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Frozone: Freezing-Free, Pedestrian-Friendly
Navigation in Human Crowds

Adarsh Jagan Sathyamoorthy , Utsav Patel, Tianrui Guan, and Dinesh Manocha

Abstract—We present Frozone, a novel algorithm to deal with
the Freezing Robot Problem (FRP) that arises when a robot navi-
gates through dense scenarios and crowds. Our method senses and
explicitly predicts the trajectories of pedestrians and constructs
a Potential Freezing Zone (PFZ); a spatial zone where the robot
could freeze or be obtrusive to humans. Our formulation computes
a deviation velocity to avoid the PFZ, which also accounts for social
constraints. Furthermore, Frozone is designed for robots equipped
with sensors with a limited sensing range and field of view. We
ensure that the robot’s deviation is bounded, thus avoiding sudden
angular motion which could lead to the loss of perception data
of the surrounding obstacles. We have combined Frozone with
a Deep Reinforcement Learning-based (DRL) collision avoidance
method and use our hybrid approach to handle crowds of varying
densities. Our overall approach results in smooth and collision-free
navigation in dense environments. We have evaluated our method’s
performance in simulation and on real differential drive robots
in challenging indoor scenarios. We highlight the benefits of our
approach over prior methods in terms of success rates (upto 50%
increase), pedestrian-friendliness (100% increase) and the rate of
freezing (>80% decrease) in challenging scenarios.

Index Terms—Collision avoidance, motion and path planning,
computational geometry.

I. INTRODUCTION

MOBILE robots are increasingly used in many indoor
scenarios. This includes applications such as waiters

in hotels, as helpers in hospitals, as transporters of goods in
warehouses, for surveillance, package delivery etc. To accom-
plish such tasks, these robots need to navigate through dense
and challenging dynamic environments, specifically in crowds
with pedestrian densities ranging from <1 to 2 persons/m2.
Apart from avoiding collisions with static and dynamic ob-
stacles in its surroundings, the robot should also navigate in
a pedestrian-friendly way. The latter includes satisfying social
constraints [1]–[3], such as maintaining sufficient distance from
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Fig. 1. [Top] An instance of the Freezing Robot Problem (FRP), where the
robot halts or oscillates indefinitely when it faces scenarios with pedestrians,
as shown (highlighted in red). [Bottom] Another scenario where our approach
implemented on a Clearpath Jackal robot navigates amongst pedestrians and
preemptively avoids FRP. Our method explicitly tracks and predicts pedestrians’
positions in the sensing range of the robot and classifies each pedestrian as
potentially-freezing or non-freezing. We compute a potential freezing zone (PFZ)
(shown in red) and our method deviates the robot away from the freezing zone
(green trajectory), while previous methods move the robot towards that zone
(red trajectory).

the pedestrians and other rules corresponding to avoiding them
from behind (See Fig. 1 Bottom).

A challenging problem that a robot could face in such scenar-
ios is the Freezing Robot Problem (FRP) [4], [5]. FRP occurs
when the robot faces a situation where the collision avoidance
module declares that all possible velocities may lead to col-
lisions. The robot either halts or starts oscillating indefinitely,
which could either result in a collision or it does not make
progress towards its goal. In practice, it is non-trivial to com-
pletely avoid FRP in crowds beyond a certain density without
human cooperation [5]. One of the goals is to develop approaches
that can reduce the occurrence of FRP in moderately dense
crowds (≤1 person/m2) without assuming human cooperation,
and using limited sensing capabilities.

There have been a few works addressing FRP [4]–[7]. Some
approaches have also attempted to solve the problems of freezing
and loss of localization in a crowd simultaneously [8]. While
these methods are promising, we need more general solutions
which rely less on global information and can provide some
guarantees on the resulting performance.

In order to address freezing, it is important to compute a
collision-free trajectory for the robot based on local knowledge
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Fig. 2. Frozone tested on a Turtlebot in dense crowds. Our tests demonstrate
the applicability of our method on different mobile robots with limited sensing
capabilities equipped with different perception sensors. The Potential Freezing
Zone is represented in red.

of the environment from its sensor data. The problen of collision
avoidance is well studied and some of the widely used methods
are based on velocity obstacles [9]–[11], the dynamic window
approach [12], etc. More recently, many techniques have been
proposed based on Deep Reinforcement Learning (DRL) colli-
sion avoidance [13]–[17]. Decentralized DRL-based methods
have gained popularity due to their superior performance in
terms of success rates, average robot velocity, etc compared to
traditional methods, and their ability to handle large numbers
of dynamic obstacles, and can be robust to sensor uncertainty.
However, it is hard to provide any guarantees.

Main Contributions:
� We present Frozone, a real-time algorithm that significantly

reduces the occurrence of FRP by explicitly predicting
pedestrian trajectories, classifying them as potentially-
freezing or non-freezing pedestrians and constructing a
Potential Freezing Zone (PFZ). PFZ corresponds to a con-
servative spatial zone where the robot might freeze and be
obtrusive to humans. Our method calculates a deviation to
modify the robot’s velocity to avoid the PFZ leading to
a decrease of more than 80% in freezing rates over prior
algorithms.

� Our method ensures that the robot’s velocity avoids the
PFZ, and is unobtrusive to the nearby pedestrians based
on their social and psychological constraints for personal
space. We observe an improvement in the pedestrian-
friendliness of the robot’s trajectories by 100%.

� We combine Frozone with a state-of-the-art DRL-based
collision avoidance method and present a hybrid navigation
algorithm that combines the benefits of traditional model-
based algorithms such as better guarantees, and DRL-based
approaches like better robustness to sensor uncertainty.

We evaluate our method in simulation and on a Clearpath
Jackal (Fig. 1) and a Turtlebot (Fig. 2) in several challenging in-
door scenarios with crowds of varying densities (<1 person/m2

to >2 persons/m2).

II. RELATED WORK

We discuss the relevant previous work on the Freezing Robot
Problem, DRL-based collision avoidance methods, and socially-
aware navigation.

A. Freezing Robot Problem

The earliest works addressing FRP [4], [5] argue that it can
only be solved by accounting for human-robot cooperation [18]

in terms of robot navigation, meaning that the robot and the
humans need to adjust their trajectories. These methods also
show that even perfect pedestrian trajectory prediction would not
help in solving FRP, unless human-robot cooperation is explic-
itly modeled. Other attempts at solving FRP include a method
based on learning from demonstration [19] and improved motion
prediction based on the Markov Decision Process [6]. The
resulting algorithms use static CCTV cameras or simulations
to validate their methods and do not fully account for many
practical issues that arise on a real robot such as the loss of
sensing data due to the robot’s motion. Reducing FRP using a
trained deep learning policy using implicit pedestrian prediction
[7] has also been investigated. Our approach is complementary
to these methods and is more robust in terms of reducing FRP.

B. Deep Reinforcement Learning-Based Collision Avoidance

In recent years, methods based on DRL have been used
for navigation in dense scenes. Some methods have had great
success with training a decentralized collision avoidance policy
[16] and combining it with traditional control strategies [20].
The trained DRL policy has been extended to solve the loss of
localization and FRP simultaneously by learning recovery points
[8]. Other extensions include policies which implicitly fuse data
from multiple perception sensors for handling occluded spaces
[21] or hybrids of learning-based and model-based methods
which estimate optical flow data to predict pedestrian movement
better for reliable crowd navigation [22].

While these DRL methods model cooperative behaviors be-
tween humans and robots implicitly, other methods explicitly
model cooperation using a value network with two agents [14]
or an arbitrary number of agents [15]. Intra-crowd interactions,
which could indirectly affect a robot’s navigation, have also been
studied [13]. DRL-based methods have also been extended to
navigate in a socially acceptable manner [3], providing safety
guarantees by identifying previously unseen scenarios and per-
forming more cautious maneuvers [23]. Our hybrid algorithm
can also be combined with these DRL-based approaches.

C. Socially Aware Navigation

Robots navigating among pedestrians should reduce the
amount of discomfort to the surrounding humans. Prior work
in crowd or pedestrian simulation provides insights on the psy-
chological and environmental factors that affect the pedestrian’s
motion or trajectory [1], [24], which should be accounted during
robot navigation. Works on socially aware robot navigation
include predicting the long-term trajectories of pedestrians using
personality trait theory and Bayesian learning [2] and classifying
group emotions [25]. Learning-based methods can be used to
account for social norms by specifying the behaviors that should
be avoided [26]. In our work, we use these ideas and focus on
computing robot velocities that maintain a comfortable distance
in-front of pedestrians.

III. BACKGROUND AND OVERVIEW

We define the notation used in our approach and provide some
background on the different components used. We also discuss
the factors that affect pedestrian motion in a crowd and use them
to model the social constraints.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 04,2020 at 23:21:26 UTC from IEEE Xplore.  Restrictions apply. 



4354 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 3, JULY 2020

Fig. 3. (a) An example for the freezing robot scenario. The robot does not find enough space between pedestrians (red circles) to move towards its goal and
the robot’s navigation module concludes that all velocities towards the goal would lead to a collision. (b) The range of pedestrian velocity directions that are
considered as potentially-freezing in the left and right half planes of the sensing region. Pedestrian velocities along the robot’s X-axis are special cases of an either
head-on approach or a pedestrian moving away. (c) The construction of the Potential Freezing Zone (PFZ), which is the convex hull of the predicted positions
of potentially-freezing pedestrians after time Δt. The deviation angle φ is computed such that the robot is directed away from the PFZ with the least amount of
deviation from its current velocity.

A. Notation and Symbols

We represent each pedestrian as [pped,uped] =
[ppedx , ppedy , upedx , upedy ] ∈ R4, where pped and uped represent
the 2-D position and unit vector representing the front/forward
direction of the pedestrian, respectively. We assume that the
robot knows its relative goal location and denote it as grob.
All values are specified with respect to a coordinate frame
attached to the robot, with an origin denoted by orob as shown
in Fig. 3(a). Therefore, the forward heading direction of the
robot always corresponds to (1 î+ 0ĵ) and the direction towards
the left is represented as (0 î+ 1ĵ). We represent scalar values
in normal fonts and vectors using bold fonts.

We assume that the robot is equipped with a depth camera to
sense nearby pedestrians. Its sensing region Srob is formulated
as a square space with a side length of ssen meters in front of
the robot (see Fig. 3(a)). Our approach can be easily modified
for other sensing regions. The sensing region is offset in front
of the robot by f meters to account for sensing inaccuracies in
the depth image, which could arise for objects too close to the
robot. The depth image I at any time instant t, and the value of
a pixel at (i, j) which contains the proximity of an object at that
part of the image, are represented as:

It = {C ∈ Rw×h : f < Cij < f + ssen},
1 ≤ i ≤ w and 1 ≤ j ≤ h,

(1)

where w, h, i and j are the image’s width, height, and the
indices along the width and height, respectively. Cij is a slight
approximation owing to the assumption that the depth camera
measures proximity along parallel rays (instead of radial rays)
from the camera. We define dist(a, b) as a function that computes
the Euclidean distance between points a and b.

B. Pedestrian Behavior in Crowds

Pedestrian motions in crowds are influenced by several factors
such as crowd density, individual stride length, and need for

personal space. Pedestrians tend to walk slower when there is
less space in front of them (i.e., dense crowd). The fundamental
diagram [1] is used to model this behavior through an inverse
relationship between pedestrian velocities and the crowd density.

A pedestrian’s natural walking speed (vped) is related to
physiological (pedestrian’s height and stride length) and psycho-
logical (need for personal space) factors [1] using the following
equation:

vped = min

(
||�vpref ||,

(
Sα

H(1 + β)

)2
)

(2)

where ||�vpref || is the pedestrian’s preferred speed directed to-
wards its goal, which we assume to be 1.3 meters/second (on
average). S is the available space in front of the pedestrian, H
(height/1.72) is a height normalization factor, and α and β are
constants that account for the stride of the pedestrian. We assume
that all the pedestrians have the same values for H, α and β. We
use the velocity relationship in Equation 2 to predict the future
positions of pedestrians after a time Δt. This formulation is
complimentary to existing trajectory prediction methods, and
also accounts for human psychological need for space while
walking. From Equation (2), we infer that a pedestrian’s motion
is unaffected when a robot avoids/passes them from behind or
if it leaves sufficient space in front of them (high value of S).

Therefore, in our approach, we compute a deviation for the
robot velocity such that the robot maintains sufficient distance
in-front of the pedestrians, and avoids them from behind when
possible. We define η as the pedestrians’ comfortable distance
threshold based on social constraints, i.e. the distance that the
robot needs to maintain from a pedestrian whenever possible. In
addition, we define the pedestrian-friendliness (PF) of the robot
as,

PF = Z ∗N∞ + Z̄ ∗min(dist(orob,pped
i )), (3)
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where Z is a boolean that represents if a pedestrian has been
avoided from behind, N∞ is a large value, and pped

i represents
the position of the ith pedestrian in the environment.

C. Pedestrian Detection and Tracking

Object detection and tracking are used to locate the pedes-
trians in the image from the depth camera and mark their
trajectories accurately. These problems are well studied in com-
puter vision and robotics literature, and recently, good solutions
are proposed based on deep learning. We use a pre-trained
YOLOv3 [27] model for pedestrian detection in the depth im-
ages. YOLOv3 outputs a set of bounding boxes for the detected
pedestrians as B = {Bk | B = [top left,mB, nB],∈ H}, where
top left,mB, and nB denote the top left corner coordinates,
width, and height of the kth bounding box Bk, respectively.
H denotes the set of all pedestrian detections. In addition, it
also assigns an ID for a given image and reports the detection
confidence.

The detection bounding boxes are used as inputs to
DensePeds [28], a state-of-the-art pedestrian tracking algorithm
that assigns a unique ID to each detected pedestrian across
multiple consecutive images. This ID is used to compute each
pedestrian’s position in the image over time. We use DensePeds
as it is robust to the noise in the image and performs with an
accuracy of over 93% in dense (>1 person/m2) scenarios.

D. DRL-Based Collision Avoidance

As mentioned previously, we interface an end-to-end DRL-
based collision avoidance policy [16] with Frozone. The policy
uses observations from a 2-D lidar (ot

lidar), the robot’s relative
goal location (ot

goal), and its current velocity (ot
vel) to compute

new collision avoiding velocities at each time instant. During
training, a reward/penalty function is shaped to: (i) minimize
the robot’s time to reach its goal, (ii) reduce oscillatory motions
in the robot, (iii) head towards the robot’s goal, and most
importantly, (iv) avoid collisions. Post training, a collision free
velocity vDRL at each time instant is sampled from a trained
policy πθ as:

vDRL ∼ πθ(vt|ot), (4)

where vt and ot are the velocity and the observation spaces at
time t, respectively.

IV. OUR METHOD: FROZONE

In this section, we describe how we formulate the freezing
robot problem. This includes various components including
pedestrian classification, the construction of a potential freezing
zone, and our formulation to calculate the deviation needed to
avoid the freezing zone.

A. Formulation of FRP

Consider a scenario as shown in Fig. 3(a), where a robot faces
a set of T pedestrians in its sensing region before reaching its
goal. The pedestrians could either be mobile or stationary.

Definition IV.1. (Freezing Robot Problem): If the pedestrians
are stationary and are positioned such that,

dist(pped
i ,pped

i+1) < 2Ω ∀i ∈ {1, 2, ..., T},
dist(orob,pped

i ) ≤ Ω ∀i ∈ {1, 2, ..., T},
pped
i ,pped

i+1 ∈ Srob,

(5)

where pped
i and pped

i+1 are the positions of the ith and (i+ 1)th
pedestrian with respect to the robot, andΩ denotes the minimum
distance threshold that the robot’s collision avoidance module
should maintain with all obstacles. If the conditions in 5 are
satisfied then the planner deems all forward velocities as unsafe.
Such a scenario constitutes the Freezing Robot Problem. One
possible technique (without human cooperation) for the robot to
reach its goal is to retrace its path, identify the free space, and
re-plan its trajectory. This typically requires global knowledge
of the environment, such as a map of the environment and all
dynamic obstacles, which may not readily available. The robot
either halts completely or generates undesirable behaviors such
as oscillations, which severely degrade the efficiency of the
robot’s navigation.

If the humans are non-stationary, the robot disrupts their ve-
locities due to its low proximity in front of them (i.e. low value of
S). This reduces the robot navigation’s pedestrian-friendliness.
Therefore, we develop an approach where the robot is able to
predict if such scenarios could occur in the near future and pre-
emptively avoid them. This simultaneously reduces the occur-
rence of FRP and improves the robot’s pedestrian-friendliness
in terms of social constraints.

B. Computing Pedestrian Poses and Prediction

The pedestrian positions and orientations are obtained by
tracking pedestrians in the image produced by the depth camera.
Referring to Equation (1), the value of the (i, j)th pixel in the
image Cij contains the proximity of an obstacle present in that
part of the image. When a pedestrian k is detected and tracked
in consecutive images (Section III.C), the pixel values within
the detection bounding box Bk are averaged to measure the
mean distance (davg) of the pedestrian from the camera. Let
the centroid of the bounding box Bk be denoted as [xBk

, yBk
].

Then, the angular displacement ψ of the pedestrian with respect
to the robot can be calculated as:

ψ =
(xBk

w

)
∗ FOVcam, (6)

where FOVcam is the field of view angle of the camera. The
pedestrian’s position with respect to the robot can be calculated
as [ppedx , ppedy ]= davg * [cosψ, sinψ]. A pedestrian’s orientation
unit vectors [upedx , upedy ] can be computed by calculating the
difference between the pedestrian positions computed between
two consecutive depth images. The pedestrian’s perceived space
in front of the pedestrian (S) can be trivially calculated based
on the computed relative positions of all the pedestrians in the
robot’s sensing region. Using S, the pedestrian’s walking speed
vped is calculated based on Equation (2).

C. Classifying Potentially Freezing Pedestrians

To predict if the freezing scenario discussed in Section IV.A
could occur, our navigation algorithm first identifies the pedestri-
ans in its sensing region who could cause such freezing behavior
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and classify them as potentially-freezing. To this end, the sensing
region Srob of the robot is divided equally along the robot’s
X-axis as Srob

right and Srob
left as shown in Fig. 3(b). Consider a

pedestrian in the sensing region of the robot with an orientation
denoted by u = [upedx , upedy ]. The pedestrian’s velocity vector
vped with respect to the robot’s frame, can be obtained by scaling
u by the pedestrian walking speed vped (from Equation (2)) as

vped = [vpedx , vpedy ] = vped ∗ [upedx , upedy ].

Let the robot speed be vrob. Therefore, its velocity vector
with respect to its local coordinate frame will be vrob = vrob ∗
[1, 0]. A pedestrian positioned at pped ∈ Srob

right is considered
as potentially-freezing if its velocity vector vped satisfies these
constraints:

vpedx ∈ [−vped/
√
2, vped/

√
2],

vpedy ∈ [vped/
√
2, vped].

(7)

Similarly, the velocity vectors vped of a pedestrian positioned at
pped ∈ Srob

left is considered potentially-freezing if it satisfies:

vpedx ∈ [−vped/
√
2, vped/

√
2],

vpedy ∈ [−vped,−vped/
√
2].

(8)

The pedestrian’s speed is assumed to be comparable to the
robot’s speed in both cases (vped ∼ vrob).

Proposition IV.1: The distance function (dist()) between any
pedestrian with a velocity vector that satisfies the conditions in
equations 7 or 8 and the robot, is a decreasing function with
time.

Proof: Consider pped ∈ Srob
right with a velocity vector

[vpedx , vpedy ] that satisfies Equation (7). From Fig. 3(b), we ob-
serve that ppedx is positive and ppedy is negative. For simplicity,
let us assume that for a time interval [t0, tfin], vped = vrob. Let
tfin − t0 = Δt be a small time interval comparable to the time
taken for the depth camera to capture two consecutive images.
In this time interval, with respect to the robot, the pedestrian
would have moved from (ppedx , ppedy ) to

(ppedx + vpedx Δt− vrobΔt, ppedy + vpedy Δt). (9)

We assume no sudden changes in the pedestrian’s
motion since Δt is small. Since vped = vrob, vpedx ∈
[−vped/√2, vped/

√
2] ⇒ vpedx < vrob and vpedy ∈

[vped/
√
2, vped] ⇒ vpedy > 0. Then, the distance between

the robot and the pedestrian at t0 is given as,

d0 =

√
(ppedx )2 + (ppedy )2. (10)

The distance between the robot and the pedestrian at tf is given
as,

df =

√
(ppedx + vpedx Δt− vrobΔt)2 + (ppedy + vpedy Δt)2.

(11)
Since vpedx Δt− vrobΔt < 0 and |ppedy + vpedy Δt| < |ppedy |,

we get df < d0 ⇒ dist(orob,pped) is a decreasing function in
[t0, tfin]. A similar proof can be formulated for a pedestrian in
Srob
left. This result implies that the pedestrian velocities satisfying

conditions 7 and 8 move closer the robot, potentially causing
freezing. Their motion would also be affected the most by

the robot’s navigation. Therefore, such pedestrians should be
classified as potentially-freezing. �

Pedestrian Classification: The potentially-freezing velocity
directions for each half of the sensing region are shown in
Fig. 3(b). If vped < vrob, then the pedestrian is considered as
potentially-freezing, irrespective of his/her orientation, as the
distance between the robot and the pedestrian decreases over
time. Pedestrians with velocity vectors of the form [±vped, 0],
are cases where the pedestrian is either moving head-on towards
the robot or moving away from the robot (maybe at a lower speed
than the robot). Such pedestrians are also considered potentially-
freezing provided that the pedestrian position is along the X-axis
of the robot. All other pedestrians are considered as non-freezing.
All potentially-freezing pedestrians’ positions are involved in
freezing zone computation.

D. Constructing the Potential Freezing Zone

Definition IV.2. (Potential Freezing Zone (PFZ)): PFZ is de-
fined as a conservative region with a high probability for the
occurrence of FRP, after a time interval Δt. Using the current
position and velocity of a potentially-freezing pedestrian i, we
predict his/her’s position p̂ped

i after Δt as,

p̂ped
i = pped

i + vped
i Δt i ∈ 1, 2, ...,K, (12)

where K is the number of potentially-freezing pedestrians in the
sensing zone. With these predicted positions as vertices, a closed
region is constructed, as in (Fig. 3(c)),

PFZ = ConvexHull(p̂ped
i ), i ∈ 1, 2, ...,K. (13)

We use the convex hull of p̂ped
i as a conservative approxima-

tion because it simplifies the computation of the freezing zone.
It also simplifies the deviation angle computation explained in
Section IV.E. The cases where K = 1 is a special case where the
PFZ is a single point. To maintain sufficient distance from the
pedestrian in this case, we construct the PFZ as a circle centered
around the pedestrian with a fixed radius. The avoidance of the
PFZ locally guarantees the prevention of FRP after time Δt.
In addition, it improves the robot’s pedestrian-friendliness with
respect to the K pedestrians, as the robot’s deviation away from
the PFZ ensures that it does not navigate obtrusively in front of
the pedestrians.

E. Calculating Deviation Angle φ

At any instant, if p̂ped
i of the closest potentially-freezing

pedestrian i positioned at pped = [ppedx , ppedy ] satisfies,

dist(vrobΔt, p̂ped
i ) ≤ η (14)

(η is the pedestrian comfort distance) and vrobΔt ∈ PFZ, the
robot initializes a deviation from its current velocity direction to
a new velocity by an angle φ as,

vrob
new = Rz,φv

rob, (15)

where Rz,φ denotes the rotation matrix for an angle φ about the
robot’s Z-axis. This deviation is constrained based on the relative
location of the robot’s goal and avoids navigating in-front of the
pedestrians. φ can be computed as,

φ = min(φ1, φ2), (16)
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Fig. 4. The maximum possible deviation φ2max occurs, when the closest
potentially-freezing pedestrian is at [f, ssen/2]. This proves that φ2 is always
bounded, which implies that φ = min(φ1, φ2) is bounded.

where φ1 and φ2 are given by,

φ1 = argmin
Rz,φ1

vrobΔt/∈PFZ

(
dist(Rz,φ1

vrobΔt,grob)
)
, (17)

φ2 = tan−1 (ppedy /ppedx ), φ2 
= 0. (18)

If min(φ1, φ2) = φ2, the robot deviates towards the closest
pedestrian’s current position. Since the pedestrian has a non-zero
velocity in the intervalΔt, the robot avoids the closest pedestrian
from behind. If φ2 = 0, we use φ = φ1, which denotes the least
deviation from the goal.

Proposition IV.2: The deviation angle φ has an upper bound
of tan−1(±

√
η2 − f2/f) which depends on η and f.

Proof: Consider the formulation for φ2. For the dimensions
of the sensing region shown in Fig. 3(a), the maximum value
of the deviation angle for a certain η could occur if the closest
pedestrian is located at pped with ppedx = f meter (just within
the sensing region), and ppedy = ±

√
η2 − f2 (see Fig. 4). This

is because the tan−1(ppedy /ppedx ) function increases as ppedx de-
creases, and f is the least possible value that ppedx can have. Then,
the maximum value of φ2, φ2max = tan−1(±

√
η2 − f2/f).

φ2 is bounded by tan−1(±
√
η2 − f2/f) ⇒ φ is bounded by

tan−1(±
√
η2 − f2/f). �

The constraints on the deviation angle ensure that i) PFZ can
be avoided which reduces freezing and improves pedestrian-
friendliness; ii) since φ is the least possible deviation away from
the PFZ, the angular motion of the robot is restricted. This results
in minimizing the loss of line of sight of the obstacles that are sur-
rounding the robot. We note that our deviation angle computation
does not assume pedestrian cooperation for collision avoidance.
This formulation is applicable in moderate to dense crowds (≤1
person/m2), where human cooperation is not required to avoid
freezing.

F. Frozone and Deep Reinforcement Learning

We use a hybrid combination of a DRL-based collision avoid-
ance policy by Long et al. [16] and Frozone to compute the
robot’s collision-free velocities. The overall system architecture
is shown in Fig. 5. Frozone modifies the velocities computed by
the DRL policy to preemptively avoid potential freezing zones
in crowds with lower pedestrian densities (≤1 person/m2). In
dense crowds, the DRL-based policy demonstrates good colli-
sion avoidance capability, and the computed velocities are used
directly by our hybrid method.

Fig. 5. Our hybrid method’s system architecture, which uses the velocity
provided by a DRL method [16] as a guiding velocity for collision avoidance and
modifies it to preemptively avoid Potential Freezing Zones (PFZ). Our method
includes 3 main components: 1. Classifying pedestrians as potentially-freezing
and non-freezing; 2. Constructing a Potential Freezing Zone; 3. Avoiding the
PFZ in a pedestrian-friendly manner.

The crowd density in the environment is categorized based
on the total number of pedestrians in the robot’s sensing region
T. Our switching mechanism for different densities can be ex-
pressed as:

vrob =
vFrozone if T ≤ s2sen,
vDRL if T > s2sen.

(19)

T ≤ s2sen corresponds to a density of ≤ 1person/m2. We also
note that Frozone is not restricted to be interfaced with a DRL-
based method and can be employed with any collision avoidance
scheme.

V. RESULTS AND ANALYSIS

In this section, we describe our implementation and high-
light its performance in different evaluation scenarios. We also
compare our method with prior methods and show significant
improvements in terms of navigation performance.

A. Implementation

We first evaluate our method in simulations that were created
using ROS Kinetic and Gazebo 8.6. We use a simulated model
of a Clearpath Jackal robot attached with models of the Hokuyo
2-D lidar and the Orbbec Astra depth camera in Gazebo. The
Hokuyo lidar, used by the DRL-based method, has a range of
4 meters, an FOV of 240◦, and provides 512 range values per
scan. The Astra camera has a minimum and maximum sensing
range of 0.5 meters and 5 meters, respectively. We use images of
size w × h = 150× 120 with added Gaussian noise N (0, 0.2)
as inputs to our pedestrian detection and tracking system. For
our real-world implementation, we mount use different cameras;
the Astra camera with a Turtlebot 2 and an Intel Realsense depth
camera with a Clearpath Jackal robot.

B. Testing Scenarios

We recreate typical indoor and outdoor scenarios that the robot
could face in our simulator to evaluate the performance of our
algorithm and to compare with prior approaches. For sparse
crowds, we assume that the robot takes full responsibility to
avoid the collisions. As a result, we make no assumptions about
human cooperation. We consider the following challenging sce-
narios to evaluate the performance:
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Corridor: The robot must navigate through 15 pedestrians in
a straight corridor to reach its goal. The scenario is made more
challenging by making the pedestrians walk in multiple pairs or
in a zig-zag manner.

Crossing: The robot must move perpendicular to the pedes-
trian motion in a plus-shaped corridor. The pedestrians may not
be sensed until they are very close to the robot.

Random-5: The robot must navigate in a random manner
and move through five pedestrians that result in high pedestrian
density in a local region. The maximum pedestrian density in
this scenario is 1 person / m2.

Random-10: The robot navigates through randomly moving
10 pedestrians. The maximum density however, is< 0.75 person
/ m2. This scenario is used to evaluate the maximum number of
pedestrians that each method can handle at any time instant.

1 Pedestrian Head-on: To compare the reduction in the oc-
currence of freezing and increase in pedestrian-friendliness,
we make the robot approach a single pedestrian head-on from
different initial positions that are at a distance of 3 meters and
4 meters. The pedestrian moves at 1 m/s towards the robot and
halts in-front of the robot, emulating a freezing scenario in dense
crowds. This tests the collision avoidance response time of each
algorithm, and if the algorithm can avoid freezing.

1 pedestrian Perpendicular: The robot moves perpendicular
to a pedestrian’s motion. We evaluate if the robot avoids the
pedestrian from front (obtrusive) or back (unobtrusive).

We use the above mentioned single pedestrian scenarios for
our evaluating freezing rates and pedestrian-friendliness, as it
provides a more precise way to measure these parameters and
observe robot behaviors when compared to more dense scenes.

C. Evaluation Metrics

We highlight the various metrics used to evaluate the algo-
rithm. The mean time and velocity are self-explanatory and
correspond to the values when the robot reached its goal position
without a collision.

Success Rate - The number of times that the robot reached
its goal without collisions over the total number of attempts.

Freezing Rate - The number of times the robot got stuck
or started oscillating for more than 10 seconds, while avoiding
obstacles over the total number of attempts.

Pedestrian friendliness - We use Equation 3 to compute the
pedestrian friendliness metric with N∞ = 10 in our results.

D. Analysis

Table I shows the results of our comparisons between Frozone
+ Long et al. [16] DRL method (hybrid) and three previous
methods in our simulator: i) Dynamic Window Approach [12],
a traditional collision avoidance method which uses the lidar to
sense nearby obstacles and forward-simulate the robot’s motion
to detect potential collisions, ii) Long et al. [16], a DRL-based
collision avoidance method for dense crowd collision avoidance;
iii) DenseCAvoid [7], a DRL-based method with a trained policy
that reduces FRP using pedestrian tracking and prediction. As
mentioned before, our implementation of Frozone is combined
with Long et al’s DRL policy [16] for our evaluations.

We observe that Frozone + Long et al’s method has the best
success rates of all the methods in all the scenarios highlighted
above. It significantly improves the success rates over just using
Long et al.’s [16] algorithm, and performs better or comparably
with DWA. This is because a robot’s success rate is closely tied to

TABLE I
COMPARISON OF THE HYBRID COMBINATION OF FROZONE + LONG ET AL’S

METHOD’S PERFORMANCE WITH OTHER LEARNING METHODS [7], [16], AND

A TRADITIONAL COLLISION AVOIDANCE METHOD DWA [12] IN CHALLENGING

SCENARIOS. WE OBSERVE THAT OUR HYBRID COMBINATION’S PERFORMANCE

IS BETTER OR COMPARABLE TO PREVIOUS METHODS. WE REPRESENT OUR

HYBRID COMBINATION AS FROZONE + DRL IN THE TABLE

TABLE II
COMPARISON OF DIFFERENT METHODS IN TERMS OF FREEZING RATES AND

PEDESTRIAN-FRIENDLINESS (PF) FOR CHALLENGING 1-PERSON SCENARIOS,
WHEN THE PEDESTRIAN STARTS AT CLOSE PROXIMITY FROM THE ROBOT AND

MOVES AT 1 M/S. OUR FROZONE + LONG ET AL’S METHOD HYBRID

(REPRESENTED AS FROZONE + DRL) OUTPERFORMS ALL PREVIOUS

METHODS, WITH A SIGNIFICANT DECREASE IN FREEZING AND INCREASE IN

PEDESTRIAN-FRIENDLINESS IN ALL SCENARIOS

Fig. 6. The trajectories of our Frozone + Long et al’s method hybrid (in green)
when compared with the trajectories of previous methods (red trajectories).
Our method always avoids the PFZ (red circular region constructed around the
pedestrian) and thus avoids freezing. Our method also avoids the pedestrian
from behind, thereby not affecting the pedestrian’s motion. The yellow point
represents the robot’s goal.

avoiding freezing as well. Our hybrid method improves the mean
time to goal when compared to Long et al.’s method by up to
33%, and the robot’s average velocity increases up to 40 %, while
resulting in comparable performances with the other methods.

Freezing and Pedestrian-Friendliness: Frozone significantly
reduces the freezing in all our challenging test scenarios (see
Table II). In the scenario where a pedestrian approaches the
robot head-on starting from 3 meters away, all previous methods
halted to avoid a collision and started oscillating for more than
15 seconds. Frozone + Long et al.’s method avoids the circular
PFZ constructed around the pedestrian preemptively and
prevents freezing (see Fig. 6). When the pedestrian starts from
4 meters away, DWA and DenseCAvoid manage to not freeze
in some cases, since the robot has more space and time to react
to the pedestrian, and avoid it. Both these methods however, do
not handle dynamic pedestrians in close proximity (<2 meters
away).
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Frozone also deviates the robot to avoid pedestrians from
behind whenever it results in least deviation from the goal. When
the robot moves perpendicular to the pedestrian’s motion, all
previous methods take short-sighted actions and try to pass the
pedestrian from the front. In some cases, DWA deviated more
than 5 meters away from the goal to avoid the pedestrian. Such
behavior severely affects both the pedestrian-friendliness and the
efficiency of the navigation. In all our trials, Frozone + Long et
al’s method passed the pedestrian from behind, without changing
the perceived space in-front of the pedestrian.

In our real-world tests on two differential drive robots, we
observed that the robot could switch between the velocities
computed by Long et al’s method, and Frozone seamlessly.
The performance in real-world scenarios is also simplified as
humans generally cooperate with avoiding collisions with the
robots. We also test the pedestrian-friendliness improvement
in real-world scenes and observe that the robot conservatively
navigates behind a pedestrian whenever possible (please see
supplementary material).

VI. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We present a novel method to significantly reduce the occur-
rence of the Freezing Robot Problem when a robot navigates
through moderately dense crowds. Our approach is general and
uses a standard camera for pedestrian detection and tracking. We
present a simple algorithm to construct a spatial zone, where the
robot could freeze and be obtrusive to the pedestrians. We use
this formulation of potentially freezing zone to compute an angle
to deviate the robot away from the zone. We also combined
our method with a DRL-based collision avoidance method to
exploit its advantages in dense crowds (>1–2 persons/m2), while
reducing the occurrence of freezing. We observe that our method
outperforms existing collision avoidance methods by having
lower freezing rates, higher pedestrian-friendliness and success
rates of reaching the goal. We highlight the performance on two
different robots.

Our approach has certain limitations. While our method can
reduce the rate of freezing, but we cannot avoid it altogether
without human cooperation. Our formulation of potentially
freezing zone is conservative and we use a locally optimal tech-
nique to compute the deviation. The behavior of our approach is
also governed by the underlying pedestrian tracking algorithm
as well as the techniques used to model pedestrian friendliness.
Our hybrid method’s performnce is also governed by the DRL
formulation. As part of future work, we would like to overcome
these limitations and test our approach with other robots. We
would also like to take into account the dynamics constraints of
the robot.
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