddings obtained from state-of-
the-art facial recognition models, facial action units, and fa-
cial landmarks for CMU-MOSEI.

4.2 Classification Network Architecture
For training on the CU-MOSEI dataset, we integrate our
multiplicative fusion layer into Zadeh et al.’s (2018a) mem-
ory fusion network (MFN). Each of the input modalities
is first passed through single-hidden-layer LSTMs, each of
output dimension 32. The outputs of the LSTMs, along with
a 128-dimensional memory variable initialized to all zeros
(yellow box in the network Figure 3), are then passed into
an attention module as described by the authors of MFN.
The operations inside the attention module are repeated for
a fixed number of iterations t, determined by the maximum
sequence length among the input modalities (t = 20 in our
case). The outputs at the end of every iteration in the atten-
tion module are used to update the memory variable as well
as the inputs to the LSTMs. After the end of t iterations, the
outputs of the 3 LSTMs are combined using multiplicative
fusion to a 32 dimensional feature vector. This feature vector
is concatenated with the final value of the memory variable,
and the resultant 160 dimensional feature vector is passed
through a 64 dimensional fully connected layer followed by
a 6 dimensional fully connected to generate the network out-
puts.

4.3 Training Details
For training with M3ER on the CMU-MOSEI dataset, we
split the CMU-MOSEI dataset into training (70%), valida-
tion (10%), and testing (20%) sets. We use a batch size of
256 and train it for 500 epochs. We use the Adam opti-
mizer (Kingma and Ba 2014) with a learning rate of 0.01.
All our results were generated on an NVIDIA GeForce GTX
1080 Ti GPU.



5 Experiments and Results
We perform experiments on the two large-scale benchmark
datasets, IEMOCAP and CMU-MOSEI, described in Sec-
tion 5.1. In Section 5.2, we list the SOTA algorithms with
which we compare M3ER using standard classification eval-
uation metrics. We report our findings and analysis in Sec-
tion 5.3. We perform exhaustive ablation experiments to mo-
tivate the benefits of our contributions in Section 5.4. Finally,
we provide details of all hyperparameters and the hardware
used for training M3ER in Section B.3.

5.1 Datasets
The Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) dataset (Busso et al. 2008) consists of text, speech, and
face modalities of 10 actors recorded in the form of conver-
sations using a Motion Capture camera. The conversations
include both scripted and spontaneous sessions. The labeled
annotations consists of four emotions — angry, happy, neu-
tral, and sad. The CMU Multimodal Opinion Sentiment and
Emotion Intensity (CMU-MOSEI) (Zadeh et al. 2018b) con-
tains 23, 453 annotated video segments from 1, 000 distinct
speakers and 250 topics acquired from social media chan-
nels. The labels in this dataset comprise six emotions — an-
gry, disgust, fear, happy, sad and surprise.

Figure 6: Misclassification by M3ER: This is the text and face
input of a ‘happy’ data point from CMU-MOSEI dataset that our
model, M3ER misclassifies as ‘angry’. Here, the man is giving a
funny speech with animated and exaggerated facial looks which
appear informative but lead us to a wrong class label.

5.2 Evaluation Metrics and Methods
We use two standard metrics, F1 scores and mean classifi-
cation accuracies (MAs), to evaluate all the methods. How-
ever, some prior methods have not reported MA, while oth-
ers have not reported F1 scores. We, therefore, leave out the
corresponding numbers in our evaluation as well and com-
pare the methods with only the available numbers. For the
IEMOCAP dataset, we compare our accuracies with the fol-
lowing SOTA methods.

1. Yoon et al. (2019) use only two modalities of the IEMO-
CAP dataset, text and speech, using an attention mecha-
nism that learns to aligns the relevant text with the audio
signal instead of explicitly combining outputs from the
two modalities separately. The framework uses two Bi-
linear LSTM networks.

2. Kim et al. (2013) focus on feature selection parts and
hence use DBNs which they claim are better equipped at

learning high-order non-linear relationships. They empir-
ically show that non-linear relationships help in emotion
recognition.

3. Majumdar et al. (2018) recognize the need of a more ex-
plainable and intuitive method for fusing different modal-
ities. They propose a hierarchical fusion that learns bi-
modal and trimodal correlations for data fusion using
deep neural networks.
For the CMU-MOSEI dataset, we compare our F1 scores

with the following SOTA methods.
1. Zadeh et al. (2018c) propose a Dynamic Fusion

Graph (DFG) for fusing the modalities. The DFG can
model n-modal interactions with an efficient number of
parameters. It can also dynamically alter its structure and
choose a fusion graph based on the importance of each
n-modal dynamics. They claim that this is more inter-
pretable fusion as opposed to the naive late fusion tech-
niques.

2. Choi et al. (2018) use the text and speech modality of
the CMU-MOSEI dataset. They extract feature vectors for
text and speech spectrograms using Convolutional Neural
Networks (CNNs) architectures. They then use a trainable
attention mechanism to leaner non-linear dependence be-
tween the two modalities.

3. Sahay et al. (2018) propose a tensor fusion network that
explicitly models n-modal inter-modal interactions using
an n-fold Cartesian product from modality embeddings.

5.3 Analysis
Comparison with SOTA: Evaluation of F1 scores and
MAs of all the methods is summarized in Table 1. We
observe an improvement of 1-23% in F1 scores and 5-10%
in MAs when using our method.
Confusion Matrix: We also show the confusion matrix
(Figure 5) to analyze the per-class performance of M3ER on
IEMOCAP and CMU-MOSEI. We observe that more than
73% of the samples per class were correctly classified by
M3ER. We see no confusions (0%) between some emotion
labels in the two confusion matrices, for instance ‘sad’
and ‘happy’ in IEMOCAP and ‘fear’ and ‘surprise’ in
CMU-MOSEI. Interestingly, we see a small set of data
points getting confused between ‘happy’ and ‘angry’ labels
for both datasets. We reason that this is because, in both
situations, people often tend to exaggerate their cues.
Qualitative Results: Additionally, we show one sample
per class from the CMU-MOSEI dataset that was correctly
classified by M3ER in Figure 4.
Failure Case: We also qualitatively show a data point in
Figure 6 where M3ER fails to classify correctly. We observe
that exaggerations of facial expressions and speech have
led to a ‘happy’ sample being classified by our model as
‘angry’, a pattern also observed from the confusion matrices.

5.4 Ablation Experiments
Original vs M3ER Multiplicative Fusion Loss. We first
compare the original multiplicative fusion loss (Liu et al.
2018) (Equation 2) with our modified loss (Equation 3 on
both IEMOCAP and CMU-MOSEI. As shown in Table 2,
using our modified loss results in an improvement of 6-7%
in both F1 score and MA.
Next, to motivate the necessity of checking the quality of



(a) Ablation Experiments performed on IEMOCAP Dataset.
Ineffectual Experiments Angry Happy Neutral Sad Overall
modalities? F1 MA F1 MA F1 MA F1 MA F1 MA

No Original Multiplicative Fusion (Liu et al. 2018) 0.794 80.6% 0.750 76.9% 0.695 68.0% 0.762 80.8% 0.751 76.6%
M3ER 0.862 86.8% 0.862 81.6% 0.745 74.4% 0.828 88.1% 0.824 82.7%

Yes
M3ER– Modality Check Step – Proxy Feature Vector 0.704 71.6% 0.712 70.4% 0.673 64.7% 0.736 79.8% 0.706 71.6%

M3ER– Proxy Feature Vector 0.742 75.7% 0.745 73.7% 0.697 66.9% 0.778 84.0% 0.741 75.1%
M3ER 0.799 82.2% 0.743 76.7% 0.727 67.5% 0.775 86.3% 0.761 78.2%

(b) Ablation Experiments performed on CMU-MOSEI Dataset.
Ineffectual Experiments Angry Disgust Fear Happy Sad Surprise Overall
modalities? F1 MA F1 MA F1 MA F1 MA F1 MA F1 MA F1 MA

No Original Multiplicative Fusion (Liu et al. 2018) 0.889 79.9% 0.945 89.6% 0.963 93.1% 0.587 55.8% 0.926 85.3% 0.949 90.0% 0.878 82.3%
M3ER 0.919 86.3% 0.927 92.1% 0.904 88.9% 0.836 82.1% 0.899 89.8% 0.952 95.0% 0.902 89.0%

Yes
M3ER– Modality Check Step – Proxy Feature Vector 0.788 73.3% 0.794 80.0% 0.843 85.0% 0.546 55.7% 0.832 79.5% 0.795 80.1% 0.764 75.6%

M3ER– Proxy Feature Vector 0.785 77.8% 0.799 83.2% 0.734 77.5% 0.740 77.1% 0.840 86.0% 0.781 83.5% 0.783 80.9%
M3ER 0.816 81.3% 0.844 86.8% 0.918 89.4% 0.780 75.7% 0.873 86.1% 0.932 91.3% 0.856 85.0%

Table 2: Ablation Experiments: We remove one component of M3ER at a time, and report the F1 and MA scores on the IEMOCAP and
the CMU-MOSEI datasets, to showcase the effect of each of these components. Modifying the loss function leads to an increase of 6-7% in
both F1 and MA. Adding the modality check step on datasets with ineffectual modalities leads to an increase of 2-5% in F1 and 4-5% in MA,
and adding the proxy feature regeneration step on the same datasets leads to a further increase of 2-7% in F1 and 5-7% in MA.

Figure 7: Regenerated Proxy Feature Vector: We show the quality of the regenerated proxy feature vectors for each of the three modalities.
For the three graphs, we demonstrate the original feature vector (blue), the ineffectual version of the modality because of added white Gaussian
noise (red) and the regenerated feature vector (green). The mean L2 norm distance between the original and the regenerated vector for the
speech, text and face modality are all around 0.01% of the L2 norm of the respective data.

signals from all the modalities and implementing corrective
measures in the case of ineffectual features, we corrupt the
datasets by adding white Gaussian noise with a signal-to-
noise ratio of 0.01 to at least one modality in approximately
75% of the samples in the datasets. We then compare the per-
formance of the various ablated versions of M3ER as sum-
marized in Table 2 and detailed below.
M3ER – Modality Check Step – Proxy Feature Vector.
This version simply applies the multiplicative fusion with
the modified loss on the datasets. We show that this results
in a drop of 4-12% in the overall F1 score and 9-12% in the
overall MA from the non-ablated version of M3ER.
M3ER – Proxy Feature Vector. In this version, we perform
the modality check step to filter out the ineffectual modal-
ity signals. This results in an improvement of 2-5% in the
overall F1 score and 4-5% in the overall MA from the pre-
vious version. However, we do not replace the filtered out
modalities with generated proxy features, thus having fewer
modalities to work with. This results in a drop of 2-7% in
the overall F1 score and 5-7% in the overall MA from the
non-ablated version of M3ER.

Finally, with all the components of M3ER in place, we
achieve an overall F1 score of 0.761 on IEMOCAP and
0.856 on CMU-MOSEI, and an overall MA of 78.2% on
IEMOCAP and 85.0% on CMU-MOSEI. Additionally, we
also show in Figure 7 that the mean L2 norm distance be-

tween the proxy feature vectors regenerated by M3ER in and
the ground truth data is around 0.01% of the L2 norm of the
respective data.

6 Conclusion, Limitations, and Future Work
We present M3ER, a multimodal emotion recognition model
that uses a multiplicative fusion layer. M3ER is robust to
sensor because of a modality check step that distinguishes
between good and bad signals to regenerate a proxy feature
vector for bad signals. We use multiplicative fusion to de-
cide on a per-sample basis which modality should be relied
on more for making a prediction. Currently, we have applied
our results to databases with three input modalities, namely
face, speech, and text. Our model has limitations and often
confuses between certain class labels. Further, we currently
perform binary classification per class; however, human per-
ception is rather subjective in nature and would resemble a
probability distribution over these discrete emotions. Thus,
it would be useful to consider multi-class classification in
the future. As part of future work, we would also explore
more elaborate fusion techniques that can help improve the
accuracies. We would like to extend M3ER for more than
three modalities. As suggested in psychological studies, we
would like to explore more naturalistic modalities like walk-
ing styles and even contextual information.
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A CCA Details
In this section, we show how to compute the correlation
score between two modality feature vectors. Given a pair of
feature vectors, fi, fj , with i, j ∈ M, we first compute the
the projective transformations, Hi

i,j and Hj
i,j , for both fea-

ture vectors, respectively. Also note that these feature vec-
tors fi, fj are reduced to the same lower dimensions (100,
here). We obtain the projected vector by applying the pro-
jective transformation. Thus, in our example above,

f
′

i = Hi
i,jfi,

and,
f

′

j = Hj
i,jfj ,

Finally, we can compute the correlation score for the pair
{fi, fj} using the formula:

ρ(f
′

i , f
′

j) =
cov(f

′

i , f
′

j)

σf ′
i
σf ′

j

and check them against an empirically chosen threshold (τ).
∀i ∈ m, we check

ρ(f
′

i , f
′

j) < τ,

where ∀ (i, j) ∈M, i 6= j.
For implementation purposes, we keep the Hj

i,j for all
pairs of modalities precomputed based on the training set.
At inference time, we simply compute the projected vectors
f

′

i , f
′

j and ρ(f
′

i , f
′

j).

Figure 8: M3ER-IEMOCAP: We use three modalities, speech,
text and the facial features for M3ER-IEMOCAP too. We use a
variety of layers, fully-connected (purple), softmax (cyan), LSTM
(green), convolutional layers (red). The multiplicative layer is
shown in orange.

B M3ER for IEMOCAP Dataset
We explain in detail M3ER IEMOCAP, the model we used
for IEMOCAP dataset.

B.1 Feature Extraction
We use the 300 dimensional pre-trained GloVe word embed-
dings (Pennington, Socher, and Manning 2014) to extract ft
for the IEMOCAP dataset. To compute fs for IEMOCAP,
we follow Chernykh et al. (2017) and use 34 acoustic fea-
tures. Lastly, to obtain ff , IEMOCAP captures facial data
comprising of 189 facial expression using a Motion Capture
camera.

B.2 Classification Network Architecture
For M3ER-IEMOCAP, we use Tripathi et al.’s (2018)
multiple fully connected layers of dimensions 128, 64 and
4 before a softmax for the speech input as can be seen in
Figure 8. However, as opposed to multiple LSTM layers,
we use a single LSTM layer with 64 hidden units before
two dense layers of dimensions 64 and 4 followed by a
softmax layer for the text modality. For the facial input, we
use three convolutional layers with filter sizes 32, 64 and
128 all with a stride length of 2. These convolutional layers
are followed by two fully connected layers (dimensions
64 and 4) succeeded by a softmax layer. All three softmax
layers then go into the multiplicative layer (shown in orange
in Figure 8).

B.3 Training Details
For training M3ER-IEMOCAP, we split the IEMOCAP
dataset into training (85%) and testing (15%) sets. We use
a batch size of 128 and train it for 100 epochs. We use
the Adam optimizer (Kingma and Ba 2014) with a learning
rate of 0.001. All our results were generated on an NVIDIA
GeForce GTX 1080 Ti GPU. We show some qualitative re-
sults on the IEMOCAP dataset in Figure 9.

Figure 9: M3ER Qualitative Results on IEMOCAP: We quali-
tatively show correctly classified data points with all three modali-
ties from all the 4 class labels of IEMOCAP. The labels as classified
by M3ER in row order from top left, are Angry, Happy, Neutral,
Sad.


