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Abstract— Simulation data can be utilized to extend real-
world driving data in order to cover edge cases, such as
vehicle accidents. The importance of handling edge cases can be
observed in the high societal costs in handling car accidents, as
well as potential dangers to human drivers. In order to cover
a wide and diverse range of all edge cases, we systemically
parameterize and simulate the most common accident scenarios.
By applying this data to autonomous driving models, we
show that transfer learning on simulated data sets provide
better generalization and collision avoidance, as compared
to random initialization methods. Our results illustrate that
information from a model trained on simulated data can be
inferred to a model trained on real-world data, indicating the
potential influence of simulation data in real world models and
advancements in handling of anomalous driving scenarios.

I. INTRODUCTION

Transfer learning has potential to infer knowledge from the
simulation domain to real-world scenarios. Transfer learning
excels where data from different feature spaces or domains
are used in conjunction to train a model. Often machine
learning applications lack an adequate amount of real-world
data. Insufficiency of data can be compensated by generating
simulated data in the virtual world and using transfer learning
as a means to bridge that gap.

High-quality, annotated real-world driving data is abun-
dant. The surge in data availability has revolutionized driving
models’ abilities to learn proper driving behavior. However,
this marginalizes edge case data in the scope of learning.
Current state of the art machine learning models in au-
tonomous driving are limited by the safe-driving nature of
real-world data. When a vehicle is equipped with dozens of
sensors for data collection, it is impractical and unrealistic
to capture a proportional amount of accident or improper
driving data. However, unsafe and accidental scenarios can-
not be ignored. While accidents among autonomous vehicles
and even among human drivers remain relatively rare, when
compared to proper accident-free driving, the high societal
costs and safety risks associated with a single accident make
it an urgent problem to address.

Research in autonomous driving can be categorized into
different areas: perception, planning, and control. Our ap-
proach encompasses all three through an augmented dataset.
Instead of the use of all sensors, we focus on image data
from dash-camera views. We explore the possibility of using
simulated virtual accidents to complement existing datasets
and the possibility that behaviors learned in the virtual do-

main are transferable to the real world. We hypothesize that
using systematically-generated accident data to complement
real-world datasets through transfer learning can improve
autonomous driving models’ generalization to diverse driving
scenarios.

Recent state of the art reinforcement learning algorithms
suffer from a common problem: the training data that is
generated is dependent on the current policy because the
agent is generating its own training data by interacting with
the environment. This leads to interaction with new scenarios
that the agent might not have encountered previously. These
scenarios in autonomous car setting could include collision-
inducing situations. If the learning rate is too high, the
policy update pushes the policy network to the parameter
space where the network collects the next batch of data
under a very poor policy, causing the model to become un-
recoverable. Since an inverse reinforcement learning model
intuitively involves the reinforcement learning algorithm, the
issue is implied.

Another problem with proximal policy optimization (PPO)
and other policy gradient approaches is that they are less
sample-efficient, because they only use the collected experi-
ence once for performing updates. The PPO method’s loss
function depends on the log of probabilities from the output
of the policy network and estimate of the relative value of the
selected action in the current state. Both of these components
that construct the loss of the policy gradient approach are
composed of a sequential neural network architecture made
of convolutional neural layers similar to that of the imitation
learning pipeline.

While there is a perception that there is an abundance of
data from dash cam footage widely available online (e.g.
YouTube), the data is not usable for several reasons: (1)
The image data is often too low-resolution, (2) the camera
angle is fixed and not sufficient enough to reconstruct the
whole scenario or account for moving variables outside of
the frame, and (3) the image data is often not labeled;
our experiments required a steering angle label. Thus, we
constructed our own basic simulation environment in order
to account for lack of control in existing crash data.

We propose that both of these challenges of the policy
gradient approach can be addressed by inducing transfer
learning to the individual components of the policy gradient
approach. We prove our hypothesis by utilizing imitation
learning architecture that comprises of sequential neural net-
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Fig. 1: Overview of systemic scenario generation, detailed in section III. The generation can be described in four parts: (a) the design
and implementation of pre-defined scenarios from the NHTSA pre-crash scenario descriptions [12], (b) the generalized parameterization
of those scenarios based on physics and visual-related characteristics, (c) sampling of those parameters based on statistical data and
reasonable assumptions, and (d) passive data collection, which automates previous parts to collect data from scenarios sampled with
different parameter values. Since the goal is to generate accident data, each simulation runs for 10 seconds in order to enable both vehicle

agents sufficient time to collide or pass each other.

work design, similar to that of the advantage-calculating neu-
ral networks of the PPO method. We take a baseline imitation
learning model without transfer learning and our model that
exhibits transfer learning, then compare their performance to
demonstrate that transfer learned models are able to handle
new scenarios much better. Inducing a first-level training of
the model in a simulated world allows the agent to explore
and generate collision leading scenarios. We further cover
more unseen scenarios by using data from systemically-
generated accident data that incorporates a wide distribution
of possible accident scenarios. We use existing literature on
traffic accidents [12] to recreate common accident scenarios
to the best of our ability. Although the scenarios are simple,
they capture the elements from literature that lead to the
accident. As future work, visual enhancements and moving
objects can be incorporated into the simulation as well.
In summary, the contributions of this paper include

1) A systematic approach to generate accident data from
pre-crash scenarios as defined by the NHTSA re-
port [12].

2) A proof of concept in combining simulated driving
data and real-world driving data to train an imitation
learning model.

3) Improvements in steering wheel predictions from the-
state-of-the-art end-to-end learning models to prove
its efficiency and to extend it on policy gradient
approaches [2].

II. RELATED WORKS
A. Simulated Driving Data

Related studies have explored the use of realistic driving
simulations to provide a cost-efficient and controlled alterna-
tive to real world data. These simulations utilize the power of
game engines, which provide for realistic image generations
and built-in physics. Examples include CARLA, Drive Con-
stellation by NVIDIA, and AirSim from numerous industry
leaders in autonomous driving [3], [14]. Some studies sought
to expand upon the versatility of these systems by boosting
the realism of the images generated by rendering 3D models
into real-world background images, such as the Augmented

Autonomous Driving Simulation model [7]. In parallel, our
accident scenario generation relies on video game engines
for built-in physics and object models. However, instead
of representing an all-safe driving environment as close
as possible to reality, our simulation focuses on covering
as much of the parameter space as possible for selected
scenarios.

Aside from driving simulators meant for research, video
games have also been extensively used as a source of data.
Grand Theft Auto, an open-world video game involving
extensive urban area navigation and user-controlled driving,
has been used in reinforcement learning research for au-
tonomous driving [11]. While video games such as Grand
Theft Auto provide a visually rich environment, which in-
clude pedestrian models and open world movement, there is
little to control agent-based accident scenario generation. Our
simulator aims to control accident scenario generation over
a continuous distribution, holding all other factors constant.

There are many existing driving simulators backed by in-
dustry initiatives, as well as equipped with realistic graphics
and diverse environments. However, these simulations lack
the flexibility to design and control the systemic generation
of accident scenarios. We focus on simulation data genera-
tion, where we systemically generate accident scenarios by
parameterizing common pre-crash scenarios and sampling
those parameters over a distribution.

B. Transfer Learning

Transfer learning can improve learning by transferring
information from a related domain. For example, having
knowledge in mathematics and statistics can help one under-
stand concepts in machine learning better. In the last decade,
transfer learning research has worked towards adapting to
different domains, applications, and methods. Karl Weiss’
”A Survey of Transfer Learning” formally defines transfer
learning, presents current state of the art, and reviews ap-
plications applied to transfer learning [15]. Specifically, we
explore the use of transfer learning in autonomous driving,
with a focus on transfer from the virtual world to the real
world domain.
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Fig. 2: Transfer learning experiment design. Our pipeline includes two stages: Stage 1, represented by blue arrows, involves training of
the model using the simulation data that incorporates accident and collision-inducing scenarios. Stage 2, represented by orange arrows,
involves training the model on real-world dataset with its neural network weights initialized with weights obtained from stage 1. Stage
2 only begins training once stage 1 is finished training. This leads to better generalization and more effective collision avoidance, as
compared to the baseline model trained with transfer learned weights [2].

In one work, the same circumstances for virtual-to-real
transfer learning were applied to wilderness traversal [6].
Due to a lack of real-world wilderness data, cost-efficient
virtual data was utilized in virtual-to-real transfer learning.
However, one major difference is that a small subset of
real-world data was available for validation. In our case,
not even one sample of annotated real-world data was
available for ground-truth validation of our learned model.
In applications towards autonomous driving, transfer learning
has been popular in reinforcement learning models. One such
paper presented the first successful virtual-to-real driving
policy with reinforcement learning [17]. Since reinforcement
learning models are difficult to train in the real-world,
information learned from virtual driving data was used to
train a driving policy. While collecting data in the real world
is just as infeasible, our experiments aim not only to train
a proper driving policy, but also inherent hazard recognition
and avoidance. Some sought to solve the domain discrepancy
in the other direction; for example, Yang et al. presented
Real-to-Virtual domain unification, in order to simplify real
world data to its much simpler virtual counterpart [16].

Imitation learning for autonomous driving has been suc-
cessful in cases without extensive sensor measurements. In
Bojarski’s "End to End Learning for Self-Driving Cars”,
a convolutional neural network (CNN) was trained to rec-
ognize steering angles off of image data [2]. We draw
inspiration from Bojarski et al. by implementing their end-
to-end system, while also attaching our transfer learning and
complementing accident scenario data. The implementation
by Bojarski et al. is also appealing due to the sole use of
image inputs.

Imitation learning addresses two main problems presented
by current state-of-the-art reinforcement learning algorithms:
(1) training data generated is dependent on the current
policy and (2) sample inefficiency due to one time use of
the collected experience for backpropagation. For the first

issue, the policy update may push the network towards a
parameter space to become unrecoverable. The second issue
presents a challenge of underfitting on diverse scenarios in
the environment for model training .

The proximal policy optimization (PPO) loss function
depends on the output of the policy network, and estimates
the value of an action in the current state. The components
that construct the loss of the PPO approach are composed
of a sequential neural network architecture that is similar to
that of an imitation learning pipeline. In other words, using
an imitation learning model directly addresses these two
challenges presented to current state-of-the-art reinforcement
learning models.

To show effects of transfer learning on accident data, we
implement the end-to-end system by Bojarski et al. [2] with
an imitation learning model, and consider that as our baseline
model. In conjunction, we utilize imitation learning for our
model in order to take advantage of what has already been
done. We show that creating a two-level training process, as
opposed to single-level, with the augmented dataset better
generalizes safe driving and avoids collisions otherwise un-
avoidable with the baseline method. In this way, we show
that simulated accident data positively improves the results
using only real-world driving data.

III. METHODOLOGY

We based scenario design on those defined in the vehicle-
on-vehicle accident report by the National Highway Trans-
portation Safety Administration [12]. While it’s difficult
to simulate all possible random accident scenarios in the
universe, we considered this report to be a starting point
where common scenarios are defined.

First we set up two types of road layouts common to many
scenarios: highway and intersection. The highway consisted
of one straight road, with two lanes. Depending on the
scenario, the two lanes may be going the same direction or in
opposite directions. The intersection environment consisted



of a four-way urban intersection, with traffic lights or four-
way stop signs.

These two environments are created with the statistics
from the pre-crash report in mind [12]. Scenarios will
have statistics on what conditions crashes occurred in. For
example, the NHTSA reports that 94% of “running red
light” accidents occur on “intersection or intersection re-
lated at 3-color traffic signal”, while 70% of “opposite
direction” accidents occur on ’non-junction without traffic
controls” environments. For some scenarios, the occurrences
between intersection vs. non-intersection environments are
much closer, so environment was determined based on the
diagram provided by the report. A list of these scenarios can
be found in Table I below.

Scenario Description Environment Type

Running Red Light
Running Stop Sign
Turning/Same Direction
Changing Lanes/Same Direction
Drifting/Same Direction
Opposite Direction/Maneuver
Opposite Direction/No Maneuver
Rear-End/Lead Vehicle Accelerating
Rear-End/Lead Vehicle Moving Slower
Rear-End/Lead Vehicle Decelerating
LTAP/OD at Signal
Turn Right at Signal
LTAP/OD at Non-Signal
Straight Crossing Path at Non-Signal
Turn at Non-Signal

TABLE I: The scenarios modeled as described by section III. Nearly
every scenario in the NHTSA [12] pre-crash scenarios report is
visually modeled as an intersection (I) scenario or a highway (H)
scenario. Wassim et al. define 37 pre-crash scenarios and give
statistical data on 17 of those 37 scenarios. Five of the remaining
scenarios involve rear-end collisions, which were modeled, but not
used in the experiment, as our training data involved only front
dash-board images.

A. Parameterization

We define six generalized parameters that cover every
scenario: car mass, speed, fog, brake force, lane change dis-
tance, and vertical offset. These parameters were determined
based off of pre-crash scenario descriptions from the NHTSA
report [12]. For example, atmospheric conditions was an
environmental factor leading up to crash scenarios, so we
reflect that in our simulator with fog. Some parameters were
difficult to model accurately in Unity, such as slippery road
conditions. ”Slippery” can cover a wide range of friction,
from light rain to black ice. While there are capabilities in
Unity to adjust the friction of object textures, very little was
readily available for adjusting friction on specifically a road
asphalt texture.

We define lane change distance as the horizontal distance,
or distance parallel to the road, a car travels when completing
a lane change. Conversely, the vertical distance is defined as
the distance a car shifts when changing from one lane to
the next. These two parameters are common to all highway
scenarios, but not used in intersection scenarios where cars

are not changing lanes. In addition, these two parameters
directly affect the waypoint paths of vehicle agents in the
accident simulations. Other parameters affect aspects of the
car and of the environment.

B. Sampling

We used a case study by the U.S. Department of Trans-
portation to justify the speed distribution [4]. For car mass,
we referenced a study on fuel economy standards that
provided statistical data on masses of different vehicles.
Specifically, we used the category for “all cars”, since the
NHTSA report involved vehicle-on-vehicle collisions [1].
For parameters with real-world measurements, we sampled
based on a Gaussian distribution to most accurately reflect
scenarios in the real world. The number of simulations we
can generate per scenario is unlimited, so we chose not to
use systematic sampling. In data collection, the interval at
which to sample may become unclear. To keep assumptions
as minimal as possible, we used simple random sampling
from the distributions we generated, since we want every
value in the distribution to have an equal probability to be
selected.

Some parameters were considered arbitrary due to the lack
of statistical reports or by nature. Visibility was modeled
in Unity with a fog, in order to reflect different weather
conditions. We also sampled this parameter from a half-
normal distribution for clearer visibility. Fog was tuned
arbitrarily by hand due to Unity’s implementation of fog;
for values exceeding 5% visibility, the dash view becomes
obscure even for the human eye. Thus, we determined to use
a half-normal distribution, where most cases would provide
visible data, while others may have a slight fog. Little
measured data on brake force, lane change distance, and
vertical offset exist. Thus, we sample these arbitrarily on
a normal distribution where averages are centered around
typical driving behavior. For example, the average parameter
values for vertical offset would be the distance for the vehicle
to travel from the center of one lane to the center of the next.

While it may seem more intuitive that non-normal dis-
tributions should be considered when generating accident
scenarios, we would also like to point out that each vehicle
agent is set up to be an equal distance from the area of
contact. In other words, vehicles are placed in the same
distance from the center of each intersection, which each
vehicle has the objective of crossing the intersection. Thus,
in order to generate more driving accidents, we want to
model average driving behavior in situations where vehicles
are interacting in close proximity.

C. Data Collection

We model each vehicle in an agent-based fashion. In
other words, each vehicle is its own independent agent, with
no external factors affecting its actions or dependence on
other vehicles. For each scenario, two vehicles are involved.
One vehicle is defined to be “properly driving”, while the
other is defined as “dangerously driving”. The image data is
collected from the properly-driving car, since our goal is to
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loss convergence for the complemented transfer learning model is much better than the baseline model at various stages of the training.
We also see better training accuracy of the transfer learning model ranging from 5% after 10 epochs to 9% after the 30th epoch .

Fig. 4: Qualitative results in transfer learning to DeepDrive simulator on a non-intersection scenario. The top row represents a progression
of images in lane change using the baseline method with randomized Xavier initialization. As the car is changing lanes, it collides with the
car in front. The top right image shows this collision. By comparison, the bottom row represents the same action with the complemented
transfer learning method, but avoids collision with the other vehicle by passing. This example shows a non-intersection scenario where
the addition of accident scenario data improves safety of autonomous driving.
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Fig. 5: Qualitative results in transfer learning to DeepDrive simulator in an intersection scenario. Likewise from Figure 4, the top row
represents a progression of images in lane change using the baseline method with randomized Xavier initialization. In the top right image,
the collision occurs with the vehicle attempting to wrongfully cross the intersection. In comparison, the bottom row represents the same
scenario with the complemented transfer learning method, but avoids collision with the other vehicle by turning to the right. This example
illustrates an intersection environment where the addition of accident scenario data improves safety of autonomous driving.



train the model to react to hazards in the environment. For
intersection scenarios, vehicles are placed on different sides
of the intersection at an equal distance from the center of the
intersection. Wheel angle, braking, and acceleration is deter-
mined by a waypoint system. All car capabilities are modeled
by the car from Unity’s standard assets. Once each vehicle
reaches the end of its waypoint segment, braking begins and
acceleration becomes zero. Waypoints are considered more
as guidelines for the path of the vehicle, and only affect the
steering angle during runtime; the vehicle does not follow the
waypoint segment strictly. Each vehicle’s mass, speed, and
characteristics of its waypoint segment are randomly sampled
from the distribution at the beginning of runtime.

The scenarios are set up in 10-second time intervals,
since the point at which vehicles cross paths can be very
brief. A longer time interval would be arbitrary, as it would
only reflect proper driving found pervasively in real world
datasets. Some runs may not produce a collision, but may be
very close to collision. These examples are just as important
as scenarios with physical contact. Safe-driving humans
avoid driving too close to other cars, even if the dangerously-
driving vehicle does not make contact in the result. From
about 1000 total runs, the rate of scenarios with physical
contact between vehicles is 28.97%, which is significant in
comparison with the sparsity of accident data from real-world
datasets.

D. Transfer Learning

With transfer learning techniques for our predictive mod-
eling, we aim to accelerate the training and improve the
performance of the learning model in steering angle pre-
diction of real-world images. We achieve this through the
transfer of model weights from driving scenarios in the
virtual (simulated) domain to the model trained with the real-
world datasets.

Our model architecture consists of five convolutional lay-
ers and four fully connected layers. During training with
virtual data, initialize each of these weights with standard
Xavier initialization. These uniformly random distributed
weights are tuned with backpropagation, when the neural ar-
chitecture trains with the simulation data. After training, the
weights are tuned to provide appropriate steering predictions
in the simulated environment for diverse driving scenarios.

Once the model is trained on virtual accident data, which
includes the data from accident scenarios, reaches comple-
tion, we train the same neural architecture with real-world
datasets. Instead of initializing the weights of this model
with Xavier initialization or with other uniformly random
distributed weights, we initialize them with tuned weights
from the predictive model trained on the simulated datasets,
until results reach a convergence.

IV. RESULTS

A. Qualitative Simulation Results

Because the output of the systemic accident scenario
simulations is image data, the results are presented quali-
tatively. Sample images from the data simulator are shown

in the appendix I, from both intersection and non-intersection
environments.

B. Comparison in Convergence Time

To validate that our learning model appropriately inferred
road features and collision leading scenarios better, we com-
pared the baseline model initialized on a uniformly random
distribution with our transfer learning model. For this, we
maintained training hyper-parameter paradigms and training
sets.

We observed much faster training convergence on the
transfer learned model, with the validation loss reaching
85.85 at the end of 10 epochs. Compared with the baseline,
which reached a comparable loss at the end of 20 epochs,
the time to convergence is significantly less. On average, the
validation accuracy was 8% better on the transfer learned
model on the same test set. We saw the validation accuracy
improve even further for lower learning rates. These results
validate that the important features learnt by the model from
the simulator data facilitates the training convergence when
training the CNN on the real-world dataset. Details on the
comparison of convergence time are in 3. For this set of
results, the validation loss was 0.35.

The test results in Table 3 were obtained by keeping
the same batch size, while training the CNN on the same
real-world dataset. We observe that the results emphasize
the faster convergence and better validation accuracy for
the model trained on the real world data set with weights
initialized from another CNN model trained on the virtual
world images. For this set of results, the validation loss was
0.35.

C. Validation in Real World

In order to demonstrate the quantitative effect of the
pre-trained weight model on the transfer learning model,
we further improved upon the convolutional network with
regards to loss and accuracy. On this improved CNN, we
obtained a validation loss of 0.28 and a 4+9.8% accuracy
difference for the transfer learning model, compared to the
baseline. More information about the results can be found
in Table 3. This also further suggests that a better quality
model trained solely on virtual data has considerable impact
in a transfer learned model trained on real world data.

To demonstrate the impact of a better-trained model on
steering prediction, we compare trajectory predictions on
single-view images against that of the baseline. Using the real
world data set, we let both models predict the steering angle
for the test dashboard images and compare those predictions
with the true steering angle which the expert, human driver
exercised while driving during the data set collection. From
a total of 166 test images from the real world, we measured
the average deviation for both models from the true steering
angle. On the baseline inspired model by Bojarski [2], the
average deviation from ground truth is 3.3200, while the
average deviation on the transfer learning model is 2.2803,
showing an approximate 31.31% improvement in steering
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Fig. 6: Comparison between baseline [2] model and our model that utilizes simulated accident data, in predicting the steering angle for
real world images. The deviation, measured in degrees, from the true label steering angle is plotted for eight sample images. The baseline
model generally deviates more than our method, suggesting that complementing models with simulated accident data through transfer

learning reflects driving closer to that by real human drivers.

wheel prediction. Qualitative results showing the affect of
accident scenario data can be observed in Figure 4 and 5.

The steering wheel results suggest that high-level knowl-
edge from the virtual world data can be inferred and utilized
in real-world scenarios, including that of accident avoidance
behavior.

V. CONCLUSION

In this paper, we show that transfer learning using simu-
lated accident data, with automatic sampling and parameteri-
zation, leads to better generalization to more diverse scenar-
ios. As stated earlier, much of the individual components
of the policy gradients reinforcement learning algorithms
involve convolutional neural networks, where the transfer
learning approach could be leveraged to facilitate better
convergence and sampling efficiency.

A. Limitations

Our current in-house accident simulator can further benefit
from a more diverse, dynamic, and realistic vehicle and
environment models. This has implications for training with
image data, as the environment remains static and likely
contributes to bias in the learning process. Had the accident
scenarios taken place with different visual environments, the
results may be improved.

One limitation is obtaining annotated real world crash
scenarios, along with proving the ability to detect possible
accidents. Although accident data was incorporated into the
training of the convolutional model for pre-trained weights,
the bias in data and lack of a labeled real world validation
set made it difficult to directly test the effectiveness of the
data set.

B. Future Work

The framework for the accident scenarios is not limited to
the in-house simulator in this project. The same scenarios can
be replicated in simulators with varying environments and
higher-quality visualization, in order to achieve images closer
to the real-world domain. This could improve the diversity
in environment scenes. With more visual variation in the
environment.

Furthermore, addressing this potential would enable for
other methods of domain transfer. With more diverse image
data, it would be a feasible hypothesis that current supervised
and unsupervised methods of image domain transfer would
be successful, considering that some studies were able to
convert virtual driving images to the real world domain
[5], [8], [13]. This, combined with state-of-the-art road
image segmentation, can be combined as another method
for domain transfer [9], [10].
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APPENDIX I
SAMPLE ACCIDENT SIMULATION IMAGES

A. Intersection - Running Red Light

B. Non-intersection - Lane Change / Same Direction




APPENDIX [T
EXAMPLE OF A PRE-CRASH SCENARIO FROM [12]

A. Intersection - Running Red Light
IV.1. Running Red Light
Typical Scenario: Vehicle is going straight, and then runs a red
light while straight crossing an intersection and collides with

another straight crossing vehicle from a lateral direction.

Societal Cost

Total No. of Crashes 237,000
[Total No. of Vehicles Involved 494,000
No. of Vehicles with Injuries 146,000
[No. of People Injured 232,000
[VSL S 18.,274,000,000)
FYL 129,000

Driving E

Roadway Alignment x
Roadway Surface Condition x
Atmospheric Condition
Relation to Junction x
Traffic Control Device

79% - Straight, dry road surface with no adverse weather
12% - Straight, slippery road surface with adverse weather

94% - Intersection or intersection related at 3-color traffic signal

B. Non-intersection - Lane Change / Same Direction

1V.4. Changing Lanes/Same Direction

Typical Scenario: Vehicle is changing lanes, and then
encroaches into another vehicle traveling in the same
direction.

Societal Cost

Total No. of Crashes 336,000
Total No. of Vehicles Involved 659,000
No.of Ve ith Injuries 60,000
No. of People Injured 98,000
VSL $ 8,414,000,000
FYL 60,000
MAIS 2+ Injuries 10,000
MAIS 3+ In:unes 3,00

Driving Environment
Roadway Alignment x
Roadway Surface Condition x
Atmospheric Condition
Relation to Junction x 65% - Non-Junction without traffic controls

Traffic Control Device 11% - Intersection or i ion related at RGY traffic signal
75% - Daylight

15% - Dark but lighted

78% - Straight, dry road surface with no adverse weather
9% - Straight, slippery road surface with adverse weather

Lighting Condition




