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ABSTRACT

We present a novel learning-based collision avoidance algorithm,
CrowdSteer, for mobile robots operating in dense and crowded envi-
ronments. Our approach is end-to-end and uses multiple perception
sensors such as a 2-D lidar along with a depth camera to sense sur-
rounding dynamic agents and compute collision-free velocities. Our
training approach is based on the sim-to-real paradigm and uses
high fidelity 3-D simulations of pedestrians and the environment
to train a policy using Proximal Policy Optimization (PPO). We
show that our learned navigation model is directly transferable to
previously unseen virtual and dense real-world environments. We
have integrated our algorithm with differential drive robots and
evaluated its performance in narrow scenarios such dense crowds,
narrow corridors, T-junctions, L-junctions, etc. In practice, our
approach can perform real-time collision avoidance and generate
smooth trajectories in such complex scenarios. We also compare
the performance with prior methods based on metrics such as tra-
jectory length, mean time to goal, success rate, and smoothness
and observe considerable improvement.

KEYWORDS

Collision Avoidance; Deep Reinforcement Learning; Crowd Navi-
gation; Sensor Fusion

1 INTRODUCTION

Mobile robots are frequently deployed in indoor and outdoor en-
vironments such as hospitals, hotels, malls, airports, warehouses,
sidewalks, etc. These robots are used for surveillance, inspection,
delivery, and cleaning, or as social robots. Such applications need
to be able to smoothly and reliably navigate in these scenarios by
avoiding collisions with obstacles, including dynamic agents or
pedestrians.

Some earlier work on mobile robot navigation was limited to
open spaces or simple environments with static obstacles. Over
the last decade, there has been considerable work on collision-free
navigation among pedestrians using visual sensors like lidars or
cameras [6, 8, 12, 14, 21, 24]. However, many challenges arise when
such robots are used in dense or cluttered environments and need
to move at speeds that are close to that of human pedestrians ( 1.3
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Figure 1: A Turtlebot and Jackal robot using CrowdSteer to
navigate in scenarios with pedestrians in a narrow corridor
and areas with high occlusion. Our method uses data from
multiple sensors such as a 2-D lidar and a depth camera to
generate smooth collision avoidance maneuvers. We com-
pare with methods such as DWA[11] and Fan et al[17].

meters/sec). A high crowd density corresponds to 1-3 (or more)
pedestrians per square meter. In these scenarios, the pedestrian
trajectories are typically not smooth and may change suddenly.
Moreover, it is difficult to predict their trajectories due to occlusion
or non-smooth motion. Many sensor-based navigation algorithms
either tend to stall the robot’s motion or are unable to avoid colli-
sions with the pedestrians.

A recent trend is to use learning methods for sensor-based robot
navigation in crowds. These include techniques based on end-to-
end deep learning [14, 21], generative adversarial imitation learn-
ing [24], and deep reinforcement learning [10, 17]. Most of these
methods use one or more perception sensors like an RGB, or RGB-D
camera, or a 2-D lidar.

In practice, using a single robot sensor may not work well in
dense or cluttered scenarios. Moreover, this sensor choice affects
the efficiency of the collision avoidance scheme in terms of reaction
time or the optimality of the trajectory. Some of these methods work
well in static environments, but fail in scenarios with even a few dy-
namic obstacles [24]. Algorithms that use a lidar may perform well
in dense scenarios but lack the ability to detect thin obstacles such
as poles or differentiate between animate and inanimate obstacles.
They also suffer from the freezing robot problem and exhibit os-
cillatory behaviors in dense situations. Other algorithms [6, 7] use
either 2-D or 3-D lidars along with several RGB cameras to detect
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obstacles and predict pedestrian motions. They exhibit good per-
formance in moderately dense crowds but may not work well with
high density crowds, scenes with occlusions and are susceptible to
perception errors.

Main Results: We present CrowdSteer, a novel learning-based
local navigation method that uses hybrid sensing for densely crowded
scenarios. We formulate the navigation among pedestrians as a
POMDP problem and solve it using deep reinforcement learning.
Our approach uses a combination of perception sensors such as a
2-D lidar along with an depth (RGB-D) camera to sense obstacle
features and help the policy implicitly learn different kinds of inter-
actions with the obstacles. We use the Proximal Policy Optimization
(PPO) algorithm to train the collision avoidance policy and reduce
the sim-to-reality gap by using high-fidelity complex simulations
of environments with pedestrians. Some of the novel components
of our approach include:

e A new end-to-end learning method that fuses inputs from
multiple perception sensors for implicitly characterizing the
robot’s interactions with obstacles and pedestrians. This
results in reliably handling complex, high-density scenarios
for navigation.

o A trained model which generates smoother collision avoid-
ance trajectories and is resilient to perception noises and
occluded obstacles, as compared to previous methods.

o Custom made complex high-fidelity training and testing sce-
narios of indoor environments with pedestrians for training
and testing Deep Reinforcement Learning (DRL) models. We
show that using such simulations eases sim-to-real transfer
and leads to better generalization of the trained policy.

We implemented and evaluated our algorithm on a Turtlebot
robot and a ClearPath Jackal robot with a Hokuyo 2-D lidar and
an Orbbec Astra camera in indoor environments such as corridors,
L-junctions, and T-junctions with varying pedestrian density (as
high as 1-2 humans/ m?). We also compare CrowdSteer’s perfor-
mance with prior traditional methods such as Dynamic Window
Approach (DWA) [11] and a state-of-the-art learning-based crowd
navigation algorithm [17]. We observe that our approach surpasses
these methods in terms of success rates, and shows a reduction
of up to 68.16% in time to goal, and 6.12% reduction in trajectory
length when compared to the current state of the art Fan et al. [17].

2 RELATED WORK

In this section, we give a brief overview of the prior work on tradi-
tional and learning-based navigation algorithms.

2.1 Navigation in Dynamic Scenes

There is extensive work on collision avoidance in dynamic scenes
for robots. These include techniques based on potential-field meth-
ods [26], social-forces [13], velocity obstacles [1, 27], etc. These
methods have been used in simulated environments and can scale
to a large number of agents. In terms of real-world scenarios, these
methods require accurate sensing of obstacles’ positions and veloci-
ties and parameter tuning that is scenario-dependent. These require-
ments make it difficult to directly apply them for navigation in dense
crowds. At the same time, these methods have been used to generate
training trajectories for initializing some learning-based methods.
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The Dynamic Window Approach (DWA) [11] is another widely
used method which calculates reachable dynamically-constrained
velocities for collision avoidance within a short time interval. How-
ever, it does not scale well to large numbers of dynamic obstacles.

2.2 Sensor-based Navigation among
Pedestrians

Sensor-based navigation algorithms are widely used to navigate
a robot among pedestrians [12]. In [2], data from a radar and far
infrared (IR) camera were synchronized and fused to track obstacles
for collision avoidance. A significant problem in navigating among
pedestrians is modeling their unknown intentions. [25] used the
observed motions of humans to generate a motion probability grid
to model pedestrian intentions. Some methods [16] learned obstacle
motions from trajectories in a captured video or used laser scan
data and Hidden Markov Models to estimate human trajectories
[4].

Other techniques use a Partially Observable Markov Decision
Process (POMDP) to model the uncertainties in the intentions of
pedestrians. A POMDP-based planner was presented in [3] to esti-
mate the pedestrians goals for autonomous driving which was later
augmented with an ORCA-based pedestrian motion model [18].
The resulting POMDP planner runs in near real-time and is able
to choose actions for the robot. Our approach is complimentary
to these methods in that we model the navigation problem as a
POMDP.

2.3 Learning-based Collision Avoidance

There is considerable work on using different learning methods for
collision avoidance and navigation in dense environments.

2.3.1 Using single perception sensor: Several works have
used data from a single perception sensor to train collision avoid-
ance behaviors in a robot. A map-less navigation method using
expert demonstrations in simulation was trained with a single 2-D
lidar for static environments in [20]. In [24] a GAIL (Generative
Adversarial Imitation Learning) strategy was trained using raw data
from a depth camera over a pre-trained behavioral cloning policy
to generate socially acceptable navigation through a crowd. How-
ever, the robot’s navigation is limited by the depth camera’s field of
view (FOV) and works well only in sparse crowds and near-static
environments.

An end-to-end visuomotor navigation system using CNNs that
are trained directly with RGB images was developed in [14]. Simi-
larly, [28] used a deep double-Q network (D3QN) to predict depth
information from RGB images and used it for static obstacle avoid-
ance in cluttered environments. [29] improved the generalization
capability of deep reinforcement learning by including a visual
goal in the policy of their actor-critic models. While these methods
perform well for mostly static scenarios, they may not work well
with dense crowds.

A decentralized sensor-level collision avoidance method that was
trained with multi-robot Proximal Policy Optimization (PPO) [22]
using a 2-D lidar in [17]. This approach was extended in [10] based
on a hybrid control architecture, which switched between different
policies based on the density of the obstacles in the environment.
This approach works well in open spaces, but exhibits oscillatory
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and jerky motions in dense scenarios since the 2-D lidar only senses
the proximity data and fails to sense more complex interactions.

2.3.2 Using multiple sensors: [6] presents a decentralized
agent-level collision avoidance method by utilizing a trained value
network that models the cooperative behaviors in multi-agent sys-
tems. An LSTM-based strategy that uses observations of arbitrary
numbers of neighboring agents during the training phase and makes
no assumptions about obstacles’ behavior rules is described in [7].
Other methods [5] explicitly model robot-human interactions in
a crowd for robot navigation. These algorithms use a 2-D or 3-D
lidar along with several RGB cameras for pedestrian classification
and obstacle detection. However, these methods use a time parame-
ter (At) for which obstacle motions are assumed to be linear. The
value of At is important for their training to converge and their
performances are susceptible to perception errors. In contrast, our
training process is more robust and makes no such assumptions.

[19] presents an uncertainty-aware reinforcement learning method
for collision avoidance that identifies novel scenarios and performs
careful actions around the pedestrians. A method to solve both the
freezing robot problem and loss of localization simultaneously by
training an actor-critic model to learn localization recovery points
in the environment is shown in [8]. This approach was also based
on a single sensor and susceptible to jerky/oscillatory motion.

3 OVERVIEW

In this section, we introduce our multi-sensor based navigation
problem and give an overview of our approach based on deep rein-
forcement learning. Unlike prior methods, our goal is to simultane-
ously use multiple sensors that sense the proximity data and various
interactions and behaviors of dynamic agents and pedestrians and
generate smooth trajectories.

3.1 Robot Navigation

We assume that the dynamics of the robot we train is bounded
by non-holonomic constraints [1]. The robot at any point in time
knows its environment only to the extent of its sensor observations,
and no global knowledge of the state of the environment may
be available. In addition, in accordance with real-world scenarios,
the robot may not be able to access other hidden parameters of
pedestrians and other dynamic agents, such as goals and states.
At each time step t, the robot has access to an observation vector
o! which it uses to compute a collision-free action that drives it
towards its goal from the current position by avoiding collisions
with the static and dynamic obstacles. We assume that it is the sole
responsibility of the robot to avoid collisions with pedestrians.

3.2 Multiple Sensors

Our approach is designed to exploit multiple sensors simultane-
ously. These include a lidar to measure the proximity to different
obstacles and pedestrians. However, the lidar’s raw data does not
provide sufficient information to differentiate between animate
and inanimate obstacles or sudden changes in the orientation of
obstacles. As a result, it is difficult to infer whether the obstacles
are moving towards or away from the robot. Therefore, we also use
RGB or depth cameras for such observations. Furthermore, these

Figure 2: Contours of a pedestrian walking at a distance, and
surrounding walls captured by the depth camera on our ro-
bot. Features such as the pedestrian’s pose and motion can
be extracted from such frames. Our CrowdSteer algorithm
exploits these features for collision avoidance and generat-
ing smooth trajectories.

cameras are able to capture the interactions between the obstacles
and pedestrians in the scene.

3.2.1 2-D lidar: Each scan/frame from a 2-D lidar consists of
a list of distance values on the plane of sight of the lidar (See left
scenario in Fig. 4). With its high accuracy, field of view (FOV),
and low dimensional output data, the 2-D lidar allows us to detect
clusters of closest points in the robot’s surroundings.

3.22 Cameras: Depth images possess an additional dimension
over and above a 2-D lidar. Therefore, features such as obstacle
contours and changes in obstacles’ poses are more prominently
recorded even in low resolution images (Fig 2). This facilitates
feature extraction to differentiate between moving and non-moving
objects. For instance, a pedestrian changing direction away from
the robot’s trajectory would result in a contour with a lower area in
the depth image. If we consider several consecutive frames from the
camera, the approximate positions, orientations and velocities of all
obstacles in the frame can be extracted. The same principles apply
to RGB or grayscale images from an RGB camera. RGB cameras,
in general, have a higher FOV than depth cameras and have an
infinite sensing range similar to the human eye. Therefore, features
corresponding to the obstacles can be captured in a single frame
even when they are far from the robot.

The lidar and the camera sensors provide complimentary infor-
mation about the environment. Using multiple consecutive frames
of this combined information, helps our method learn that a change
in features in the sensor data leads to a change in interaction with
the obstacles and produces actions to accommodate it. In addition,
a sensor’s limited FOV can be overcome if another sensor with a
high FOV is used in tandem with it. Using such combination of
sensors is highly useful in indoor scenarios with a lot of occlusion.
In our work, we assume that the data from the 2-D lidar and the
camera are synchronized.

3.3 Problem Formulation

We formulate the navigation among pedestrians as a POMDP, which
is solved using deep reinforcement learning. Formally, a POMDP is
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modeled as a 6-tuple (S, A, P, R, Q, O) [10], where the symbols rep-
resent the state space, action space, state-transition model, reward
function, observation space and observation probability distribu-
tion given the system state, respectively. As stated earlier, our robot
has access only to the observations, which can be sampled from the
system’s state space. Next, we describe our observation and action
spaces.

Using data from the 2-D lidar along with a camera makes our
observation space high-dimensional. In addition, since the indi-
vidual sensor streams have different dimensions (1-D for lidar
and 2-D for images), they cannot be processed together. There-
fore, we split the robot’s observation vector into four components,
ol =[o lld,oéam,og,o ], where 0 denotes raw noisy 2-D lidar
measurements, o’,,,, denotes the raw image data from either a
depth or an RGB camera, ot refers to the relative goal location with
respect to the robot, and of, denotes the current velocity of the

robot. of lid 18 mathematlcally represented as:

o ={leRM:0<]; <4} (1)

Where [ represents a list of proximity values and [; denotes the
h element of the list. ol ., can be mathematically denoted as:

Olgm = {C e RP™I20 . 14 < ¢y < 5} 2

The action space of the robot is composed of its linear and angular

velocities a’ = [v?, w !]. The objective of the navigation algorithm is
to select an action a’ at each time instance, sampled from a trained
policy 7y as:
a’ ~ mp(a’lo). ®)
This action drives the robot towards its goal while avoiding colli-
sions with pedestrians and static obstacles, until a new observation
0'*1 is measured. We use the minimization of the mean arrival
time of the robot to its goal position as the objective function to
optimize the policy 7y as:

Z HEAE ©)

3.4 Reinforcement Learning Training and PPO

argmm E[—

We use a policy gradient based [23] reinforcement learning method
called Proximal Policy Optimization (PPO) [22] to solve the opti-
mization problem in Equation 4. We adapt a policy gradient method
since it directly models the strategy that generates actions, given
the observations from the agents, and is more suitable for con-
tinuous action spaces such as ours. Compared with other policy
gradient methods, PPO provides better stability during training by
bounding the parameter (6) updates to a trust region, i.e., it ensures
that the updated policy does not diverge from the previous policy.
At each training episode, a robot in simulation collects a batch of
observations until a time Ty, 4x and the policy is then updated based
on a loss function. PPO uses a surrogate loss function which is op-
timized using the Adam optimizer under the Kullback-Lieber(KL)
divergence constraint which is given as:

Tmax t
LPPO(p) = Z 01 e gL gl o

= ald(a[|0t)

+ Emax(0, KL[my14]7g] — 2KLmrget)2
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Where Ag is the advantage function, ff and ¢ are hyperparameters.
The key issue is to design methods that take into account multiple
sensor inputs and make sure that the training module converges
fast and is able to handle all kind of observations.

4 OUR APPROACH: CROWDSTEER

In this section, we present our sensor-fusion based collision avoid-
ance method that directly maps multiple sensor observations to
a collision-free action. We describe the network that models our

policy.

4.1 Network Architecture

Since the data from the lidar and camera have different dimensions
(see Eqns 1, 2), they cannot be processed together. Therefore, our
network (Fig.3) consists of four branches, each processing a single
component of the observation of.

Branches 1 and 2 consist of multiple 1-D and 2-D convolutional
layers to process the lidar and image observations, respectively,
as the convolutional layers exhibit good performance in terms of
extracting features from the input data [15]. Three consecutive lidar
frames, each containing a list of proximity values are fed into two
1-D convolutional layers and a fully connected layer for processing.
The first hidden layer has 32 filters and stride length = 2. The second
hidden layer has 16 filters, and stride length = 2. Kernels, which
capture the relationship among nearby elements in an array, of size
5 and 3 are used in the convolutional layers respectively.

Branch 2 is used to learn to detect motion from the three image
frames, characterize the interaction based on obstacle motion and
to move towards the free space detected in the frames. Three con-
secutive image frames are fed into a 2-D convolutional layer with
64 filters, kernel size = 5, and stride length = 2. The next layer uses
64 2-D convolutional filters, kernel size = 5 and stride length = 1.
The output of this layer is passed on to 32 2-D convolutional layers
of kernel size = 3, and stride length = 2. This is followed by two
fully connected layers of sizes 512 and 256. Layer FC4 ensures that
the output of branch 2 has the same dimensions as the output of
branch 1. Layers FC1 and FC4 at the end of branches 1 and 2 also
ensure that the data from the perception sensors have the most
effect on the actions generated by the network. ReLU activation is
applied to the outputs of all hidden layers in branches 1 and 2.

The output of branches 1 and 2 and the goal and current velocity
observations are then correlated together by the fully connected
layer FC2 with 128 rectifier units. In the output layer, a sigmoid
activation is used to restrict the robot’s linear velocity between (0.0,
1.0) m/s and a tanh function restricts the angular velocity between
(-0.4, 0.4) rad/s. The output velocity is sampled from a Gaussian
distribution which uses the mean and log standard deviation which
were updated during training. The training of the network is end-
to-end and all parts of the network are trained simultaneously.

4.2 Reward Function

We train the robot to reach its goal in the least possible time, while
avoiding the obstacles. Therefore, the robot is rewarded for heading
towards and reaching its goal, and penalized for moving too close
or colliding with an obstacle. In addition, the robot is expected to
avoid oscillatory velocities, follow smooth trajectories and reach
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Figure 3: Architecture of our hybrid sensing network with
four branches for different observations. The input layer
is marked in blue, the hidden layers are marked in orange.
Fully connected layers in the network are marked as FCn.
The second branch extracts features from three consecutive
image frames, which are fused with features extracted from
three frames of the lidar in FC2 layer. The three values un-
derneath each hidden layer denote the kernel size, number
of filters, and stride length respectively.

intermediate waypoints before reaching the goal. Although the
penalty for collision teaches the robot not to collide, it does not
specifically result in the robot maintaining a safe distance from
obstacles. This needs to be considered when the dynamic obstacles
are pedestrians. Some previous algorithms [6, 17] train their model
for multi-agent collision avoidance, which results in the robot not
maintaining a safe distance from pedestrians. The intermediate
waypoints provide the robot with a sense of direction and guide it
towards its goal. Formally, the total reward collected by a robot i at
time instant t can be given as:

r/l? = (rg)f + (rc)f + (Vosc)g + (rsafedist)zt' (6)

where the reward for reaching the goal (rg)f or an intermediate
waypoint is given as:

Fwp if IIp} = Pawpll < 0.1,

(rg)i = {7 goal if lIp! - gll < 0.1, (7)

25(lp; " —gill = llp; —gill) ~ otherwise.
The collision penalty (rc)lf is given as:
(r )t _ Tcollision lfHPf _Pobs“ < 0.3, ®)
o 0 otherwise.

The oscillatory behaviors (choosing sudden large angular velocities)
are penalized as:
(rosc)t = —0.1]w!| if |of| > 0.3. 9)
The penalty for moving too close to an obstacle is given by:
(rsafedist)f = —0.1|IRs,, 0 — Rfm‘n”- (10)
We set rwp = 10, rgoar = 20, and r¢op1i5i0n = -20 in our formulation.
Critical behaviors such as collision avoidance and goal reaching
have a higher priority in terms of the overall reward collected by

the robot, while choosing smoother velocities and maintaining a
safe distance from obstacles contribute to the reward with a slightly
lower priority.

4.3 Training Scenarios

A major challenge in learning based methods is to close the sim-to-
reality gap that arises when using a policy trained using simulated
environments and sensor observations is evaluated in the real world.
Additionally, when using multiple sensors, especially cameras, the
simulation should contain as many real world features or character-
istics as possible for the training to generalize well. One of our goals
is to take advantage of the camera’s ability to observe such com-
plex features (Fig. 2). To address these issues simultaneously, we
use high-fidelity 3-D environments that replicate real-world open
spaces, and indoor scenarios with realistic moving pedestrians, and
occluded environments.

The policy training is carried out in multiple stages, starting with
a low-complexity static scenario, to dynamic scenarios with pedes-
trians. The simple scenarios initialize the policy 7y with capabilities
such as static collision avoidance and goal-reaching, while dynamic
collision avoidance capability is learned in complex scenarios with
moving pedestrians. The different type of environments used in
training are shown in (Fig.4). These include:

Static Scenario: We use two independent robots that must start
from fixed initial locations and head towards fixed goals straight in
front of them while avoiding a wall. A single policy is shared be-
tween the two robots so that both left and right turning maneuvers
are learned simultaneously. Using this initialized policy, we then
provide random initial locations and random goals to the two robots
for the goal-reaching and static collision avoidance capabilities to
generalize well.

Random Static and Dynamic Obstacles: In this scenario, a
single robot has to move towards a random goal in the presence of
static human models and randomly moving pedestrians. We ensure
that there is more than enough space through which the robot
can navigate. To generate pedestrian trajectories, we assign several
waypoints or goals in the environment for the pedestrian models to
move to at different time instants. The simulated pedestrians move
at near human walking speeds and tend to mimic natural human
walking motions.

Scenario with occluded obstacles: The saved model from the
previous scenario is next trained on a complex corridor scenario,
which requires the robot to perform several sharp turns and avoid
pedestrians who can only be observed in close proximity. This trains
the robot to perform quick maneuvers in real-world scenarios where
occluded pedestrians walk towards the robot suddenlyr.

Sim-to-real transfer: Both the scenarios with dynamic obsta-
cles make the sim-to-real transfer and generalization easier, as the
depth camera observes noisy 3-D real-life like data such as pedes-
trian contours and walls, which is fused with more accurate lidar
data. Such fusion was not possible in previous methods [10, 17],
as they were trained in a 2.5D simulator. However, in the corridor
scenario, there is a danger of the policy overfitting to follow walls
and moving to goals which are straight ahead of the robot instead of
generalizing to all scenarios. To prevent this, we also parallelly run
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Figure 4: Left to right: The different training scenarios used by our algorithm from simplest to complex. Left: Static Scenario.
Middle: Scenario with static and random dynamic obstacles. Right: Scenario with occlusions and sharp turns.

robots in the simple static scenarios with random goals alongside
the corridor scenario.

5 RESULTS AND EVALUATIONS

In this section, we describe our implementation and highlight its
performance in different scenarios. We also compare our naviga-
tion algorithm with prior methods and perform ablation studies
to highlight the benefits of implicit multi-sensor fusion and our
reward function.

5.1 Implementation

We train our model in simulations that were created using ROS
Kinetic and Gazebo 8.6 on a workstation with an Intel Xeon 3.6GHz
processor and an Nvidia GeForce RTX 2080Ti GPU. We use Ten-
sorflow, Keras and Tensorlayer for implementing our network. We
use models of the Hokuyo 2-D lidar and the Orbbec Astra depth
camera in Gazebo to simulate sensor data during training and eval-
uation. The Hokuyo lidar has a range of 4 meters, FOV of 240°
and provides 512 range values per scan. The Astra camera has a
minimum and maximum sensing range of 1.4 meters and 5 meters
respectively. We use images of size 150 X 120 with added Gauss-
ian noise N(0,0.2) as inputs to our network training. We mount
these sensors on a Turtlebot 2 and a Clearpath Jackal robot to test
our model in real-world scenarios such as crowded corridors and
occluded scenes.

5.2 Training Convergence and Data Efficiency

The convergence of our reward function versus the number of itera-
tions for different training scenarios is shown in Fig.5. The training
in all scenarios starts to converge around 100 iterations, and stabi-
lizes around 200 iterations and the total process completes in six
days. This increase in training time when compared with previous
methods is due to the high dimensionality of the 3-D depth data
used during training. Previous methods do not perform any kind of
implicit sensor fusion to detect and avoid obstacles. However, the
training time does not affect our run-time performance, which can
be observed from our real-world tests.

5.3 Testing scenario

We consider five different test scenarios that have narrower or dif-
ferent sections, as compared to the synthetic datasets used during
our training phase. This demands tight maneuvers from the robot
to reach the goal. These testing scenarios are more challenging
than existing simulation benchmarks and help to better test Crowd-
Steer’s sim-to-real, and generalization capabilities. We define Least
Passage Space (LPS) as the minimum space available to the robot
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Figure 5: Convergence of our reward function vs the number
of iterations for different training scenarios. Training in all
scenarios converges within 200 iterations.

in-between obstacles when moving towards the goal. The scenarios
we consider are:

1. Narrow-Static: Scenario with only static obstacles where the
LPS is < 0.7 meters.

2. Narrow-ped: Scenario with 8 pedestrians walking in the op-
posite direction to the robot’s motion in a narrow corridor, with an
LPS of < 1.5 meters.

3. Occluded-ped: Scenario with sharp turns with static obstacles
and pedestrians that are occluded by walls. The LPS is < 1 meter.

4. Dense-Ped: Scenario with 18 pedestrians in a corridor of
width 6 meters. Pedestrians may walk together as pairs, which
require a robot to make sharp turns in the presence of multiple
dynamic obstacles. The LPS is < 1 meter.

5. Circle: To test the generalization of our method for multi-
robot collision avoidance, we make 4 robots move towards antipodal
positions on a circle. The trajectories of the 4 robots is shown in
Fig. 6.

5.4 Performance Benchmarks and Metrics

We compare the benefits of our hybrid sensing method with three
prior algorithms: (i) DWA [11] which uses a lidar / proximity sen-
sors to detect obstacles along with a global planner which requires
a map of the environment.(ii) An implementation that uses a single
depth camera that was trained using PPO and our reward functions;
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Metrics Method Narrow-Static | Narrow-Ped | Occluded-Ped | Dense-Ped

DWA 1 0.1 0.5 0.0
Success Rate Depth Camera 0.85 0.55 0.2 0.2
Fan et al. 1 0.0 0.0 0.0

CrowdSteer 1 1 0.9 0.67

DWA 6.33 14.86 27.2 7.46

. Depth Camera 6.18 16.30 25.7 14.95
AVg TraJeCtory Length Fan et al. 6.86 6.16 13.63 9.17

CrowdSteer 6.44 15.51 27.18 16.58

DWA 20.9 441 60.4 25.72

Mean Time Depth Camera 58.7 43.6 78.20 90.73

Fan et al. 106.93 13.76 28.025 38.05

CrowdSteer 34.04 41.48 70.54 64.9

DWA 0.30 0.34 0.45 0.29

. Depth Camera 0.11 0.37 0.33 0.16

Avg Velocity Fan et al. 0.06 0.44 0.48 0.23
CrowdSteer 0.20 0.37 0.39 0.26

Table 1: We compare the relative performance of CrowdSteer that uses multiple sensors (depth camera + lidar) with other
learning methods that use a single sensor, and a traditional method (DWA) in challenging scenarios. The values in gray are
until a collision or oscillation occurred. These numbers clearly highlight the benefit of our novel deep reinforcement learning
algorithm (CrowdSteer) that uses multiple sensors over prior methods.

= [

\ 1

Figure 6: Testing the generalization of our training in a sce-
nario with four agents (in blue) moving towards antipodal
points on a circle (in yellow). Each robot takes full respon-
sibility for collision avoidance, which leads to making wide
maneuvers during collision avoidance.

(iii) Fan et al. [17], the current state-of-the-art learning-based colli-
sion avoidance method for dense crowd navigation, which uses a
single 2-D lidar for sensing. Its real-world implementation is shown
in [9]. Fan et al. [17] assumes that the pedestrians in dense sce-
narios would cooperate with the robot to avoid collisions. On the
other hand, we assume that the robot takes the full responsibility
to avoid collisions, though the pedestrians may or may not be coop-
erative. We use the following metrics to evaluate the performance
of different navigation algorithms:

o Success Rate - The number of times that the robot reached
its goal without colliding with an obstacle over the total
number of attempts.

e Average Trajectory Length - The trajectory length tra-
versed by the robot until the goal is reached, calculated as

the sum of linear movement segments over small time inter-
vals over the total number of attempts. In cases where the
robot never reached the goal, we report the trajectory length
until it collided or started oscillating indefinitely.

e Mean Time - Average time taken to reach the goal over
all attempts. If the goal is never reached in all attempts, we
report the mean time until a collision or oscillation.

e Average velocity - The average velocity of the robot until
a collision occurs or the goal is reached over all attempts.

5.5 Analysis and Comparison

The results of our experiments and our ablation study to check the
benefits of using multiple sensors (both lidar and depth camera)
versus using one sensor (only depth camera) are shown in Table 1.
Comparison with DWA: DWA [12] and CrowdSteer succeed in
reaching the goal 100% of the times in static scenarios. However,
as the number and density of dynamic agents in the environment
increase, DWA’s success rate drops considerably when compared
to CrowdSteer. This is due to the re-planning time it takes in the
presence of dynamic obstacles or pedestrian. DWA performs well in
the occluded-ped scenario due to its use of global map, which elimi-
nates many occlusions. In cases where DWA reached the goal, it has
more optimal trajectories and mean time due to the optimal global
planner. CrowdSteer manages to have comparable performances
without any global knowledge or planner.

Comparison with Fan et al. [17]: The robot that uses Fan et
al’s method works well in the static scenario. However, while it
manages to avoid collisions, it either gets stuck or starts oscillating
indefinitely in scenarios with non-cooperative dynamic obstacles
and occluded spaces. The values for the trajectory length, mean
time and velocity reported when Fan et al’s method always failed,
are until a collision or oscillation to give a sense of how much the
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Figure 7: a) Trajectories generated by Fan et al’s method in
the Narrow-static (left) and Occluded-ped scenarios (right).
b) The trajectories generated by CrowdSteer for the same
scenarios.

robot traversed towards the goal before failing. These results are
due to Fan et al’s training, which is based on multi-agent collision
avoidance where all the agents share the responsibility of avoiding
collisions. This assumption may not always hold in dense crowds.
CrowdSteer therefore manages to outperform Fan et al’s method
in all scenarios.

Apart from having a much better success rate, CrowdSteer has
similar performance as prior methods in terms of average velocities,
better trajectory lengths and mean time to Fan et al. which in turn
had better success rates, 41.6% lower time taken to reach the goal,
and 14% higher average speeds than works like NH-ORCA [1].
Therefore, our method outperforms the current state-of-the-art in
dense and occluded scenarios.

Comparing Smoothness: We also compare the smoothness
of the trajectories computed by CrowdSteer and Fan et al. [17]
method (Figure 7) in the Occluded-Ped, and Narrow-static scenarios.
CrowdSteer is trained to maintain a safe distance from obstacles
and avoids oscillations. This results in significant improvement in
the smoothness of the trajectories.

Ablation study for multi-sensor fusion: We compare the ef-
fects of using fused data from two sensors (CrowdSteer) versus
a model which uses one sensor (Depth Camera) trained with our
training scenarios and reward function in different scenarios. Using
only a depth camera limits the robot’s sensing range and field of
view. Due to this, the depth camera model does not have a 100%
success rate in any scenario. This also reflects in the success rate
drop in the Occluded-Ped and Dense-Ped benchmarks. However, it
still manages to succeed in the dynamic testing scenarios due to
our training scenarios and network architecture. Our CrowdSteer
algorithm takes advantage of both the high accuracy of the lidar
and the complex features extracted from the depth images and
demonstrates significantly better success rates, lower mean time,
and higher average velocities.

Ablation study of smoothness: We study the effect of our
reward function on the robot’s trajectory smoothness. We trained
two policies, one including the penalty for oscillations in the reward
function (Eqn. 9), and the other without it. The average number
of oscillations in the robot’s trajectory are summarized in Table

Jing Liang™, Utsav Patel”, Adarsh Jagan Sathyamoorthy, and Dinesh Manocha.

2. The models are evaluated in two scenarios: (i) Scenario without
any obstacles, and the robot moves in a straight line for 10 meters
towards the goal, (ii) Scenario where the robot must maneuver
to avoid a static obstacle before reaching the goal. Empty/sparse
scenarios are used so that turns during dynamic obstacle avoidance
does not affect the number of oscillations. We observe that there
is a significant reduction in the number of oscillations when the
penalty is included.

Scenario Without Penalty | With Penalty
Empty world 9.8 2
Static obstacle 9 2

Table 2: The average number of oscillations in two scenar-
ios for two models trained without and with the oscillations
penalty term. We see a significant reduction in the number
of oscillations in our model that is trained with the penalty.

Real-world scenarios: We use CrowdSteer to navigate a Turtle-
bot 2 and a Clearpath Jackal robot in crowds with varying densities
(1-3 person/m?), as shown in the video. The robots face high ran-
domness in terms of the direction and velocities of pedestrians,
which was not encountered during training. We compare the mo-
tion of CrowdSteer with Fan et al.[17] method in similar scenarios.
Compared to Fan et al., we observe that CrowdSteer has smoother
trajectories in both robots and avoids all collisions with the obsta-
cles. On the other hand, Fan et al.[17] method to compute collision-
free velocities are highly oscillatory. In occluded spaces such as
corridors, our CrowdSteer algorithm was able to avoid sudden ob-
stacles which appear in places such as T and L junctions. These
tests show the advantages of implicit sensor fusion and our training
scenarios with occlusions. Our real-world tests also demonstrate
our method’s strong sim-to-real and generalization capabilities.

Failure Cases: CrowdSteer may not work well certain cases.
In highly spacious regions, CrowdSteer could exhibit oscillatory
behaviors. It might also fail for acute angled turns and in environ-
ments with reflective or transparent surfaces, and high interference
from infrared light in the surroundings. In crowds with density >
4 people/m? or scenarios with very minimal or narrow space for
navigation, the robot may not find a collision-free path.

6 CONCLUSION, LIMITATIONS AND FUTURE
WORK

We present a novel sensor-based navigation algorithm, CrowdSteer,
that simultaneously uses multiple sensors such as 2-D lidars and
cameras. Our approach is designed for dense scenarios with pedes-
trians and makes no assumption about their motion. In practice, our
approach works well in complex, occluded scenarios and results in
smoother trajectories. Our approach has some limitations and fail-
ure cases. It is susceptible to freezing robot problem in very dense
settings and the computed trajectories are not globally optimal.
Furthermore, the current sensors may not accurately handle glass
or non-planar surfaces. There are many avenues for future work.
In addition to overcoming these limitations, we need to evaluate its
performance in other scenarios and outdoor settings. We may also
take into account the dynamics constraints of the robots in terms
of trajectory computation.
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