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Abstract—We present a novel approach for traffic forecasting
in urban traffic scenarios using a combination of spectral
graph analysis and deep learning. We predict both the low-
level information (future trajectories) as well as the high-level
information (road-agent behavior) from the extracted trajectory
of each road-agent. Our formulation represents the proximity
between the road agents using a weighted dynamic geometric
graph (DGG). We use a two-stream graph-LSTM network to
perform traffic forecasting using these weighted DGGs. The first
stream predicts the spatial coordinates of road-agents, while
the second stream predicts whether a road-agent is going to
exhibit overspeeding, underspeeding, or neutral behavior by
modeling spatial interactions between road-agents. Additionally,
we propose a new regularization algorithm based on spectral
clustering to reduce the error margin in long-term prediction (3-
5 seconds) and improve the accuracy of the predicted trajectories.
Moreover, we prove a theoretical upper bound on the regularized
prediction error. We evaluate our approach on the Argoverse,
Lyft, Apolloscape, and NGSIM datasets and highlight the ben-
efits over prior trajectory prediction methods. In practice, our
approach reduces the average prediction error by approximately
75% over prior algorithms and achieves a weighted average
accuracy of 91.2% for behavior prediction. Additionally, our
spectral regularization improves long-term prediction by up to
70%.

Index Terms—Intelligent Transportation Systems, Autonomous
Agents

I. INTRODUCTION

AUTONOMOUS driving is an active area of research and
includes many issues related to navigation [1], trajectory

prediction [2], and behavior understanding [3], [4]. Trajectory
prediction is the problem of predicting the short-term (1-3
seconds) and long-term (3-5 seconds) spatial coordinates of
various road-agents such as cars, buses, pedestrians, rickshaws,
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Figure 1: Trajectory and Behavior Prediction: We predict the
long-term (3-5 seconds) trajectories of road-agents, as well as their
behavior (e.g. overspeeding, underspeeding, etc.), in urban traffic
scenes. Our approach represents the spatial coordinates of road-agents
(colored points in the image) as vertices of a DGG to improve long-
term prediction using a new regularization method.

and even animals, etc. Accurate trajectory prediction is crucial
for safe navigation. Furthermore, road-agents have different
dynamic behaviors that may correspond to aggressive or
conservative driving styles [5], [6], [7]. While humans can
very quickly predict different road-agent behaviors commonly
observed in traffic, current autonomous vehicles (AVs) are
unable to perform efficient navigation in dense and hetero-
geneous traffic due to their inability to recognize road-agent
behaviors.

While there has been extensive progress in trajectory pre-
diction [2], [8], [9], there has been significantly less research
in behavior prediction. The advantage of knowing if a neigh-
boring road-agent is going to overtake another agent or if a
road-agent in front is going to brake suddenly is useful for
safe navigation. Furthermore, behavior prediction is crucial
for making autonomous vehicles socially aware, as opposed
to their inherent conservative behavior [10], [11], [12] that
poses new risks in terms of low efficiency and uncomfortable
traveling experiences [13].

Furthermore, a major challenge in traffic forecasting is
ensuring accurate long-term prediction (3-5 seconds). As the
prediction horizon increases, the temporal correlations in the
data between current and previous time-steps grow weaker,
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which increases the error-margin of long-term prediction ([14],
cf. Figure 4 in [8], [2], Figure 3 in [15]). Some approaches
have been developed to reduce the long-term error-margin
for trajectory forecasting [14], but they assume knowledge of
high-order, non-linear traffic dynamics.

a) Main Contributions: We present an algorithm for
traffic forecasting that disjointedly predicts trajectories as
well as road-agent behavior using two separate streams. We
represent the inter-road-agent interactions in the traffic using
weighted dynamic geometric graphs (DGGs) [16], where the
vertices represent the road-agents, and the weighted edges
are a function of the proximity between the road-agents. Our
approach makes no assumptions about the size and shape of
the road-agents. Our main contributions include:

1) A two-stream graph-LSTM network for traffic forecast-
ing in urban traffic. The first stream is a conventional
LSTM encoder-decoder network that does not account
for neighbor vehicles. It is used to predict the spatial
coordinates of the future trajectory. We propose a second
stream that predicts the eigenvectors of future DGGs,
which serve the dual purpose of behavior prediction as
well as regularizing the first stream.

2) To reduce the error of long-term predictions, we propose
a new regularization algorithm for sequence prediction
models called spectral cluster regularization.

3) We derive a theoretical upper bound on the prediction
error of the regularized forecasting algorithm in the order
of O(

√
Nδmax), where N is the number of road-agents

and δmax value corresponds to the distance between the
two closest road-agents.

4) We present a rule-based behavior prediction algorithm to
forecast whether a road-agent is overspeeding (aggres-
sive), underspeeding (conservative), or neutral, based on
the traffic behavior classification in psychology litera-
ture [17], [18].

We evaluate our approach on four large-scale urban driving
datasets – NGSIM, Argoverse, Lyft, and Apolloscape. We also
perform an exhaustive comparison with the SOTA trajectory
prediction methods and report an average RMSE (root mean
square error) reduction of approximately 75% with respect to
the next best method. We also achieved a weighted average
accuracy of 91.2% for behavior prediction. Our regularization
algorithm improves long-term prediction by up to 70%.

II. RELATED WORK

Here, we discuss prior work in trajectory prediction, road-
agent behavior prediction, and traffic forecasting.

A. Trajectory Prediction

Trajectory prediction is a well-known problem in statis-
tics [19], signal processing [20], and controls and systems
engineering [21]. These approaches, however, rely on the
knowledge of certain parameters that may not be readily avail-
able in traffic videos. In such instances, data-driven methods
such as deep learning have become the SOTA for designing
trajectory prediction algorithms.

There is some research on trajectory prediction. Deo et
al. [8] combined LSTMs with Convolutional Neural Networks
(CNNs) to predict the trajectories of vehicles on sparse U.S.
highways. Chandra et al. [2], [9] proposed algorithms to
predict trajectories in urban traffic with high density and het-
erogeneity. For traffic scenarios with moderate density and het-
erogeneity, Ma et al. [22] proposed a method based on recip-
rocal velocity obstacles. Some additional deep learning-based
trajectory prediction methods include [23], [24]. However,
these methods only capture road-agent interactions inside a
local grid, whereas graph-based approaches such as GRIP [15]
for trajectory prediction of road-agents and [25], [26], [27],
[28] for traffic density prediction consider all interactions
independent of local neighborhood restrictions. Our graph
representation differs from that of GRIP by storing the graphs
of previous time-steps (III-B). Using our representations, we
propose a novel behavior prediction algorithm (IV-C). Ad-
ditionally, unlike other trajectory prediction methods in the
literature, we propose a new Spectral Regularization-based
loss function (IV-D) that automatically corrects and reduces
long-term errors. This is a novel improvement over all prior
prediction methods that do not handle long-term errors.

B. Road-Agent Behavior Prediction

Current autonomous vehicles lack social awareness due to
their inherent conservative behavior [10], [11], [12]. Overly
conservative behavior present new risks in terms of low
efficiency and uncomfortable traveling experiences [13]. Real-
world examples of problems caused by AVs that are not
socially adaptable can be seen in this video∗. The notion of
using driver behavior prediction to make the AVs socially
aware is receiving attention [11].

Current driving behavior modeling methods are limited
to traffic psychology studies where predictions for driving
behavior are made offline, based on either driver responses
to questionnaires or data collected over a period of time. Such
approaches are not suitable for online behavior prediction.
In contrast, our behavior prediction algorithm is the first
computationally online approach that does not depend on
offline data and manually tunable parameters. In the remainder
of this section, we review some of the prior behavior modeling
approaches and conclude by pointing out the advantages of our
approach.

Many studies have been performed behavior modeling by
identifying factors that contribute to different driver behav-
iors classes such as aggressive, conservative, or moderate
driving. These factors can be broadly categorized into four
categories. The first category of factors that indicate road-
agent behavior is driver-related. These include characteristics
of drivers such as age, gender, blood pressure, personality,
occupation, hearing, and so on [17], [29], [30]. The second
category corresponds to environmental factors such as weather
or traffic conditions [31], [32]. The third category refers to
psychological aspects that affect driving styles. These could
include drunk driving, driving under the influence, state of
fatigue, and so on [33], [34]. The final category of factors

∗https://www.youtube.com/watch?v=Rm8aPR0aMDE

https://www.youtube.com/watch?v=Rm8aPR0aMDE
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Figure 2: Network Architecture: We show the trajectory and behavior prediction for the ith road-agent (red circle in the DGGs). The input
consists of the spatial coordinates over the past τ seconds as well as the eigenvectors (green rectangles, each shade of green represents the
index of the eigenvectors) of the DGGs corresponding to the first τ DGGs. We perform spectral clustering on the predicted eigenvectors
from the second stream to regularize the original loss function and perform back-propagation on the new loss function to improve long-term
prediction.

contributing to driving behavior are vehicular factors such
as positions, acceleration, speed, throttle responses, steering
wheel measurements, lane changes, and brake pressure [35],
[36], [37], [38], [3].

A recent data-driven behavior prediction approach [3] also
models traffic through graphs. The method predicts the driving
behavior by training a neural network on the eigenvectors of
the DGGs using supervised machine learning. Apart from be-
havior modeling, several methods have used machine learning
to predict the intent of road-agents [39], [40]. The proposed be-
havior prediction algorithm in this paper extends the approach
in [3] by predicting sequences of eigenvectors for future time-
steps. Compared to these prior methods, are algorithm is
online, computationally tractable and does not depend on any
other information other than the vehicle coordinates.

III. BACKGROUND AND OVERVIEW

In this section, we define the problem statement and give a
brief overview of spectral Dynamic Geometric Graphs (DGGs)
in the context of road-agents.

A. Problem Statement

We first present a definition of a vehicle trajectory:

Definition III.1. Trajectory: The trajectory for the ith road
agent is defined as a sequence Ψi(a, b) ∈ {R2}, where
Ψi(a, b) =

{
[xt, yt]

>| t ∈ [a, b]
}

. [x, y] ∈ R2 denotes the
spatial coordinates of the road-agent in meters according to
the world coordinate frame and t denotes the time instance.

We define traffic forecasting as solving the following two
problem statements, simultaneously, but separately using two
separate streams.

Problem III.1. Trajectory Prediction: In a traffic video
with N road agents, given the trajectory Ψi(0, τ), predict
Ψi(τ

+, T ) for each road-agent vi, i ∈ [0, N ].

Problem III.2. Behavior Prediction: In a traffic video with N
road agents, given the trajectory, Ψi(0, τ), predict a label from

the following set, { Overspeeding, Neutral, Underspeeding}
for each road-agent vi, i ∈ [0, N ].

B. Weighted Dynamic Geometric Graphs (DGGs)

We assume that the trajectories of all the vehicles in the
video are provided to us as the input. Given this input, we first
construct a DGG [16] at each time-step. In a DGG, the vehicles
represent the vertices and the edge weights are a function of
the euclidean distance between the vertices. This function [41]
is given by,

f(vi, vj) = e−d(vi,vj) (1)

where vi and vj are the ith and jth vertices and d is the
euclidean distance function.

We represent traffic at each time instance using a DGG
G of size N × N , with the spatial coordinates of the road-
agent representing the set of vertices V = {v1, v2, . . . , vn} and
a set of undirected, weighted edges, E . Two road-agents are
said to be connected through an edge if d(vi, vj) < µ, where
d(vi, vj) represents the Euclidean distance between the road-
agents and µ is a heuristically chosen threshold parameter.
In our experiments, we choose µ = 10 meters, taking into
account the typical size of road-agents and the width of the
road.

For a DGG, G, we define the symmetrical adjacency matrix,
A ∈ RN×N as,

A(i, j) =

{
e−d(vi,vj) if d(vi, vj) < µ, i 6= j ,

0 otherwise.
(2)

Equation 1 denotes the interactions between any two road-
agents, vi and vj . This implies that road-agents at a greater
distance are assigned a lower weight, while road-agents in
close proximity are assigned a higher weight. This follows
the intuition that each road-agent needs to pay more attention
to nearby agents than those farther away to avoid collisions.

For the adjacency matrix A at each time instance, the
corresponding degree matrix D ∈ RN×N is a diagonal matrix
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with main diagonal D(i, i) =
∑N
j=1A(i, j) and 0 otherwise.

The unnormalized Laplacian matrix L = D −A of the graph
is defined as the symmetric matrix,

L(i, j) =


D(i, i) if i = j,

−e−d(vi,vj) if d(vi, vj) < µ,

0 otherwise.
(3)

The Laplacian matrix for each time-step is correlated with
the Laplacian matrices for all previous time-steps. Let the
Laplacian matrix at a time instance t be denoted as Lt. Then,
the laplacian matrix for the next time-step, Lt+1 is given by
the following update,

Lt+1 =

[
Lt 0

0 1

]
+ δδ>, (4)

where δδ> is a perturbation matrix represented by an outer
product of rank 2. Here, δ ∈ R(N+1)×2 is a sparse matrix
‖δ‖0 � N , where N represents the total number of road-
agents at time-step t. The presence of a non-zero entry in the
jth row of δ implies that the jth road-agent has observed a
new neighbor, that has now been added to the current DGG.
During training time, the size of Lt is fixed for all time t
and is initialized as a zero matrix of size NxN , where N
is max number of agents (different N is used for different
datasets). For instance, N = 270 is used for Lyft Level 5
dataset. At current time t, if the N < 270, the zeros in Lt
will simply be updated with new values. Once N = 270,
Lt is reset to zero and the process repeats. During test time,
trained models for stream 1 predict trajectories based only on
past trajectories; these models for stream 1 do not use graphs.
Trained model for stream 2, however, generate traffic-graphs
in realtime for behavior prediction at test time. The matrix
U ∈ Rn×k := {uj ∈ Rn|j = 1 . . . k} of eigenvectors of L
is called the spectrum of L, and can be efficiently computed
using eigenvalue algorithms.

IV. TRAJECTORY AND BEHAVIOR FORECASTING

The overall flow of the approach is as follows:

1) Our input consists of the spatial coordinates over the
past τ seconds as well as the eigenvectors of the DGGs
corresponding to the first τ DGGs.

2) Solving Problem III.1: The first stream accepts the
spatial coordinates and uses an LSTM-based sequence
model [42] to predict Ψi(τ

+, T ) for each vi, i ∈ [0, N ],
where τ+ = τ + 1.

3) Solving Problem III.2: The second stream accepts the
eigenvectors of the input DGGs and predicts the eigenvec-
tors corresponding to the DGGs for the next τ seconds.
The predicted eigenvectors form the input to the behavior
prediction algorithm in Section IV-C to assign a behavior
label to the road-agent.

4) Stream 2 is used to regularize stream 1 using a new
regularization algorithm presented in Section IV-D. We
derive the upper bound on the prediction error of the
regularized forecasting algorithm in Section V.

A. Network Overview

We present an overview of our approach in Figure 2 and
defer the technical implementation details of our network to
the supplementary material. Our approach consists of two
parallel LSTM networks (or streams) that operate separately.

Stream 1: The first stream is an LSTM-based encoder-
decoder network [42] (yellow layer in Figure 2). The input
consists of the trajectory history, Ψi(0, τ) and output consists
of Ψi(τ

+, T ) for each road-agent vi, i ∈ [0, N ].
Stream 2: The second stream is also an LSTM-based

encoder-decoder network (blue layer in Figure 2). To prepare
the input to this stream, we first form a sequence of DGGs,
{Gt| t ∈ [0, τ ]} for each time instance of traffic until time
τ . For each DGG, Gt, we first compute its corresponding
Laplacian matrix, Lt and use SOTA eigenvalue algorithms to
obtain the spectrum, Ut consisting of the top k eigenvectors
of length n. We form k different sequences, {Sj | j ∈ [0, k]},
where each Sj = {uj} is the set containing the jth eigenvector
from each Ut corresponding to the tth time-step, with |Sj | = τ .

The second stream then accepts a sequence, Sj , as input
to predict the jth eigenvectors for the next T − τ seconds.
This is repeated for each Sj . The resulting sequence of spec-
trums, {Ut| t ∈ [τ+, T ]} are used to reconstruct the sequence,
{Lt| t ∈ [τ+, T ]}, which is then used to assign a behavior
label to a road-agent, as explained below.

B. Trajectory Prediction

The first stream is used to solve Problem III.1. We clarify
at this point that stream 1 does not take into account road-
agent interactions. We use spectral clustering (discussed later
in Section IV-D) to model these interactions. It is important to
further clarify that the trajectories predicted from stream 1 are
not affected by the behavior prediction algorithm (explained
in the next Section).

C. Behavior Prediction Algorithm

We define a rule-based behavior algorithm (blue block in
Figure 2) to solve Problem III.2. This is largely due to the fact
that most data-driven behavior prediction approaches require
large, well-annotated datasets that contain behavior labels. Our
algorithm is based on the predicted eigenvectors of the DGGs
of the next τ seconds.

The degree of ith road-agent, (θi ≤ n), can be computed
from the diagonal elements of the Laplacian matrix Lt. θi
measures the total number of distinct neighbors with which
road-agent vi has shared an edge connection until time t. As
Lt is formed by simply adding a row and column to Lt−1,
the degree of each road-agent monotonically increases. Let
the rate of increase of θi be denoted as θ

′

i. Intuitively, an
aggressively overspeeding vehicle will observe new neighbors
at a faster rate as compared to a road-agent driving at a
uniform speed. Conversely, a conservative road-agent that is
often underspeeding at unconventional spots such as green
light intersections (Figure 1) will observe new neighbors very
slowly. This intuition is formalized by noting the change in θi
across time-steps. In order to make sure that slower vehicles
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(conservative) did not mistakenly mark faster vehicles as new
agents, we set a condition where an observed vehicle is marked
as ‘new’ if and only if the speed of the observed vehicle is
less than the active vehicle (or ego-vehicle). To predict the
behavior of the ith road-agent, we follow the following steps:

1) Form the set of predicted spectrums from stream 2,
{Ut| t ∈ [τ+, T ]}. We compute the eigenvalue matrix,
Λ, of Lt by applying theorem 5.6 of [43] to Lt−1. We
explain the exact procedure in the supplemental version.

2) For each Ut ∈ U , compute Lt = UtΛU
>
t .

3) θi = ith element of diag(Lt), where “diag” is the diagonal
matrix operator.

4) θ
′

i = ∆θi
∆t .

where Λ is the eigenvalue matrix of Lt. Based on heuristically
pre-determined threshold parameters λ1 and λ2, we define the
following rules to assign the final behavior label: Overspeeding
(θ

′
> λ1), Neutral (λ2 ≤ θ

′ ≤ λ1), and Underspeeding (θ
′
<

λ2).
Note that since human behavior does not change instantly at

each time-step, our approach predicts the behavior over time
periods spanning several frames.

D. Spectral Clustering Regularization

The original loss function of stream 1 for the ith road-agent
in an LSTM network is given by,

Fi = −
∑T
t=1 logPr(xt+1|µt, σt, ρt) (5)

Our goal is to optimize the parameters, µ∗t , σ
∗
t , that minimize

equation 5. Then, the next spatial coordinate is sampled
from a search space defined by N (µ∗t , σ

∗
t ). The resulting

optimization forces µt, σt to stay close to the next spatial
coordinate. However, in general trajectory prediction models,
the predicted trajectory diverges gradually from the ground-
truth, causing the error-margin to monotonically increase as
the length of the prediction horizon increases ([14], cf. Figure
4 in [8], [2], Figure 3 in [15]). The reason for this may be that
while equation 5 ensures that µt, σt stays close to the next
spatial coordinate, it does not, however, guarantee the same
for x̂t+1 ∼ N (µt, σt). Our solution to this problem involves
regularizing equation 5 by adding appropriate constraints on
the parameters, µt, σt, such that sampled coordinates from
N (µ∗t , σ

∗
t ) are close to the ground-truth trajectory.

We assume the ground-truth trajectory of a road-agent to be
equivalent to their “preferred” trajectory, which is defined as
the trajectory a road-agent would have taken in the absence
of other dynamic road-agents. Preferred trajectories can be
obtained by minimizing the Dirichlet energy of the DGG,
which in turn can be achieved through spectral clustering on
the road-agents [44]. Our regularization algorithm (shown in
the yellow arrow in Figure 2) is summarized below. For each
road-agent, vi:

1) The second stream computes the spectrum sequence,
{UT+1, . . . , UT+τ}.

2) For each U , perform spectral clustering [45] on the eigen-
vector corresponding to the second smallest eigenvalue.

3) Compute cluster centers from the clusters obtained in the
previous step.

4) Identify the cluster to which vi belongs and retrieve the
cluster center, µc and deviation, σc.

Then for each road-agent, vi, the regularized loss function,
F reg
i , for stream 1 is given by,

∑T
t=1

(
− logPr(ŷt+1|µt, σt, ρt

)
+ b1‖µt − µc‖2 + b2‖σt − σc‖2 (6)

where b1 = b2 = 0.5 are regularization constants. The
regularized loss function is used to backpropagate the weights
corresponding to µt in stream 1. Note that F reg

i resembles
a Gaussian kernel. This makes sense as the Gaussian kernel
models the Euclidean distance non-linearly – greater the
Euclidean distance, smaller the Gaussian kernel value and vice
versa. This behavior is similarly captured by Equation 1). Fur-
thermore, we can use Equation 6 to predict multiple modes[8]
by computing maneuver probabilities using µ, σ following the
approach in Section 4.3 of [8].

V. UPPER BOUND FOR PREDICTION ERROR

In this section, we derive an upper bound on the prediction
error, φj , of the first stream as a consequence of spectral
regularization. We present our main result as follows,

Theorem V.1. φj ≤ ‖δtδ>t ‖2
min(λj ,Λ) , where min(λj ,Λ) denotes the

minimum distance between λj and λk ∈ Λ \ λj .

Proof:
At time instance t, the Laplacian matrix, Lt, its block

form,

[
Lt 0

0 1

]
, denoted as block(Lt), and the laplacian ma-

trix for the next time-step, Lt+1 are described by Equation 4.
We compute the eigenvalue matrix, Λ, of Lt by applying
theorem 5.6 of [43] to Lt−1.

LSTMs make accurate sequence predictions if elements of
the sequence are correlated across time, as opposed to being
generated randomly. In a general sequence of eigenvectors, the
eigenvectors may not be correlated across time. Consequently,
it is difficult for LSTM networks to predict the sequence
of eigenvectors, U accurately. This may adversely affect the
behavior prediction algorithm described in Section IV-C. Our
goal is now to show there exist a correlation between Laplacian
matrices across time-steps and that this correlation is lower-
bounded, that is, there exist sufficient correlation for accurate
sequence modeling of eigenvectors.

Proving a lower-bound for the correlation is equivalent
to proving an upper-bound for the noise, or error distance,
between the jth eigenvectors of Lt and Lt+1. We denote this
error distance through the angle φj . From Theorem 5.4 of [43],
the numerator of bound corresponds to the frobenius norm of
the error between Lt and Lt+1. In our case, the update to
the Laplacian matrix is given by Equation 4 where the error
matrix is δδ>.
In Theorem V.1, φj � 1 and δ is defined in equation 4.
λj represents the jth eigenvalue and Λ represents all the
eigenvalues of Lt. If the maximum component of δt is δmax,
then φj = O(

√
Nδmax). Theorem V.1 shows that in a

sequence of jth eigenvectors, the maximum angular difference
between successive eigenvectors is bounded by O(

√
Nδmax).
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By setting N = 270 (number of road-agents in Lyft), and
δmax := e−3 = 0.049 (width of a lane), we observe a
theoretical upper bound of 0.8 meters. A smaller value of φj
indicates a greater similarity between successive eigenvectors,
thereby implying a greater correlation in the sequence of
eigenvectors. This allows sequence prediction models to learn
future eigenvectors efficiently.

An alternative approach to computing the spectrums
{UT+1, . . . , UT+τ} is to first form traffic-graphs from the
predicted trajectory given as the output from the stream 1.
After obtaining the corresponding Laplacian matrices for these
traffic-graphs, standard eigenvalue algorithms can be used to
compute the spectrum sequence. This is, however, a relatively
sub-optimal approach as in this case, φ = O(NLmax), with
Lmax � δmax.

VI. EXPERIMENTS AND RESULTS

We begin by listing the datasets used in our approach in
Section VI-A. We list the evaluation metrics used and methods
compared within Section VI-B. We analyze the main results
and discuss the results of comparison methods and ablation
studies of our approach in Section VI-C. In Section VI-D, we
analyse the theoretical upper bound in the context of long-
term prediction. We present an ablation analysis of the radius
parameter µ in Section VI-F. We make all the implementation
and training details available in the supplementary material.

A. Datasets

We use both sparse (NGSIM [47]) as well as dense (Lyft
Level 5 [48], Argoverse Motion Forecasting [49], and the
Apolloscape Trajectory [22]) trajectory prediction datasets for
evaluation. We give a brief description of all the datasets in
the supplemental version.

B. Evaluation Metrics and Methods

1) Metrics: For trajectory prediction, we use the stan-
dard metrics followed by prior trajectory prediction ap-
proaches [50], [46], [2], [8], [9].

1) Average Displacement Error (ADE): The root mean
square error (RMSE) of all the predicted positions and
real positions during the prediction window.

2) Final Displacement Error (FDE): The RMSE distance
between the final predicted positions at the end of the
predicted trajectory and the corresponding true location.

For behavior prediction, we report a weighted classification
accuracy (W.A.) over the 3 class labels: {overspeeding, neu-
tral, underspeeding}.

2) Methods: We compare our approach with SOTA trajec-
tory prediction approaches for road-agents. Our definition of
SOTA is not limited to ADE/FDE values. We consider SOTA
additionally with respect to the deep learning architecture used
in a different approach. Combined, our basis for selecting
SOTA methods not only evaluates the ADE/FDE scores but
also evaluates the benefits of using the two-stream network
versus other deep learning-based architectures.

• Deo et al. [8] (CS-LSTM): This method combines CNNs
with LSTMs to perform trajectory prediction on U.S.
highways.

• Chandra et al. [2] (TraPHic): This approach also uses
a CNN + LSTM approach along with spatial attention-
based pooling to perform trajectory prediction of road-
agents in dense and heterogeneous traffic.

• Gupta et al. [46] (Social-GAN): This GAN-based trajec-
tory prediction approach is originally trained on pedes-
trian crowd datasets. The method uses the encoder-
decoder architecture to act as the generator and trains
an additional encoder as the discriminator.

• Li et al. [15] (GRIP): This is a graph-based trajectory
prediction approach that replaces standard CNNs with
graph convolutions and combines GCNs with an encoder-
decoder framework.

We use the publicly available implementations for CS-
LSTM, TraPHic, and Social-GAN, and train the entire model
on all three datasets. We performed hyper-parameter tuning
on all three methods and reported the best results. Moreover,
we compare with the officially published results for GRIP as
reported on the NGSIM [15] and the Apolloscape datasets
only†.

C. Analysis and Discussion

We compare the ADE and FDE scores of our predicted
trajectories with prior methods in Table I and show qualitative
results in the supplementary material. We compare with several
SOTA trajectory prediction methods and reduce the average
RMSE by approximately 75% with respect to the next best
method (GRIP).

Ablation Study of Stream 1 (S1 Only) vs. Both Streams
(S1 + S2): To highlight the benefit of the spectral cluster
regularization on long-term prediction, we remove the second
stream and only train the LSTM encoder-decoder model
(Stream 1) with the original loss function (equation 5). Our
results (Table I, last four columns) show that regularizing
stream 1 reduces the FDE by up to 70%. This is as expected
since stream 1 does not take into account neighbor informa-
tion. Therefore, it should also be noted that stream 1 performs
poorly in dense scenarios but rather well in sparse scenarios.
This is evident from Table I where stream 1 outperforms
comparison methods on the sparse NGSIM dataset with ADE
less than 1m.

Additionally, Figure 3 shows that in the presence of regu-
larization, the RMSE for our spectrally regularized approach
(“both streams”, purple curve) is much lower than that of
stream 1 (red curve) across the entire prediction window.

RMSE depends on traffic density: The upper bound for
the increase in RMSE error is a function of the density of the
traffic since φ = O(

√
Nδmax), where N is the total number

of agents in the traffic video and δmax = 0.049 meters for a
three-lane wide road system. The NGSIM dataset contains the
sparsest traffic with the lowest value for N and therefore the
RMSE values are lower for the NGSIM (0.40/1.08) compared
to the other three datasets that contain dense urban traffic.
†http://apolloscape.auto/leader board.html

http://apolloscape.auto/leader_board.html
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Table I: Main Results: We report the Average Displacement Error (ADE) and Final Displacement Error (FDE) for prior road-agent trajectory
prediction methods in meters (m). Lower scores are better and bold indicates the SOTA. We used the original implementation and results for
GRIP [15] and Social-GAN [46]. ‘-’ indicates that results for that particular dataset are not available. Conclusion: Our spectrally regularized
method (“S1 + S2”) outperforms the next best method (GRIP) by upto 70% as well as the ablated version of our method (“S1 Only”) by
upto 75%.

Dataset (Pred. Len.) Comaprison Methods Ablation Our Approach

CS-LSTM TraPHic Social-GAN GRIP S1 Only S1 + S2
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Lyft (5 sec.) 4.423 8.640 5.031 9.882 7.860 14.340 - - 5.77 11.20 2.65 2.99
Argoverse (5 sec.) 1.050 3.085 1.039 3.079 3.610 5.390 - - 2.40 3.09 0.99 1.87
Apolloscape (3 sec.) 2.144 11.699 1.283 11.674 3.980 6.750 1.25 2.34 2.14 9.19 1.12 2.05
NGSIM (5 sec.) 7.250 10.050 5.630 9.910 5.650 10.290 1.61 3.16 1.31 2.98 0.40 1.08

Comparison with other methods: Our method learns
weight parameters for a spectral regularized LSTM net-
work (Figure 2), while GRIP learns parameters for a graph-
convolutional network (GCN). We outperform GRIP on the
NGSIM and Apolloscape datasets, while comparisons on the
remaining two datasets are unavailable. TraPHic and CS-
LSTM are similar approaches. Both methods require con-
volutions in a heuristic local neighborhood. The size of
the neighborhood is specifically adjusted to the dataset that
each method is trained on. We use the default neighborhood
parameters provided in the publicly available implementa-
tions, and apply them to the NGSIM, Lyft, Argoverse, and
Apolloscape datasets. We outperform both methods on all
benchmark datasets. Lastly, Social-GAN is trained on the scale
of pedestrian trajectories, which differs significantly from the
scale of vehicle trajectories. This is primarily the reason behind
Social-GAN placing last among all methods.

D. Long-Term Prediction Analysis

The goal of improved long-term prediction is to achieve
a lower FDE, as observed in our results in Table I. We
achieve this goal by successfully upper-bounding the worst-
case maximum FDE that can theoretically be obtained. These
upper bounds are a consequence of the theoretical results in
Section V. We denote the worst-case theoretical FDE by T-
FDE. This measure represents the maximum FDE that can
be obtained using Theorem V.1 under fixed assumptions. In
Table II, we compare the T-FDE with the empirical FDE
results obtained in Table I. The T-FDE is computed by,

T-FDE =
φ

n
× (T − τ) (7)

The formula for T-FDE is derived as follows. The RMSE error
incurred by all vehicles at a current time-step during spectral
clustering is bounded by φ (Theorem V.1). Let n = N

T = 10
be the average number of vehicles per frame in each dataset.
Then, at a single instance in the prediction window, the
increase in RMSE for a single agent is bounded by φ

n . As
T−τ is the length of the prediction window, the total increase
in RMSE over the entire prediction window is given by
T-FDE = φ

n × (T − τ). We do not have the data needed to
compute φ for the NGSIM dataset as the total number of lanes
are not known.

Table II: Upper Bound Analysis: φ is the upper bound on the RMSE
for all agents at a time-step. T − τ is the length of the prediction
window. T-FDE (Eq. 7) is the theoretical FDE that should be achieved
by using spectral regularization. The FDE results are obtained from
Table I. The % agreement is the agreement between the T-FDE and
FDE computed using T-FDE

FDE if T-FDE<FDE, else 100%. Conclusion:
Theorem V.1 is empirically verified with at least 73% guarantee.

Dataset φ (T − τ ) T-FDE FDE % Agreement

Lyft Level 5 0.80 30 2.46 2.99 82%
Apolloscape 1.50 10 1.50 2.05 73%
Argoverse 0.64 30 1.95 1.87 100%

We note a 73%, 82%, 100% agreement between the the-
oretical FDE and the empirical FDE on the Apolloscape,
Lyft, and Argoverse datasets, respectively. The main cause
for disagreements in the first two datasets is the choice for
the value of δmax = 0.049 during the computation of φ. This
value is obtained for a three-lane wide road system that was
observed in majority of the videos in both datasets. However,
it may be the case that several videos contain one- or two-
lane traffic. In such cases, the values for δmax changes to 0.36
and 0.13, respectively, thereby increasing the upper bound for
increase in RMSE.

Note, in Figure 3, the increase in RMSE for our approach
(purple curve) is much lower than that of other methods, which
is due to the upper bound induced by spectral regularization.

E. Behavior Prediction Results

We follow the behavior prediction algorithm described in
Section IV-C. The values for λ1 and λ2 are based on the
ground truth labels and are hidden from the test set. We
observe a weighted accuracy of 92.96% on the Lyft dataset,
84.11% on the Argoverse dataset, and 96.72% on the Apol-
loscape dataset. In the case of Lyft, Figures 4a and 4b show the
ground truth and predictions for Lyft, respectively. We plot the
value of θ

′
on the vertical axis and the road-agent I.D.s on the

horizontal axis. More similarity across the two plots indicates
higher accuracy. For instance, the red (aggressive) and blue
(conservative) dotted regions in 4a and 4b are nearly identical
indicating a greater number of correct classifications. Similar
results follow for the Apolloscape and Argoverse datasets,
which we show in the supplementary material due to lack
of space. Due to the lack of diverse behaviors in the NGSIM
dataset, we do not perform behavior prediction on the NGSIM.
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Figure 3: RMSE Curves: We plot the RMSE values for all methods.
The prediction window is 5 seconds corresponding to a frame length
of 50 for the NGSIM dataset.

Table III: Ablation experiments of the radius parameter µ. Each
column contains averaged RMSE values over the corresponding range
interval. Conclusion: The optimum results are obtained by setting
0 < µ ≤ 10 meters.

Dataset µ = 0 0 < µ ≤ 10 10 < µ ≤ 20

Apolloscape 2.14 1.12 2.62
Argoverse 2.40 0.99 3.15
Lyft Level 5 5.77 2.65 3.36
NGSIM 1.31 0.40 2.03

An interesting observation is that road-agents towards the
end of the x-axis appear late in the traffic video while road-
agents at the beginning of the x-axis appear early in the video.
The variation in behavior class labels, therefore, decreases
towards the end of the x-axis. This intuitively makes sense
as θ

′
for a road-agent depends on the number of distinct

neighbors that it observes. This is difficult for road-agents
towards the end of the traffic video.

F. Ablation Study of the Radius Parameter (µ)

We conducted ablation experiments in which we vary the
radius parameter µ (See Section III-B for a discussion on
µ) from 0 to 20. We obtained results on the Apolloscape,
Argoverse, Lyft, and NGSIM datasets which we present in
Table III. We measured the average RMSE values over 3 range
intervals: µ = 0, 0 < µ ≤ 10, and 10 < µ ≤ 20. We use
range intervals to clearly and succinctly capture the trend of
the RMSE values for µ > 10 meters and µ < 10 meters. We
observe that the best performance is achieved from the latter
range (0 < µ ≤ 10).

It is clear that setting µ = 0 and thus ignoring neighborhood
information in dense traffic severely degrades performance.
But on the other hand, increasing the radius beyond 10 meters
also increases the RMSE error. This is because by increasing
the radius beyond a certain threshold, we inadvertently include
in our spectral clustering algorithm those road-agents that are
too far to interact with the ego-agent. In order to accommodate
these “far-away” road-agents, the clusters expand and shift

(a) Lyft Ground-Truthwith λ=0.00015.

(b) Lyft Behavior Predictions.

Figure 4: Behavior Prediction Results: We classify the three
behaviors– overspeeding(blue), neutral(green), and underspeed-
ing(red), for all road-agents in the Lyft, Argoverse, and Apolloscape
datasets, respectively. The y-axis shows θ

′
and the x-axis denotes the

road-agents. We follow the behavior prediction protocol described
in Section IV-C. Each figure in the top row represents the ground-
truth labels, while the bottom row shows the predicted labels. In our
experiments, we set λ = λ1 = −λ2.

the cluster center from its true center. This phenomenon
is common in statistics where an outlier corrupts the data
distribution. The far-away agents are outliers in the spectral
clustering algorithm, thereby leading to an increase in RMSE.
We conclude that our method produces optimum results for
0 < µ ≤ 10 in dense traffic systems.

VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We present a unified algorithm for trajectory prediction
and behavior prediction of road-agents. We use a two-stream
LSTM network in which the first stream predicts the trajec-
tories, while the second stream predicts the behavior of road-
agents. We also present a regularization algorithm to reduce
long-term prediction errors.

Our method has some limitations. Currently, we use only
one feature to design our behavior prediction model, which
may not be able to generalize to new traffic scenarios. In
addition, our training is slow and takes several hours due
to the number of computations required for computing the
traffic-graphs and corresponding Laplacian matrices. We plan
to make our behavior prediction model data-driven, rather than
rule-based. We will also explore ways to improve trajectory
prediction using our behavior prediction algorithm.
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