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Emotion-Based Crowd Simulation Model Based on
Physical Strength Consumption for Emergency

Scenarios
Mingliang Xu, Chaochao Li, Pei Lv*, Wei Chen, Zhigang Deng, Bing Zhou and Dinesh Manocha

Abstract—Increasing attention is being given to the modeling
and simulation of traffic flow and crowd movement, two phe-
nomena that both deal with interactions between pedestrians
and cars in many situations. In particular, crowd simulation
is important for understanding mobility and transportation
patterns. In this paper, we propose an emotion-based crowd
simulation model integrating physical strength consumption.
Inspired by the theory of “the devoted actor,” the movements
of each individual in our model are determined by modeling
the influence of physical strength consumption and the emotion
of panic. In particular, human physical strength consumption
is computed using a physics-based numerical method. Inspired
by the James-Lange theory, panic levels are estimated by means
of an enhanced emotional contagion model that leverages the
inherent relationship between physical strength consumption and
panic. To the best of our knowledge, our model is the first method
integrating physical strength consumption into an emotion-based
crowd simulation model by exploiting the relationship between
physical strength consumption and emotion. We highlight the
performance on different scenarios and compare the resulting
behaviors with real-world video sequences. Our approach can
reliably predict changes in physical strength consumption and
panic levels of individuals in an emergency situation.

Index Terms—Pedestrian traffic simulation, crowd simulation,
emotional contagion, James-Lange theory.

I. INTRODUCTION

EFFICIENT and accurate crowd simulation is useful for
intelligent transportation systems since it can help im-

prove emergency planning and prevent congestion in transit
hubs such as train stations and airports [1]. One can also
analyze human mobility through the trajectories obtained by
crowd simulation models to get more knowledge of pedestrian
mobility behaviors in both qualitative and quantitative ways.
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Because of various complex factors, it is challenging to model
realistic crowd behaviors in emergency scenarios. At a broad
level, crowd behavior in emergencies is governed by panic and
physical strength consumption [2].

The main purpose of crowd simulation algorithms is to
model the movements (in terms of speed and direction) of indi-
viduals in a crowd [3]. We basically deal with two aspects of
human motivations: physiological and psychological factors.
Physical strength consumption and emotion [4] are two repre-
sentative physiological and psychological factors, respectively.
Both have a great influence on individual movements. These
two factors influence each other and evolve dynamically. It is
important to describe the inherent relationship between these
two factors, which is more obvious in emergency or evacua-
tion situations [5]. Many approaches incorporate emotions of
individuals in crowd simulations, making it one of the most
commonly used psychological factors [6], [7], [8]. Panic can
prevent an individual from taking proper actions in emergency
situations [4]. Researchers have observed that external dangers
can directly cause changes in panic levels in an individual,
thereby further determining his or her movements [9]. We
mainly focus on the emotion of panic in emergency situations.
Most of the previous studies don’t consider the effect of
physical strength consumption on panic [10]. Physical strength
is a person’s or animal’s ability to exert force on physical
objects using muscles [11]. Physical strength consumption is
defined as the energy expenditure [12], [13] of a human, which
directly affects that human’s moving speed [14]. However,
it is difficult to describe the inherent relationship between
physical strength consumption and panic and to then combine
these factors to determine the movement of each individual
[5]. Therefore, an emotion-based crowd simulation model
integrating physical strength consumption is challenging due
to the following reasons:

(1) It is difficult to model the physical strength consumption
of an individual in a crowd accurately [15]. This task involves
considering many factors that are needed to quantify the in-
fluence of physical strength consumption on crowd movement
[16].

(2) Accurately modeling an individual’s panic level in a
crowd is difficult because of its constant and dynamic changes
[17]. Various factors such as physical strength consumption
and individual movement affect panic levels.

Inspired by the theory of “the devoted actor” [2], which
shows that an individual’s physiological state has an effect
on his or her psychological state, we propose the first (to the
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Fig. 1: The relationships among physical strength consump-
tion, panic, and movement of individuals in a crowd. Physical
strength consumption is calculated according to the actual
speed, mass, and moving time of individuals. The panic
levels are determined by the location and physical strength
consumption of the individual, and they further affect the
individual’s desired speed. Moreover, each individual’s current
panic level will affect his or her moving direction by changing
the acceleration based on the inferred force.

best of our knowledge) emotion-based crowd simulation model
based on physical strength consumption (illustrated in Figure
1). The main contributions of our work include:

• We introduce a physical strength consumption calculation
method based on how individuals work under the laws
of physics and quantitively characterize their dynamic
changes during the crowd movement.

• We present a comprehensive emotion calculation method
for physical strength consumption based on the James-
Lange theory. Our new proposed model is used to derive
the relationship between physical strength consumption
and panic and examines how both of them govern the
movement.

The rest of this paper is organized as follows. Background
and related work are reviewed in Section II. The definition of
our proposed crowd simulation model is introduced in Section
III. Different benchmark scenarios and results are presented in
Section IV.

II. RELATED WORK

In this section, we provide a brief overview of prior work on
crowd simulation. We divide the summaries based on whether
the works involve physical, psychological, or physiological
factors.

A. Simple crowd simulation models

In this subsection, we summarize representative crowd sim-
ulation models that do not consider psychological or physio-
logical factors [18], [19], [20], [1].

In the real world, many environmental factors influence an
individual’s movement, i.e. scene layout, moving pedestrians,
and stationary groups [21], [22], [23]. During the evacuation
of a crowd, the behavioral choice of an individual is highly
dependent on the moving directions of nearby individuals,
the hazard location, and obstacles [24]. Moussaid et al. [25]
propose a cognitive science approach based on behavioral
heuristics. Guided by visual information, pedestrians apply
two simple cognitive procedures to adapt their moving di-
rections and speed. Zhou et al. [26] propose a fuzzy logic
approach to model and simulate pedestrian dynamic behaviors,
which are based on human experiences and human knowledge,
and perceptual information obtained from interactions with
the surrounding environment. Zhou et al. [27] focus on the
role of leaders who can guide the movements of passengers
during the evacuation. Cassol et al. [28] focus on global path
planning with the main goal of identifying the best evacu-
ation routes for a specific population when leaving a certain
building. To realize better behavioral choices, most approaches
calculate the position of each individual at the next time step
to obtain a conflict-free moving path in a global scenario
[29]. However, these approaches are not applicable to highly
complex scenes with dense crowds. Other approaches use local
obstacle avoidance methods. Namely, once the movement state
of an individual is determined, the movement states of other
individuals are updated by using local collision avoidance
techniques [30].

In practice, these approaches face many difficulties in
terms of accurately controlling the individual movements. Re-
searchers in this field are increasingly focusing on integrating
global path planning and local obstacle avoidance [31], [32].
Weiss et al. [33] model collision avoidance constraints both
in terms of short and long-term ranges to deal with sparse
and dense crowds. In [34], intergroup- and intragroup-level
techniques are presented to perform coherent and collision-
free navigation using reciprocal collision avoidance. Mutual
information about the dynamic crowd is used to guide agents’
movements by combining both macroscopic and microscopic
controls [35]. By constructing a visual tree, the shortest path
without collisions is obtained in [36]. In addition, in [37],
[38], and [39], path planning and navigation algorithms are
described for crowd simulation in complex contexts. Fur-
thermore, in [40], an effective long-range collision avoidance
algorithm is proposed.

In contrast to these works, our model enhances the tradi-
tional social force model to avoid collisions with surrounding
individuals and obstacles by combining panic and physical
strength consumption calculations. Traditional crowd simu-
lation models are not concerned with this approach. In our
model, we mainly deal with moving directions and moving
speeds, which are largely influenced by panic and physical
strength consumption during a relatively short period of time.
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B. Crowd simulation with psychological factors

The psychological state of an individual plays a vital role
in his or her decision-making process [41], [42], [43], [44].
Stress and panic are typical psychological factors and have a
great influence on the movement of individuals in a crowd. In
this subsection, we introduce representative works on them.

In [17], authors focus on stress, which is defined as any
change caused by interactions between the environment and
individuals. Generally, stress is caused by a discrepancy be-
tween environmental demands and the abilities of individuals.
Stress can have positive effects on individual behavior. In
emergency or evacuation situations, stress improves the per-
formance of individuals [17]. It can be chronic and long-term
[17]. However, stress and panic are inherently different. Panic
is short-term and changeable and usually leads to negative
effects on individuals [45]. One of the most disastrous forms
of collective human behavior is the kind of crowd stampede
induced by panic, often leading to fatalities as people are
crushed or trampled [9].

An individual’s stress and panic are mirrored by others and
they are disseminated within the crowd [6]. There are two sep-
arate lines of emotional contagion research: epidemiological-
based and thermodynamics-based.

The epidemiological SIR model [46] divides the individuals
in a crowd into three categories: infected, susceptible, and
recovered. At first this model is used to simulate the spread
of rumor [47]. Then the epidemiological SIR model is used
to describe emotion propagation. In [6], the epidemiological
SIR model is combined with the OCEAN personality model
[48]. The phenomenon of emotional contagion occurs more
obviously in a panicked crowd. In [49], the cellular automata
model is combined with the SIR model (CA-SIRS) to describe
emotional contagion in an emergency situation. In [50], a
qualitatively simulated approach is proposed to model emo-
tional contagion process in a large-scale emergency evacuation
siutation, which confirms that the effectiveness of rescue
guidance is influenced by the leading emotion of the crowd.
There is another kind of emotional contagion models based on
thermodynamics [51]. Bosse et al. define emotional contagion
within groups based on a multi-agent approach. They focuses
mostly on emotions of groups rather than those of single
individuals. Neto et al. [42] improve this model adapting it
into BioCrowds and coping with emotional contagion within
different groups of agents. Some researchers combine these
two kinds of emotional contagion models to describe dynamic
emotion propagation from the perspective of social psychology
[52].

Because panic has a great influence on individual movement
and often leads to serious consequences, we focus on panic in
emergency situations. Inspired by the James-Lange theory in
biological psychology, we improve the Durupinar model [6]
by considering the influence of physical strength consumption
on panic levels. In contrast to previous methods considering
only panic, we further demonstrate the relationship between
physical strength consumption and panic.

C. Crowd simulation with physiological factors

To complete a comprehensive analysis of crowd movement,
we must consider not only psychological factors, but also
physiological factors of individuals as other important factors
in determining the crowd movement [14].

Physical strength is one of the most important physiological
parameters that affects individual movement. Bruneau et al.
[53] apply the principle of minimum energy (PME) on groups
of different sizes and densities. In [12], [54], some phys-
iological indicators (such as physical strength consumption
and heart rate) are described. Furthermore, the relationship
between physical strength consumption and heart rate is re-
vealed, which is also a method for predicting physical strength
consumption based on heart rate during moderate and vigorous
exercise. Work in [14] shows that the relationship between
physical strength consumption and speed is nonlinear. In [16],
researchers investigate how the cumulative consumption of
physical strength affects the evacuation time of individuals.
Guy et al. [55] propose the principle of least effort (PLE)
to compute the physical strength consumption required by
various movements. These approaches are focused on the
relationship between physical strength and other physiological
parameters (heart rate and oxygen uptake, for example) or
individual movement. In [15], the authors choose four oth-
er basic physiological characteristics, including gender, age,
health, and body shape, and map them to a navigation method.

Inspired by prior approaches, we focus on physical strength
consumption, which is a very important physiological factor.
Physical strength consumption is central to research in human
biology and biological anthropology [56] and is closely related
to a variety of factors such as heart rate, oxygen consumption,
etc. [54]. It directly affects the moving speed of an individual
[16]. Other physiological factors (such as gender, age, health,
and body shape) can influence movement through physical
strength consumption. We analyze the relationship between
physical strength consumption and panic. We also describe
the effects of physical strength consumption on the physical
movements of individuals.

III. OUR MODEL

Our emotion-based crowd simulation model comprehensive-
ly considers physical strength consumption in emergencies
to influence crowd movement. The flowchart of our model
is presented in Figure 2. Strenuous movements are often
observed in individuals in emergency or evacuation situations,
and the relationship among them is more obvious in such
situations. Therefore, we mainly focus on simulating crowd
movements in such emergency situations.

Our model consists of three important components: phys-
ical strength consumption, panic, and individual movement.
Human physical strength consumption is computed with a
physics-based method (Section III-B). Panic levels are deter-
mined through an enhanced emotional contagion model that
leverages the inherent relationship between physical strength
consumption and panic (Section III-C). Our model computes
the movement of an individual by modeling the physical
influence of strength consumption and panic (Section III-D).
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Fig. 2: The flowchart of our model. (a) Changes in the external environment can cause emotional fluctuations. For example, a
hazard occurs and the red area represents the range of influence of the hazard. (b) The emotional changes of one individual are
calculated according to the direct impact of the hazard and emotional contagion of his or her neighbors (Section III-C). (c) The
desired speed and direction of each individual are calculated based on an updated panic assessment (Section III-D). (d) Using
the limit of physical strength consumption, the actual speed is determined [14] (Section III-D). (e) The calculation of physical
strength consumption affected by the actual speed (Section III-B). In contrast, the cumulative physical strength consumption
also determines the actual maximal speed of the individual at the next timestep (Section III-D). The current physical strength
consumption reflects the emotional experience of an individual (Section III-C). (f) The position of the individual is updated
according to its actual speed. If the individual is panicked, we return to step (b); otherwise, the flowchart ends (Section III-C).

A. Symbols and notations

For convenience, the important parameters and their descrip-
tions used in our model are listed in Table I.

B. Physical strength consumption calculation

Physical strength consumption is one of the most commonly
used physiological indicators and is closely related to individ-
ual movement. It is defined by the following equation:

P (t) = Phor (t) + Pver (t) (1)

where P (t) denotes the total physical strength consumption
at time t and Phor (t), Pver (t) denote the physical strength
consumption along the horizontal and the vertical directions,
respectively. They are defined as follows:

Phor (t) =

t∑
i=1

F xi · di (2)

Pver (t) =

t∑
i=1

F yi · hi (3)

F xi is the driving force of the individual along the horizontal
direction. This force overcomes friction. di is the moving
distance of the individual at time t. F xi ·di represents the work
done by the individual along the horizontal direction. F yi is
the pulling force of the individual along the vertical direction.

This force overcomes gravity. hi is the rising height of the
individual at time t, and F yi · hi represents the work done by
the individual along the vertical direction.

According to the laws of physics, F xi is defined as follows:

F xi = fi +
(vxi − vxi−1)m

τ
(4)

A diagram of the physical strength consumption calculation is
shown in Figure 3.

The friction fi is defined in Equation 5, ki is defined in
Equation 6, and ti is defined in Equation 7 according to [57],
[58]. µ is the friction factor, which is related to the shoes
and the ground. In our implementation, µ=0.58 is adopted,
which is also recommended in [59]. vi is the current velocity
magnitude, vmin is the minimal velocity magnitude, and vmax
is the maximal velocity magnitude.

fi = ti · µ ·mg · ki (5)

ki = 1.5 + 0.5 · vi − vmin
vmax − vmin

(6)

ti = 0.6− 0.2 · vi − vmin
vmax − vmin

(7)

where ki is the coefficient of the weight, ti is the time of
the individual’s foot touching the ground, ki ∝ vi, ti ∝−1 vi,
fi ∝ ki, and fi ∝ ti. If one stands with both feet on a force
plate, ti = ki = 1.

The physical strength consumption in the horizontal direc-
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TABLE I: The parameters used in our model.

Notation Description

P (t) Physical strength consumption at time t

Phor (t)
Physical strength consumption along the horizontal direction at
time t

Pver (t)
Physical strength consumption along the vertical direction at time
t

Fx Driving force of individual along the horizontal direction

Fy Pulling force of individual along the vertical direction

E Panic emotion

Eo Emotional cognitive component

Ep Emotional experience component

Eho The emotion affected by hazards

Eco Emotional contagion

Vi (t) Moving direction of the individual i at time t

V si (L, t)
Safety evacuation direction of the individual i at location L and
at time t

V roundi (t)
Combined moving directions of individuals who are in the
perceived range of the individual i at time t

vdesiredi
The desired speed vdesiredi of the individual i considers only
the emotion factor.

vactuali
The actual speed vactuali of the individual i is limited by his
own physical strength consumption.

vp
Maximum speed vp according to current physical strength con-
sumption

vMAX
i Maximum speed that the individual i can run

vNOR
i

Speed of the individual i in the normal case (emotion value is
equal to zero)

PR The radius of perceived range

Num The number of individuals in a scene

Ra The radius of an individual

Fig. 3: Schematic of the physical strength consumption cal-
culation. vxi is the velocity component of an individual in the
horizontal direction at time i, and the length of each time step
is τ . The horizontal speed of the individual changes from vxi−1
to vxi in time interval τ .

tion is defined by:

Phor (t) = 1
2 ·

t∑
i=1

{(
(vxi )

2 −
(
vxi−1

)2)
m+ ti · µ ·mg · ki

(
vxi + vxi−1

)
τ
}
(8)

According to the laws of physics, F yi is defined by the
following equation:

F yi = mg +
(vyi − v

y
i−1)m

τ
(9)

where vyi is the velocity component in the vertical direction
at time i.

The physical strength consumption in the vertical direction
is defined by:

Pver (t) = 1
2 ·

t∑
i=1

{(
(vyi )

2 −
(
vyi−1

)2)
m+

(
vyi + vyi−1

)
mgτ

}
(10)

C. Panic calculation considering physical strength consump-
tion

This section presents the calculation method for the panic
level of an individual. E ∈ [0, 1] indicates the approximate
level of panic. The panic level E consists of two components.
The first is the emotional cognitive component Eo, which
relates to the hazard and encompasses emotional contagion.
The second is the emotional experience component Ep, which
is calculated using physical strength consumption and heart
rate. Therefore, the final emotion value is defined as follows:

E = w · Eo + (1− w) · Ep (11)

where w is a weighting parameter, and 0 < w < 1.
1) The emotional cognitive component: In this section, we

present the calculation method of Eo. Eo consists of three
terms: effect from hazard Eho , emotional contagion Eco, and
emotional attenuation Edo .

Effect from hazard EhoE
h
oE
h
o : When individuals are able to

perceive a hazard, they may become panicked. Eho is defined
as follows [60]:

Eho (L, t) =

n−1∑
s=0

Γs (L, t) (12)

Γs (L, t) =


1√

2π·rs
e
− (L−Ls)2

2rs2 if ‖L− Ls‖ < rs and t ∈ U

0 otherwise
(13)

where L is the location of an individual, Ls is the location of
a hazard, rs is the radius of the influence range of the hazard,
and U is the duration of the hazard.

Effect from emotional contagion EcoEcoEco : There are two kinds
of representative models of emotional contagion: the Neto
model [42] and the Durupinar model [6]. They use fundamen-
tally different mechanisms, but both can generate good results.
However, the Neto model defines too many parameters for
each pairwise interaction [61] and it is hard to compute these
parameters automatically. Moreover, personality is also a very
important, long-term, stable psychological factor and it is vital
for simulating heterogeneous crowd behavior [6]. The Neto
model simplifies the personality factor while the Durupinar
model pays more attention to that factor and is effective at
capturing the differences between individuals. Personality is
an important part of our model. We consider the effect of
personality on panic. According to the above analysis, the
Durupinar model is more suitable. In the virtual scenario
of Section IV-A, we implement a comparable experiment
to verify our motivation. Next, we present the emotional
contagion method in our model.

During evacuation, individuals can be in one of two states:
susceptible or infected. When the panic level of an individual
exceeds a certain threshold T1, the individual will be infected.
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If the intensity of an individual’s panic surpasses another
threshold T2, then the individual can spread the panic to his
or her neighbors. In a general case, T1 < T2. T1 and T2
are correlated with individual personalities. Here we represent
the personalities of individuals using the OCEAN personality
model [6]. The personality of an individual is represented by
a five-dimensional vector < O,C,E,A,N >. Each factor is
randomly distributed with a Gaussian distribution N(0, 0.25)
[6]. T1 ∝−1 N, T1 ∝ C [48]. T2 ∝−1 E [6], [48]. T1 and T2
are defined by the following:

T1 = α · C − β ·N + γ (14)

where α = 0.1, β = 0.1, and γ = 0.15.

T2 = δ − ξ · E (15)

where δ = 0.35, and ξ = 0.1. These parameters are determined
according to the methods in [62].

Within the perceived range, when a susceptible individual
i sees an expressive individual j (the panic value is higher
than threshold T2), i gets exposed by receiving a random
dose di from a specified probability distribution multiplied
by the panic intensity of j. The dose values di are randomly
distributed with a Gaussian distribution N(0.1, 0.01). We
denote the panic value of individual j at time t′ as ej (t′).
The panic value of individual i due to emotional contagion is
defined in Equation 16 [6].

Eci,o (L, t) =
t∑

t′=0

∑
∀j|j∈Visibility(i)∧j is expressive

di (t′) ej (t′) (16)

Effect from emotional attenuation EdoEdoEdo : Emotional atten-
uation is defined in Equation 17 [60].

Edo (L, t) = Eo (Lpre, t− 1) · η(t) (17)

where Edo (L, t) is an emotion decay function and η(t) is
the decay rate. η(t) is positively related to the individual
personality factor N [6]. Inspired by [6], [16], it is defined
as follows:

η (t) =


0 t < t1

eβ2(t−t2)−eβ2(t−1−t2)

1+eβ2(t−t2) + α ·N t ≥ t1

(18)

where β2 = 0.1, η ∝ N , and α = 0.1.
The change of the emotional cognitive componen-

t ∆Eo (L, t) is defined in Equation 19 [60]. The Eo is defined
in Equation 20 [60].

∆Eo (L, t) = Eho (L, t) + Eco (L, t)− Edo (L, t) (19)

Eo (L, t) = Eo (Lpre, t− 1) + ∆Eo (L, t) (20)

2) The emotional experience component: In this section,
we present the calculation method of Ep. Individual emotions
undergo three stages: cognition, action, and experience. First,
an event occurs, and the individual perceives the current scene
(emotional cognitive stage). Subsequently, the individual acts
in a way that corresponds with physiological changes (action

stage). Finally, the individual has the emotional experience
(experience stage) [5].

Under emergency situations, once a hazard occurs, the indi-
viduals around it immediately take different actions, requiring
physical strength consumption. Physical strength consumption
in one minute is chosen as the measure of physiological
changes. The current heart rate is calculated using physical
strength consumption. Then, the increment of the emotional
experience value is calculated based on the heart rate incre-
ment. Thereafter, the current emotional experience value Ep is
obtained. The details of the calculation method are as follows.

Equation 21 describes the relationship between physical
strength consumption in a minute (KJ/min) and heart rate
(beat/min) when individuals experience panic and attempt to
escape from the hazard [54]. According to Equation 21, we
can calculate the current heart rate (HR) based on physical
strength consumption in a minute (4P ).

HR(t) =

{
87.3306 + 1.5850∆P (t)− 0.3151weight− 0.3197age gender = 1
45.6221 + 2.2361∆P (t) + 0.2824weight− 0.1655age gender = 0

(21)
where gender=1 for males and 0 for females, age (year) ∈
[19,45], weight (kg) ∈ [47,116], ∆P (t) = P (t) − P (t − τ),
and τ = 60s .

Furthermore, according to [63], heart rate (HR) and inten-
sity of anxiety or fear (emotional experience) are positively
correlated. In [63], the heart rate per minute is recorded
before and after an electric shock, and emotional experience is
reported once per minute. 4Ep and 4HR are the increments
of emotional experience and heart rate, respectively, compared
with the values when individuals are not panicked. The 4HR
is defined as follows:

4HR(t) = HR(t)− HR(0) (22)

where HR(t) is the heart rate at time t and HR(0) is the heart
rate when individuals are not panicked.

Using a linear curve fitting method, we can obtain the
relationship between 4HR and 4Ep.

4Ep(t) = 0.03669 · 4HR(t)− 0.0724 (23)

Ep is defined in Equation 24 and Ep (0) = 0.

Ep (t) = Ep (t− 1) + ∆Ep (t) (24)

D. Individual movement model

Based on the results of physical strength consumption and
panic, the movement of each individual can be determined
accurately through moving direction and moving speed.

1) Moving direction: When a hazard occurs, individuals
who can perceive the hazard directly will be panicked and
calculate their own safety evacuation directions V si (L, t) [60].
V roundi (t) is the combined moving directions of individuals
who are in the perceived range of the individual i.

→
V si (L, t) =


n−1∑
s=0

Γs (L, t) ·
→
LsL if‖L− Ls‖ < rs and t ∈ U

→
V otherwise

(25)
V roundi (t) =

∑
∀j|j∈Visibility(i)∧j is expressive

Vj (t) (26)
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Finally, the moving direction Vi (t) of actual velocity of an
individual who directly perceives the hazard is defined as
follows:

Vi (t) = E · V si (L, t) + (1− E) · V roundi (t) (27)

where E is the panic emotion value. The moving direction of
an individual i is influenced by panic level, safety evacuation
direction, and other neighboring panicked individuals.

Individual i can perceive the hazard indirectly through the
surrounding panicked individuals. The individual i moves in
the direction of Vi (t), as shown in Equation 28. V oldi (t) is
the moving direction of the individual i at the last moment
when he is not panicked. The more panicked the individual
is, the more easily he moves with other neighboring panicked
individuals. Nonetheless, if the individual i is not panicked,
he or she still moves in his or her original direction.

Vi (t) = (1− E) · V oldi (t) + E · V roundi (t) (28)

2) Moving speed: In a panic situation, the speed of an
individual i is expressed by the following equation [9]:

vdesiredi = (1− E) · vNOR
i + E · vMAX

i (29)

where vdesiredi is the speed considering only the emotion
factor, and 0 ≤ E ≤ 1. The speed of an individual in the
normal case (the panic value is equal to zero) is vNOR

i , and
the maximal speed is vMAX

i . The more panicked an individual
is, the faster his or her speed.

However, an individual is limited by his or her own physical
strength consumption. In some cases, the moving speed of an
individual cannot reach the desired speed due to the maximum
limit dictated by current physical strength consumption. The
actual speed cannot exceed the maximal speed vp.

vactuali = min
(
vdesiredi , vp

)
(30)

The dependence of the decay rate [16] and maximal speed
on physical strength consumption is presented in Table II.

TABLE II: Dependence of speed decay rate and maximal-
limit speed on physical strength consumption. As the physical
strength consumption increases, the maximal-limit speed de-
creases.

Physical strength
consumption p (J)

Decay rate ξ (%) Maximal-limit
speed vp (m/s)

0.0000 – 20154.0000 100.0000 vMAX
i

20154.0000 – 40279.6713 99.8500 vMAX
i · 0.9985

40279.6713 – 81121.0042 89.4200 vMAX
i · 0.8942

81121.0042 – 166258.8920 75.8000 vMAX
i · 0.7580

166258.8920 – 181569.6090 69.8200 vMAX
i · 0.6982

181569.6090 – 196355.1760 65.7200 vMAX
i · 0.6572

The actual speed can be calculated using Equation 31.

vactuali = min
(
(1− E) · vNOR

i + E · vMAX
i , vMAX

i · ξ
)

(31)

IV. EXPERIMENTS

Our proposed algorithm is used to simulate crowd move-
ments in emergency scenarios and we demonstrate the benefits
of it. There are one kind of direct real data and two kinds of

indirect inferable data in this paper: physical data, psycholog-
ical data and physiological data. In detail, these data refer to
the movement trajectory, panic emotion, and physical strength
consumption of individuals, respectively. These three kinds
of data are all extracted or inferred from real videos. Some
videos are chosen from public UMN dataset [64] (Figures
4). The dataset comprises videos of 11 different scenarios of
an escape event in 3 different indoor and outdoor scenes. In
addition, real-world videos (Figures 7, 9, and 10) are chosen
from real emergency incidents. We annotate the trajectories of
all the individuals of these videos using the annotation tool
in [65]. The panic levels and physical strength consumption
of the crowd in real-world videos can be inferred indirectly
from physical movements. We assign initial movement states,
initial panic levels, and physical strength consumption of all
the individuals in real scenes to our model. According to these
initial conditions, our model can predict the trajectories of
individuals and we are able to compare them with the ground
truth. Evaluation results show that the simulated moving trends
of our model are closer to those in the real-world videos than
the results of other models. We also use our proposed model
in different virtual scenarios, such as a subway station and a
crosswalk. These scenes have dense crowds and the probability
of hazard occurrence in these scenarios is high. We simulate
the crowd movements in these scenarios after one hazard.

We have implemented the proposed model using Visual C++
to simulate crowd movements in emergencies. The Unity3D
game engine has been used to visualize our crowd simulation
results. The computing platform corresponds a PC with a
quadcore 2.50 GHz CPU,16 GB memory, and an Nvidia
GeForce GTX 1080 Ti graphics card. The parameter values
in different scenarios used in the simulation are listed in
Table III. The mass of each individual is set to 60kg on
average and the radius to 0.3m (in Table III) [66]. Each factor
of the vector < O,C,E,A,N > is randomly distributed
with a Gaussian distribution N(0, 0.25) [6]. In most scenes,
the dose values di are randomly distributed with a Gaussian
distribution N(0.1, 0.01) [6]. In the Neto model, ε = 0.5,
δ = 0.5, η = 0.5, and β = 1 [42]. The parameter values are
obtained by comparing the simulations with real-world videos.
A combination of genetic and greedy strategies are used to
sample plausible parameters for our model, maximizing the
match of the simulation algorithm to real data [62].

A. Comparisons
To validate our approach, we compare the simulation results

obtained by different methods with real-world crowd evacu-
ation videos. The trend in the simulation results obtained by
our model is that they are more similar to real-world videos
than results from other approaches.

1) Comparisons with scenarios from public UMN dataset:
Comparisons between real scenes (chosen from the public
UMN dataset [64]) and the corresponding simulation results
are presented in Figure 4. We take two different real-world
scenarios as examples, and detailed results can be seen in the
supplementary video. Our model is compared with two other
representative emotion models: the Durupinar model [6] and
the Neto model [42].
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TABLE III: List of parameter values used in our simulations

Scenarios Model
Num Ra T1 T2 PR

di vNOR vMAX size of

scene
ε δ η β

α β γ C N δ ξ E

Grass Ours 16 0.3 0.1 0.1 0.15 N(0,0.25) N(0,0.25) 0.35 0.1 N(0,0.25) 10 N(0.1,0.01) 2 0.8 230*111 - - - -

Grass Durupinar 16 0.3 - - - - - - - - 10 N(0.1,0.01) 2 0.8 230*111 - - - -

Grass Neto 16 0.3 - - - - - - - - 10 - 2 0.8 230*111 0.5 0.5 0.5 1

Room Ours 19 0.3 0.1 0.1 0.15 N(0,0.25) N(0,0.25) 0.35 0.1 N(0,0.25) 10 N(0.1,0.01) 2 0.8 25.6*53.5 - - - -

Room Durupinar 19 0.3 - - - - - - - - 10 N(0.1,0.01) 2 0.8 25.6*53.5 - - - -

Room Neto 19 0.3 - - - - - - - - 10 - 2 0.8 25.6*53.5 0.5 0.5 0.5 1

phone

explosion
Ours 152 0.3 0.1 0.1 0.15 N(0,0.25) N(0,0.25) 0.35 0.1 N(0,0.25) 8 N(0.1,0.01) 2 0.8 600*600 - - - -

British

Parliament

building

Ours 37 0.3 0.1 0.1 0.15 N(0,0.25) N(0,0.25) 0.35 0.1 N(0,0.25) 15 N(0.4,0.01) 2/2.5 0.8/1.2 600*600 - - - -

Virtual

scenario
Ours 300 0.3 0.1 0.1 0.15 N(0,0.25) N(0,0.25) 0.35 0.1 N(0,0.25) 10 N(0.1,0.01) [2,4.5] [0.8,1.2] 600*600 - - - -

Virtual

scenario
Cube-Neto 300 0.3 - - - - - - - - 10 - [2,4.5] [0.8,1.2] 600*600 0.5 0.5 0.5 1

Virtual

scenario
Durupinar 300 0.3 - - - - - - - - 10 N(0.1,0.01) [2,4.5] [0.8,1.2] 600*600 - - - -

Virtual

Scenario
Neto 300 0.3 - - - - - - - - 10 - [2,4.5] [0.8,1.2] 600*600 0.5 0.5 0.5 1

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Comparisons between real scenes and simulation results by different models: (a) and (e) are real-world videos, (b) and
(f) are simulated by our model, (c) and (g) are simulated by the Durupinar model, (d) and (h) are simulated by the Neto model.
Each row represents one scene. (a) The red ellipse is Individual No. 1 and the yellow one is Individual No. 2. Individual No.
1 gets closer to Individual No. 2. (b) As the speed is influenced by physical strength consumption, simulating the situation
where Individual No. 1 gets closer to Individual No. 2 is easier using our model. In (g) and (h), the simulation trajectories of
different individuals in the red circle by the Durupinar and Neto models are similar and individuals easily get together, which
is different from the real-world video.

In the Grass scenario, Individual No. 1 moves faster than
Individual No. 2, and Individual No. 1 moves closer to
Individual No. 2 (Figure 4a). The simulation result obtained
by our model in the Grass scenario is more realistic than those
obtained by the Durupinar and Neto models because the speed
is influenced by physical strength consumption in our model. If
an individual has consumed more physical strength than other
individuals, his moving speed decreases and other individuals
move faster than he does. Thus, simulating the situation is
easier when one individual gets closer to another individual.

In the Room scenario, some individuals are marked with
red circles in the simulation results obtained by the Durupinar
and Neto models (Figures 4g and 4h). The moving directions
and moving speeds of these individuals are almost the same.
The simulation result by our model conforms to the real-
world video. This is because the emotion mechanism of our
model changes the moving directions of individuals and drives
them to move away from the hazard. Meanwhile, the physical
strength consumption influences the individual’s speed.

We use the entropy metric [67] to evaluate the trajectories of
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TABLE IV: Entropy metric and spatial distance for different
simulation algorithms on scenarios of Grass and Room. A
lower value implies higher similarity with respect to the real-
world crowd videos.

Scenario Model Entropy metric Spatial distance

Grass
Ours 3.386800 1.042990
Durupinar 3.429000 1.105531
Neto 3.409700 1.046776

Room
Ours 5.393900 1.481327
Durupinar 5.463200 1.484492
Neto 5.493300 1.527570

different simulation algorithms on different scenarios. Entropy
metric is used to measure the similarity between real-world
data and simulation results. A lower value of the entropy
metric means a smaller error and better similarity with the
real-world data. Its calculation method is described as follows.
The real-world crowd state is denoted as (x1 . . . xt), which
includes the positions of all the agents at different timesteps.
(y1 . . . yt) is the corresponding calculation result of our model.
M is the estimated error variance.

M = 1
t·n ·

t∑
k=0

n∑
j=1

(xk[j]− yk[j])(xk[j]− yk[j])
T (32)

where t is the total number of timesteps and n is the number
of agents in the scenario. The Entropy metric is given by:

e(µ) =
1

2
n log((2πe)

d
det(M)) (33)

where d is the dimension of the state of a single agent. In
this paper, we mainly discuss the 2D locations of agents. So,
d = 2 in this paper.

For each scenario, a user study is performed. There are
39 participants (51.28% female, 66.67% in the age group of
20-30) in this study and participants are asked to compare
the movement states in the original video clips with the
movement states in the crowd simulation results (Figure 5).
These similarity scores are computed from the user stud-
ies. A score of 1 indicates most dissimilar and a score of
5 indicates most similar movement. Higher values indicate
greater similarity. We also calculate average spatial distance
between the simulated results and the ground truth over all the
timesteps and individuals. Tables IV and Figure 5 show that
the simulated moving trends of our model are closer to those
in the real-world videos than the results of other models. A
rational approach is to combine physical strength consumption
and panic to determine the movement of each individual.

2) Comparisons with real-world emergency scenarios: In
this subsection, we compare the simulation results obtained
by different methods with real-world videos, particularly real
emergency incidents.

The Durupinar and Neto models don’t consider physical
strength consumption. The mechanism of physical strength
consumption in this paper is integrated into these two mod-
els, which are denoted as Durupinar-PS and Neto-PS. In
the real-world Square scenario, we compare our simulation
results with the Durupinar, Durupinar-PS, Neto, and Neto-
PS models (Figure 6). We also compare our results in a

Fig. 5: Comparison of similarity scores for movement states
(higher values indicate greater similarity). We compare the
movement states in the original videos with those in crowd
simulation results achieved by different algorithms.

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Crowd simulation results generated by different models
in the Square scenario at the 98th frame: (a) Real-world
scenario, (b) Neto model, (c) Neto-PS model, (d) Durupinar
model, (e) Durupinar-PS model, and (f) our model.

real-world emergency scenario, which is related to terrorist
attacks on Kenya’s shopping mall (Figure 7). More details
can be seen in the supplementary video. Figure 8 shows the
average speeds of all the individuals at different timesteps for
these different models. We find that the simulation results of
the Durupinar-PS and Neto-PS are closer to the movements
and behaviors in the real videos, than those of the original
Durupinar and Neto models. These comparisons validate that
our proposed mechanism of physical strength consumption
(physical strength consumption calculation and the effect of
physical strength consumption on emotion) can enhance the
performance of existing crowd simulation models that are only
based on emotion. Our model describes emotional changes in
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(a) (b)

(c) (d)

(e) (f)

Fig. 7: Crowd simulation results by different models in the
scenario of terrorist attacks on Kenya’s shopping mall at the
214th frame: (a) Real-world scenario, (b) Neto model, (c)
Neto-PS model, (d) Durupinar model, (e) Durupinar-PS model,
and (f) our model.

a comprehensive manner. Based on the James-Lange theory,
we describe three stages individual emotions undergo (Section
3.3.2) and combine emotional contagion with the effect of
physical strength consumption on panic. The comparisons with
Durupinar-PS and Neto-PS models show that our model inte-
grating emotion and physical strength consumption is better
than other emotion-based crowd simulation models.

One piece of real-world video including both crowd and
vehicles is chosen to simulate by our method. In this real
scenario, we compare our simulation result with the Durupinar,
Durupinar-PS, Neto, and Neto-PS models. In this paper, we
mainly focus on emotions of crowds, especially panic emotion-
s in emergencies. In particular, the drivers can express their
panic through vehicles. Moreover, in emergencies, the drivers
may not follow the traffic rules. In emergency scenarios, some
behaviors of vehicles, such as sudden acceleration, intuitively
demonstrate the drivers’ panic. These behaviors can also
cause the surrounding pedestrians to be panicked and thus act
indirectly as emotional contagions. In common cases, when
pedestrians are walking in front of vehicles, vehicles will
slow down, change direction, or stop to avoid pedestrians.
Vehicles and surrounding pedestrians influence each other in
such traffic. Based on above analysis, in our model we treat
vehicles as one kind of special large-sized agents with full
physical strength and high moving speed. The radius of the
vehicles is set to 3. The comparisons show that our simulation
result conforms to the real-world video, and can enhance the
performance of existing crowd simulations under the complex
scenarios including both crowd and vehicles. More details can
be seen in the supplementary video.

(a)

(b)

Fig. 8: The average speeds of all the individuals at different
timesteps for these different models in (a) the Square scenario
and (b) the scenario of terrorist attacks on Kenya’s shopping
mall. The average speeds of our model at different timesteps
are closer to the real scene than those of other models. The
average speeds of the Neto-PS and Durupinar-PS models at
different timesteps are closer to the real-world scenarios, than
those of the original Neto and Durupinar models.

Table V shows the values of entropy metric and spatial
distance for the above three scenarios. Comparing with the
Durupinar, Durupinar-PS, Neto, Neto-PS models, our model
can generated more similar simulation results with real-world
scenarios.

We also take two real emergency incidents as examples to
verify our proposed crowd simulation method. Our crowd sim-
ulation results of the scene after the mobile phone explosion
on the subway in the Shanghai Metro Line 8 are presented in
Figures 10a and 10b. Crowd simulation by our model of the
shooting at the British Parliament building on March 22, 2017
is presented in Figures 10c and 10d. We show the spread of
panic in both scenarios. The color of the cylinders represents
the emotional intensity of the individuals. These two real-
world videos have poor quality. Even using manual methods,
it is still difficult to track the positions of people in each
frame accurately. Due to these objective limitations, we cannot
measure the similarity between the simulated trajectories and
the ground truth for these scenes in a direct way. Therefore,
we use the dominant path and entropy metric to quantitively
evaluate our simulation results. The dominant path is defined
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(a) (b)

(c) (d)

(e) (f)

Fig. 9: Crowd simulation results by different models in the
scenario including both crowd and vehicles at the 88th frame:
(a) Real-world scenario, (b) Neto model, (c) Neto-PS model,
(d) Durupinar model, (e) Durupinar-PS model, and (f) our
model.

TABLE V: Entropy metric and spatial distance for different
simulation algorithms on scenarios of Square, Crowd and
vehicles, and Terrorist attacks on shopping mall. A lower value
implies higher similarity with respect to the real-world data.

Scenario Model Entropy metric Spatial distance

Square

Ours 1.278777 0.210871

Durupinar 3.292511 0.316492

Durupinar-PS 1.883470 0.238043

Neto 3.415817 0.327066

Neto-PS 1.568437 0.220118

Crowd and vehicles

Ours 3.740438 0.816685

Durupinar 5.851273 2.402975

Durupinar-PS 5.785572 2.067541

Neto 5.984731 2.346846

Neto-PS 5.768604 2.070267

Terrorist attacks

on shopping mall

Ours 1.060493 0.225969

Durupinar 5.782041 0.761416

Durupinar-PS 3.809553 0.405739

Neto 5.783371 0.755286

Neto-PS 3.230872 0.382926

TABLE VI: Entropy metric and spatial distance for different
simulation algorithms on scenarios of Phone explosion and
Shooting at British Parliament.

Scenario Model Entropy metric Spatial distance

Phone explosion
Ours 1.565650 1.137298
Durupinar 4.826474 1.523882
Neto 2.857793 1.495380

Shooting at
British Parliament

Ours 0.842232 0.749183
Durupinar 2.246331 0.784255
Neto 1.626734 0.771396

(a) (b)

(c) (d)

Fig. 10: Comparisons between real-world videos and simula-
tion results by our approach. (a) The mobile phone explosion
incident on the subway in the Shanghai Metro Line 8; (c) the
shooting incident at the British Parliament building on March
22, 2017; (b,d) our corresponding simulation results.

based on collectiveness of crowd movements and it can be
treated as the movement trend of the crowd [68], [69]. We also
calculate the spatial distance between the simulated trajectories
and the ground truth for the scenarios. From Table VI and
Figure 11, we can see that both the overall moving trend and
the process of emotional contagion are similar to what is found
in the recorded real-world crowd video clips.

3) Comparisons in virtual scenarios: In the virtual s-
cenario, we compare our simulation results with those of
the Durupinar [6], Neto [42], and Ours-Neto models. The
parameter values we used are described in Table III. In
Figure 12a (the simulation result by the Durupinar model),
the speeds of individuals are variable and their locations
are scattered. Because of different thresholds and personality
mechanisms, the Durupinar model can simulate heterogeneous
crowd behaviors. However, there are too many individuals
who are not affected by the panicked crowd and this result
is unreasonable. In Figure 12b, individuals move much slower
than the individuals in the simulation results by other models.
The reason is that the emotion calculated by the Neto model
is much smaller. Moreover, the individual movement is too
regular, which is unsuitable for emergency situations. In Figure
12c (simulation result by our model with the same emotional
contagion method as the Neto model) and Figure 12d (our
simulation result), most of the individuals are affected by the
hazard and run away from it. Because of physical strength
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Fig. 11: Comparison of similarity scores for movement states
and the process of emotional contagion (higher values indicate
greater similarity). A user study is performed and participants
are asked to compare the movement states and processes of
emotional contagion in the original videos with those in crowd
simulation results achieved by different algorithms.

(a) (b)

(c) (d)

Fig. 12: Crowd simulation results by different models in the
virtual scenario at the 1000th frame: (a) Durupinar model, (b)
Neto model, (c) Ours-Neto model, and (d) our model.

consumption and personality factors, the speeds of individuals
in our simulation result are more variable than those shown
in the Ours-Neto model. Therefore, the simulation result by
our model is more suitable for emergency situations than other
models.

B. Application of our model in various virtual scenarios

Our model can be applied in different virtual scenarios.
Subway stations and crosswalks are crowded and the prob-
ability of hazard occurrence in these scenarios is very high.
We simulate a hazard occurring in these scenarios and three
examples are shown. Figure 13(a) shows crowd simulation at
the higher level of the subway station. Figure 13(b) shows
crowd simulation at the lower level of the subway station.
Figure 14 shows crowd simulation at a crosswalk. We show
each step of the process: hazard occurring, individuals running
away from the hazard, emotional contagion spreading, and
moving speed attenuating. More details can be seen in the
supplementary video. Our simulation results provide informa-
tion about decision-making to deal with emergency situations.

(a)

(b)

Fig. 13: Crowd simulation results at a subway station: (a) the
higher level of the subway station, (b) the lower level of the
subway station. After the hazard occurs, the emotional conta-
gion in our model begins to work. Although the direct impact
of the hazard is limited, the hazardous area grows through
emotional contagion among individuals and the number of
individuals who run away from the hazard increases.

Fig. 14: Crowd simulation result at a crosswalk. At the lower
left corner, a car explodes. Then individuals run away from
the hazard.

The heat maps of panic in the virtual scene are presented
in Figure 15. Although the direct impact of the hazard is
limited, the panic area grows through the emotional contagion
mechanism in our model. When individuals are far from the
hazard, panic attenuates. As accidents may happen randomly
in public places, we can take preventive action in advance and
reduce loss by accurately predicting the panic area.

The panic heat maps generated from crowd simulations
in the crosswalk scenario by our model and those generated
using the Durupinar model are presented in Figure 16. The
individuals in the simulation results by our model are more
panicked than those in the Durupinar model simulation results.
The intensity of the panic calculated by the Durupinar model
is lower than that calculated by our model. The reason is
that our model considers not only emotional contagion among
individuals, but also the impact of physical strength consump-
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(a) (b)

(c) (d)

Fig. 15: Panic heat maps of the virtual scene: (a) heat map at
the 13th frame, (b) heat map at the 29th frame, (c) heat map
at the 57th frame, (d) heat map at the 120th frame. The red
area is more panicked than the green area in the heat map.
The deeper the color, the more panicked the area.

(a) (b)

Fig. 16: The heat maps of panic at the 185th frame of the
crosswalk scenario: (a) heat map of the crowd simulation
generated by our model and (b) heat map of the crowd
simulation generated using the Durupinar model. The red area
is more panicked than the green area in the heat map. The
deeper the color, the more panicked the area. We highlight
the same area of the two simulation results. The individuals
in our model simulation result are more panicked than the
individuals in the Durupinar model simulation results.

tion on panic levels. Our model represents a comprehensive
description of individual panic levels and is more conducive
to the spread of panic than the Durupinar model. Therefore,
the simulation results by our model are more reasonable for
emergency situations.

V. CONCLUSION AND LIMITATIONS

In contrast to traditional emotion-based crowd simulation
models, we integrate physical strength consumption into our
model. We not only present a panic level calculation, but
also delineate the effect of physical strength consumption on
panic. Finally, both physical strength consumption and panic
determine the movement of each individual. Our proposed
model is verified by simulations, and it is compared with real-
world videos and previous approaches. Results have shown
that our proposed model can reliably generate realistic group
behaviors. It can also predict the changes of physical strength
consumption and panic of a crowd in an emergency situation.

However, our model has several limitations. Although our
model can generate realistic crowd movements, the panic
levels and physical strength consumption of the crowd in
an emergency scene cannot be obtained directly. Our model

can only infer them during the simulation. Thus, the initial
state of our model is difficult to determine and it is usually
time consuming to do so. In the future, we plan to setup
some special crowd scenarios artificially. In these scenarios,
people will be required to wear accurate sensors to collect their
oxygen consumption, heart rate, and so on directly. Through
measurement and calculation, we can get more real and
reliable values of emotion and physical strength consumption
during the crowd movement. Although the size of crowd will
not be very large in such an experimental scenario, it can
still provide data support and objective principles for crowd
simulation. Based on these ground truth samples, we can
extend them to a larger crowd simulation scene. Furthermore,
at present, our model mainly focuses on emergency scenarios.
In the future, we want to extend our model to a variety
of general situations. We also plan to develop a coupled
framework for crowd and traffic flow to generate realistic
mixed traffic simulations and model the influence of these two
flows on each other.
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[2] Á. Gómez, L. López-Rodrı́guez, H. Sheikh, J. Ginges, L. Wilson,
H. Waziri, A. Vázquez, R. Davis, and S. Atran, “The devoted actor’s will
to fight and the spiritual dimension of human conflict,” Nature Human
Behaviour, vol. 1, pp. 673–679, 2017.

[3] M. Xu, Y. Wu, P. Lv, H. Jiang, M. Luo, and Y. Ye, “miSFM: On
combination of mutual information and social force model towards
simulating crowd evacuation,” Neurocomputing, vol. 168, pp. 529–537,
2015.

[4] J. Chun, H. Lee, Y. S. Park, W. Park, J. Park, S. H. Han, S. Choi,
and G. J. Kim, “Real-time classification of fear/panic emotion based on
physiological signals.” in Proc. The Eighth Pan-Pacific Conference on
Occupational Ergonomics, 2007, pp. 1–9.

[5] J. W. Kalat, Biological Psychology (10th ed.). Cengage Learning, 2007.
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