
DenseCAvoid: Real-time Navigation in Dense Crowds using
Anticipatory Behaviors

Adarsh Jagan Sathyamoorthy1, Jing Liang1, Utsav Patel, Tianrui Guan, Rohan Chandra, and Dinesh Manocha

Abstract— We present DenseCAvoid, a novel algorithm for
navigating a robot through dense crowds and avoiding collisions
by anticipating pedestrian behaviors. Our formulation uses
visual sensors and a pedestrian trajectory prediction algorithm
to track pedestrians in a set of input frames and compute
bounding boxes that extrapolate to the pedestrian positions in
a future time. Our hybrid approach combines this trajectory
prediction with a Deep Reinforcement Learning-based collision
avoidance method to train a policy to generate smoother,
safer, and more robust trajectories during run-time. We train
our policy in realistic 3-D simulations of static and dynamic
scenarios with multiple pedestrians. In practice, our hybrid
approach generalizes well to unseen, real-world scenarios and
can navigate a robot through dense crowds (∼1-2 humans per
square meter) in indoor scenarios, including narrow corridors
and lobbies. As compared to cases where prediction was not
used, we observe that our method reduces the occurrence of
the robot freezing in a crowd by up to 48%, and performs
comparably with respect to trajectory lengths and mean arrival
times to goal.

I. INTRODUCTION

Mobile robots are increasingly being used in different sce-
narios that are crowded with pedestrians and other obstacles.
For instance, robots are being used for room service in hotels,
package and food delivery, or as caretakers in hospitals.
Furthermore, they are used for surveillance in public places
such as malls, airports, etc. These environments can be
populated with high pedestrian density (e.g., 1-2 pedestrians
per square meter). In such scenarios, a robust and efficient
collision avoidance method is crucial to ensure the safety of
the robot and the humans.

The problem of robot navigation among dynamic obstacles
has been well studied in robotics and related areas. There is a
large body of work on classic navigation techniques based on
potential fields, velocity obstacles, and dynamic windows [1],
[2], [3], [4], [5]. Recently, many collision avoidance methods
based on machine learning have been proposed [6], [7],
[8], [9], [10], [11] and have shown considerable promise in
real-world scenarios. These learning-based methods can be
directly integrated with existing 2-D or 3-D lidars or cameras
and are robust to sensing inaccuracies in the states of the
obstacles.

In practice, dense crowds pose several challenges for robot
collision avoidance. First, pedestrian motions in such crowds
can be highly non-smooth [12]. Second, the robot must be
able to react to sudden changes in pedestrian motion to
avoid collisions. Current learning-based collision avoidance
methods [6], [9], [13] work well for sparse or moderately
dense crowds, but either result in collisions or oscillations

This work was supported in part by ARO Grants W911NF1910069 and
W911NF1910315, and Intel.

1 Authors contributed equally. All authors are with the University of
Maryland, College Park.

Fig. 1: [Top] Our method implemented on a Turtlebot navi-
gating through a dense crowd. [Bottom] We explicitly track
and predict pedestrian motions (marked for the three pedes-
trians) and use it to train a Deep Reinforcement Learning-
based collision avoidance policy. Our network implicitly
learns to reduce the occurrence of the freezing robot problem
and generates smooth robot trajectories in dense crowds.

[7] as the crowd density increases. Another common phe-
nomenon in such cases is the freezing robot problem [14],
[15], [16], where the navigation method completely halts the
robot, declaring that all forward velocities lead to a collision.
Moreover, if the pedestrians obstructing the robot do not
move to give way, the robot could stall indefinitely.
Main Results: We present a novel algorithm (DenseCAvoid)
for safe robot navigation in dense crowds. Our approach
is hybrid and combines techniques based on Deep Rein-
forcement Learning (DRL) with navigation methods that use
pedestrian trajectory prediction. As a result, our approach
provides the benefits of learning-based methods in terms
of handling noisy sensor data, along with the benefits of a
navigation method that explicitly predicts the trajectory and
behavior of each pedestrian in an anticipatory manner. The
latter enables our hybrid approach to robustly deal with new
or unforeseen scenarios, which are quite different from the
synthetic training data.

Our new DRL-based algorithm includes a modified net-
work, a novel reward function and simulated training scenar-
ios with static and dynamic pedestrians and other obstacles.
We use a state-of-the-art pedestrian trajectory prediction



method [17] that can handle dense scenarios. Our collision
avoidance policy is trained using these explicitly predicted
pedestrian motions, and a policy gradient method known as
Proximal Policy Optimization (PPO)[18]. During run-time,
our method uses raw sensor data from a lidar, a depth camera,
the robot’s odometry, and pedestrian prediction to generate
smooth, collision-free trajectories. Our main contributions
include:
• A new end-to-end DRL-based collision avoidance pol-

icy that is combined with a human motion prediction
algorithm to anticipate pedestrian motion and generate
smooth trajectories in dense crowds. This results in an
increase by up to 74% in rates of reaching the goal
when compared to times when prediction was not used.

• A motion prediction algorithm that is general and can
handle dense scenarios, that is more robust than a simple
linear motion model.

• A novel network structure and reward function that take
multiple sensor inputs and pedestrian prediction data to
train a policy using PPO. This results in a reduction
by up to 48% in the occurrence of the freezing robot
problem.

• Complex 3-D simulations of indoor environments with
pedestrians and static obstacles for training and bench-
marking DRL methods.

II. PRIOR WORK AND BACKGROUND

In this section, we briefly cover prior work in pedes-
trian tracking, motion prediction and learning-based collision
avoidance methods. We also provide details regarding the
preliminaries of our work.

A. Pedestrian Tracking and Motion Models

Object and pedestrian detection has been widely studied
in computer vision. Some of the most accurate methods are
based on deep learning including R-CNN [19] and its faster
variants [20], [21], [22], which use a selective search area
to optimize the object detection problem. Other works in
learning-based tracking include [23], [24], [25], [26]. Many
of these learning-based methods lack real-time performance
that is needed for navigation in dense environments. More-
over, highly accurate methods such as [27] and [28] require
high-quality detection features for reliable performance.

Several motion models have been used to improve pedes-
trian tracking accuracy [29], [30], [31], [32]. However,
most of these methods assume a constant linear velocity
or acceleration models for the pedestrians. These methods
cannot characterize pedestrian dynamics accurately in dense
settings [33]. Non-linear motion models such as RVO [1]
and its variants have been shown to work well for tracking
in dense crowd videos. Social Force model [34], LTA [35],
and ATTR [36] are other non-linear motion models that have
been used for pedestrian tracking in low to medium density
crowds.

YOLOv3: In our approach, we use YOLOv3 [37], a real-
time high accuracy variant of YOLO [38] for pedestrian
detection and tracking in dense crowd. Given an RGB or
a depth image and an object of interest (pedestrians, in our
case), YOLOv3 outputs the bounding box coordinates over
all the detected objects in the image.

Fig. 2: (a) Tracking a moving pedestrian in a depth image.
(b) Prediction output for a future time step. The white space
in the output is the admissible free space, and the black
bounding box denotes the space the pedestrian would occupy
in the future.

B. Pedestrian Trajectory Prediction and Navigation

There has been extensive research in predicting object or
pedestrian trajectories in computer vision and robotics. Early
works include formulations such as Bayesian [39], Monte
Carlo simulation [40], Hidden Markov Models [41], and
Kalman Filters [42]. Deep learning-based prediction methods
mostly utilize Recurrent Neural Networks (RNNs) [43] and
Long Short-Term Memory (LSTM). Hybrid methods using a
combination of RNNs and other deep learning architectures
such as Convolutional Neural Networks (CNNs), Generative
Adversarial Networks (GANs) and LSTMs have also been
proposed. For instance, GANs have been used for pedestrian
trajectory prediction [44] and CNNs have been used for
traffic prediction [45]. There has also been extensive work on
accurately modeling crowd behavior [46], [47], [48] which
could aid robot navigation.

Our Pedestrian Prediction: We modify a state-of-the-
art traffic trajectory prediction algorithm called RobustTP
[17] to predict pedestrian motions. An image with the
bounding box coordinates of the detected pedestrians (from
YOLOv3) is fed as input into RobustTP. This algorithm uses
a combination of CNNs and LSTMs to predict the positions
of the detected pedestrians in the next frame immediately
after the input image. The pedestrian tracking by YOLOv3 is
shown in Fig.2 (a), and the position as predicted by RobustTP
is shown in Fig.2(b) as a black bounding box on a white
background. RobustTP can also be modified to predict the
trajectories of any generic obstacle. The computation time
of RobustTP depends on the level of accuracy required in
prediction. For mobile robot navigation in dense crowds,
we set this accuracy level to < 90% to ensure real-time
performance.

Navigation using prediction: Pedestrian prediction using
Bayesian estimation and modeling their motions using RVO
is presented in [49]. Long-term path prediction based on
Bayesian learning and personality trait theory for socially-
aware robot navigation is presented in [50]. Other tech-
niques use a Partially Observable Markov Decision Process
(POMDP) to model the uncertainties in the intentions of
pedestrians. [51] presents a POMDP-based planner to es-
timate the pedestrians’ goals for autonomous driving. The
planner was then augmented with an ORCA-based pedestrian
motion model [52]. The resulting POMDP planner runs in
near real-time. Our approach is complimentary and can be
combined with these navigation methods.



C. Learning-Based Collision Avoidance with Pedestrians
In recent years, several works have used different learning

methods for navigation in dense scenes. GAIL (Generative
Adversarial Imitation Learning) [9] used raw depth camera
images to train a socially acceptable navigation method
for a differential drive robot. Similarly, CNNs with RGB
images have been used to train an end-to-end visuomotor
navigation system [8] and a deep double-Q network (D3QN)
has been used to predict depth information from RGB images
for static obstacle avoidance [53]. A method to use expert
demonstrations in simulation to train a method for mapless
navigation [54] has also been demonstrated. These methods,
however, may not work well on dense crowds.

A decentralized, scalable, sensor-level collision avoidance
method was trained in [7]. It was extended to a hybrid
learning architecture [55], which switched policies based
on the obstacle density in the environment. This method
was further augmented to learn localization recovery points
in the environment to solve the loss of localization and
freezing robot problems simultaneously [14]. Cooperative
behaviors between humans and robots have been modeled
using a value network for better collision avoidance [6]. This
formulation was extended to observe an arbitrary number
of pedestrians in the surroundings using LSTMs [13]. [10]
presented an approach to model interactions within a crowd
which indirectly affect robot navigation. A novel collision
avoidance method that identified previously unseen scenarios
to carefully navigate around pedestrians is presented in [56].

D. DRL-based Collision Avoidance
Our learning-based algorithm is based on deep reinforce-

ment learning. The underlying objective is to train a policy
πθ that drives the robot to its goal while avoiding all the
obstacles in the environment. There are three important
components in DRL policy training, namely, (i) robot’s
observation space, (ii) action space, and (iii) the reward
function. We briefly describe our observation and action
spaces here and describe our novel reward function in Section
III.

Observation and Action Spaces: Our observation
space at any time instant t can be represented as ot =
[ot

percep,ot
odom,o

t
goal ], where ot

percep is the observation from
the perception sensors, ot

odom is the odometry observation
(which includes the current velocity of the robot), and ot

goal
denotes the goal position relative to the robot. The action
space of the robot is a continuous space consisting of the
linear and angular velocities of the robot, represented as
at = [vt ,ω t ].

The robot performs a certain action until it receives the
observation for the next time instant ot+1. For optimizing
the policy, we use the minimization of the mean arrival time
of the robot to its goal as our objective function:

argmin
πθ

E[
1
N

N

∑
i=1

tg
i |πθ ]. (1)

1) Proximal Policy Optimization: To train our collision
avoidance policy, we use a policy gradient method [57] called
Proximal Policy Optimization (PPO) [18]. Policy gradient
methods (in contrast with value-based methods) directly
modify the policy during training, which is more suitable

for navigation applications and continuous action spaces. In
addition, PPO bounds the update of parameters θ to a trust
region [58], thereby ensuring that the policy does not diverge
between two consecutive training iterations. This guarantees
stability during the training phase.

III. OUR HYBRID APPROACH: DENSECAVOID

In this section, we present our hybrid collision avoid-
ance method that combines DRL with explicit pedestrian
trajectory prediction for navigation. We present our network
architecture that is used to train our collision avoidance pol-
icy with anticipatory behaviors. We also discuss our reward
function design and the complex 3-D training scenarios to
handle dense crowds.

A. Anticipating Pedestrian Behavior
In densely crowded scenarios, pedestrian motion is highly

non-smooth. In our case, we choose to explicitly model
pedestrian behavior, similar to classic navigation methods.
As mentioned in Section II, we use an explicit pedestrian
trajectory predictor and use this information to generate
non-oscillating, non-jerky navigation in dense scenarios. In
addition, since our trained policy knows where each pedes-
trian is headed in the immediate future, we can also make
the robot avoid regions where several pedestrians might be
heading. Therefore, the robot tends to avoid scenarios that
could possibly lead to the freezing robot problem.

As shown in Fig.2, the prediction frame extracted us-
ing [17] has black bounding boxes at locations where the
pedestrians could be in the future. These boxes are placed
over a white background, which represents the collision-free
free-space. We provide this future free-space representation
while training our network, which makes our collision avoid-
ance policy training converge faster. This is due to the fact
that our free-space representation provides a more direct way
to infer the direction the robot should move towards and to
learn the dynamic properties or behaviors of the pedestrians
in different settings.

In our end-to-end formulation, we integrate the pedestrian
prediction outputs with the DRL collision avoidance network
as a new observation. Formally, ot = [ot

lid ,o
t
cam,ot

g,ot
v,ot

pred ],
where ot

lid denotes raw data from a 2-D lidar, ot
cam denotes

the raw image data from either a depth or an RGB camera, ot
g

refers to the relative position of the goal with respect to the
robot, ot

v denotes the robot’s current velocity, and ot
pred refers

to the predicted positions of pedestrians in the next frame
(shown in Fig. 2). Once the policy is trained, we sample a
collision-free action from at at each time instant as:

at ∼ πθ (at |ot). (2)

Note that it is also possible to directly combine the prediction
output with the action at . This could be useful in scenarios
where the robot encounters a situation that is quite different
from the training data.

B. Network Architecture
Our network (Fig.3) consists of four branches, each pro-

cessing a component of the observation ot . Two 1-D layers
and three 2-D layers are used respectively for processing the
2-D lidar data and depth image data, which are followed
by fully-connected layers that modify the dimensions of



Fig. 3: Architecture of our anticipatory collision avoidance
network with four branches to process different observations.
The input layer is marked in blue and, the hidden layers
are marked in orange and the fully-connected layers in the
network are marked as FCn. The green layer represents
the output layer. The three values underneath each hidden
layer denote the kernel size, number of filters, and stride
length respectively. We stack a raw depth image with a the
prediction frame and use it directly for training our collision
avoidance policy.

the outputs of the two branches to match each other. In
branch 2, the depth image from the camera is first passed
into our prediction algorithm. We then stack the computed
prediction frame behind a resized version of the original
depth image before passing these frames through a set of
three 2-D convolutional layers. ReLU activation is applied
to the outputs of all the hidden layers in branches 1 and 2.
Branches 3 and 4 feed the relative position of the goal and
the robot’s current velocity to the fully-connected layer FC2.

We apply a sigmoid activation to restrict the robot’s linear
velocity between (0.0, 1.0) m/s and a tanh activation to
restrict the angular velocity between (-0.4, 0.4) rad/s in
the output layer. The output velocity is sampled from a
Gaussian distribution that uses the mean value outputted
from the fully connected layer FC2, which is updated during
training. We address the imbalance between the dimensions
of the perception sensors, and the robot’s current velocity and
goal using appropriate training scenarios (Section III.D). Our
training scenarios ensure that the velocity and goal inputs are
used in the initial stages of training to learn goal reaching
capabilities with reduced oscillations.

C. Reward Function

Our purpose during policy training is to avoid collisions
while moving towards the goal and to reduce oscillations or
freezing behavior during navigation. Therefore, reaching the
goal and colliding with obstacles are assigned high values
of reward and penalty, respectively. To obtain smooth trajec-
tories during run-time, we penalize sudden, large changes
in the angular velocity. In addition, we use intermediate
waypoints to guide the policy away from obstacles and
towards the goal, which results in faster convergence.

Formally, the total reward collected by a robot at time
instant t can be given as:

rt = (rg)
t +(rc)

t +(rosc)
t +(rsa f edist)

t , (3)

where the reward for reaching the goal or an intermediate
waypoint (rg)

t is given as:

(rg)
t =


rwp if ||pt −pwp||< 0.2,
rgoal if ||pt −g||< 0.3,
2.5(||pt−1−g||− ||pt −g||) otherwise.

(4)

Here, pt and pwp denotes the position of the robot at time t
and the position of the waypoint respectively, and g denotes
the robot’s goal location. The collision penalty (rc)

t is given
as:

(rc)
t =

{
rcollision if ||pt −pobs||< 0.3,
0 otherwise.

(5)

The oscillatory behaviors (i.e. choosing sudden large angular
velocities) are penalized as:

(rosc)
t =−0.1|∆ω

t | if |∆ω
t |> 0.3. (6)

Here, ω t is the angular velocity of the robot. The penalty for
moving too close to an obstacle is given by:

(rsa f edist)
t =−0.1|dthresh−drob| if dthresh > drob, (7)

where dthresh and drob denote the threshold distance that the
robot needs to maintain from an obstacle at any time, and
the actual distance that the robot maintains from an obstacle,
respectively. For multiple obstacles present in the robot’s
vicinity, the penalties in equations 5 and 7 are applied for
each obstacle. We set rwp = 10, rgoal = 20, and rcollision =
-20 in our formulation.

D. Training Scenarios
The policy training is carried out in multiple stages to

ensure fast convergence of the total accumulated reward.
When the robot trains in more complicated training scenar-
ios, we also run the robot in the simpler training scenarios
simultaneously to ensure that previously learned capabilities
are not overwritten. We designed several training scenarios to
suit our pedestrian prediction network by including walking
pedestrian models in the dynamic scenes in our training. Fur-
thermore, we include dense pedestrian scenarios with sudden
changes in the pedestrian motion. Our training scenarios are
as follows:
• Random Goal: The robot is given a random goal in an

empty world, and actions leading the robot towards the
goal are rewarded. In this scenario, the partially trained
model learns basic goal-reaching capabilities.

• Dense-Static: The robot is given a random goal in a
world cluttered with static obstacles. During training,
the policy augments its previously learned goal-reaching
capabilities with basic static obstacle avoidance.

• Random-Pedestrians: The policy from the previous
scenario is now trained in a world with randomly walk-
ing pedestrians. The pedestrian prediction observations
now play a major role in training the policy for dynamic
obstacle avoidance. We vary the positions, trajectories,
and the densities of the pedestrians.

• Dense-Random-Pedestrians: In this scenario, the robot
needs to navigate through a dense crowd of randomly
walking pedestrians before reaching its goal.



Fig. 4: Different training scenarios used for training our algorithm from simplest to complex. (a): Empty scenario with
random goals; (b): Dense-Static scenario with random goal; (c): Robot moves through a few pedestrians walking randomly
to reach the goal; (d) Robot moves through a dense crowd to reach its goal.

Metrics Sensor Configuration Dense-Static Random-Sparse-Ped Dense-Ped

Success Rate
Depth Camera 0.26 0.73 0.55

Depth Camera + Lidar 0.6 0.733 1
DenseCAvoid 0.93 0.87 1

Avg Trajectory Length
Depth Camera N/A 5.5 16.3

Depth Camera + Lidar N/A 5.11 15.51
DenseCAvoid N/A 6.39 16.87

TABLE I: Relative performance of our DenseCAvoid hybrid method versus learning-based methods that do not use explicit
pedestrian prediction. In the latter category, we use two combinations of sensors (i.e. only depth camera and depth camera
+ lidar). The trajectory length for Dense-Static case is not measured, since we assign the robot’s goals randomly. These
numbers highlight the benefit in terms of success rate (higher is better) of DenseCAvoid. However, the explicit use of
prediction can slightly increase the trajectory length (lower is better) to the goal, because the robot may not take the shortest
straight line path.

Metrics Distance Depth Camera Depth camera + lidar DenseCAvoid

Freezing Robot %
< 1.0 meters 100% 100% 100%
1 - 1.5 meters 53% 33% 5%
1.5 - 2 meters 27% 0% 0%

TABLE II: The performance of different methods in avoiding freezing robot scenarios, i.e. the number of instance the
robot freezes (lower is better), tested in the Robot Freezing scenario. Our DenseCAvoid method considerably improves the
performance when the robot is more than 1m away from an obstacle. In these cases, our explicit prediction of pedestrian
trajectory improves the navigation capability and the robot does not freeze.

IV. RESULTS AND EVALUATIONS

In this section, we describe our implementation and high-
light the performance of DenseCAvoid in different scenar-
ios. We also compare our navigation algorithm with poli-
cies trained without trajectory prediction and highlight the
benefits of explicitly modeling the anticipatory pedestrian
behavior. The convergence of the logarithm of our reward
function versus the number of iterations is shown in Fig. 4.

A. Implementation
Our policy is trained in simulations created using ROS

Kinetic and Gazebo 8.6 on a workstation with an Intel Xeon
3.6 GHz processor and an Nvidia GeForce RTX 2080Ti
GPU. We use Tensorflow, Keras, and Tensorlayer to create
our network. We simulate sensor data using models of the
Hokuyo 2-D lidar and the Orbbec Astra depth camera in
Gazebo during training and testing. The 2-D Hokuyo lidar
has a maximum range of 4 meters and a field of vision (FOV)
of 240◦, and provides 512 range values per scan. The Orbbec

Astra has a minimum range of 1.4 meters and a maximum
sensing range of 5 meters. We use depth images of size
60× 80 as inputs to our policy training network. We use
a low resolution image to reduce the latency for processing
the data.

Each pixel value in the depth image varies from 0 to 255.
For pedestrian prediction, we normalise the depth images
to have values between 1.4 to 5 (corresponding to the
camera’s range) before passing it into a pre-trained YOLOv3
and RobustTP network. We observe about 85% prediction
accuracy in our dense benchmarks. We mount the same
sensors on a Turtlebot 2 robot to test our model in real-
world scenarios such as densely crowded corridors with non-
smooth pedestrian trajectories. During run-time, we ensure
that the rate at which the lidar scan data is received, and the
rate at which the depth images are processed by RobustTP
are comparable.



Fig. 5: Convergence of our reward function (shown for
positive reward values) vs the number of iterations. Explicit
pedestrian prediction helps our training converge faster and
smoother when compared with the case with no prediction.

B. Testing scenarios

We compare our policy trained with pedestrian prediction
with two policies which were trained without pedestrian
prediction, but with the same reward function and training
scenarios: (i) Policy trained only with depth camera obser-
vations, and (ii) Policy trained with lidar and depth camera
observations. This comparison would clearly highlight the
benefits of including pedestrian prediction when all other
factors are the same. We consider four different test scenarios
that have more challenging static and dynamic scenes, as
compared to our training scenarios. This demands tight
maneuvers from the robot to reach its goal. The scenarios
we consider are:

1. Dense-Static: Scenario cluttered with static obstacles,
with random goals provided to the policy.

2. Random-Sparse-Ped: Scenario where the robot must
pass through 10 randomly walking pedestrians to reach its
goal.

3. Dense-Ped: Scenario where the robot must move
against the direction of 15 walking pedestrians in a narrow
corridor to reach its goal.

4. Robot Freezing: Several (3− 4) pedestrians are sud-
denly spawned at different distances (1−2 meters) in front
of the robot to simulate the freezing-robot scenario. Most
prior benchmarks fail in such cases and we highlight the
benefits of explicit trajectory prediction.

C. Performance Benchmarks and Metrics

We use the following metrics to evaluate the performance
of different navigation algorithms:

• Success Rate - The number of times that the robot
arrived at its goal without colliding with an obstacle
over the total number of attempts.

• Average Trajectory Length - The trajectory length that
the robot travels before reaching the goal, calculated as
the sum of linear segments over small time intervals
over the total number of attempts.

• Robot Freezing % - The number of times the robot got
stuck or started oscillating indefinitely, while avoiding
sudden obstacles over total number of attempts. A lower
value is better.

D. Analysis and Comparison

We present our results in Table I. We observe that Dense-
CAvoid consistently has a higher success rate as the testing
scenarios get more complicated. Using only observations
from the depth camera for navigation works well for sparse
scenarios, however, performs poorly in dense scenarios. This
is mainly due to the low field of vision of the depth camera
when compared to a lidar. Using observations from depth
camera and a 2-D lidar performs slightly better than a
single sensor. However, explicit modeling of the pedestrian
future trajectory and behavior improves the results in these
scenarios. However, the use of trajectory prediction can
increase the trajectory length, as the robot may take a larger
turn during collision avoidance.

The main benefit of DenseCAvoid arises in terms of deal-
ing with the freezing robot problem, as can be observed from
Table II. All methods fail in scenarios where a pedestrian
suddenly appears within 1 meters from the robot. This is
a consequence of limiting the angular velocity of the robot
between (-0.4, 0.4) rad/sec to avoid high oscillations during
navigation. Although a higher angular velocity range (say
-1 to 1 rad/sec) could avoid such sudden pedestrians, it
also leads to undesirable oscillations in some instances. It
also prolongs the training time due to the increase in the
oscillation penalty earned by the robot. Prior deep reinforce-
ment learning methods can’t deal with such situations and
the robots tend to freeze. However, DenseCAvoid is able to
handle sudden pedestrians about 1 to 1.5 meters away much
better than the other methods, leading to oscillations/freezing
only 5% of the time. This highlights the benefit of using ex-
plicit pedestrian prediction as the classic navigation method
along with learning-based methods.

V. CONCLUSIONS, LIMITATIONS, FUTURE WORK

We present a novel method for collision avoidance with
pedestrians in dense scenarios. Our hybrid approach tends
to combine the benefits of learning-based methods with
classic navigation methods that explicitly perform trajectory
prediction. Our approach has been implemented in highly
dense crowds with pedestrian densities up to 1-2 pedestrian
per square meter. Our prediction method does not make any
assumptions regarding the motion model for the pedestrian,
which results in stable behavior during training and run-
time. We validate our work in simulation and in real-world
scenarios using a Turtlebot and showed that our approach
drastically reduces the freezing robot problem, when pedes-
trians suddenly appear in front of the robot. Our work
has several limitations. While we improve the navigation
capabilities in dense scenarios, our approach does not work
robustly in all possible scenarios. The accuracy is also limited
by the accuracy of trajectory prediction, which is not perfect.
The overall performance is mostly governed by the synthetic
datasets used during the training phase and the limitations
of sim-to-real paradigm. As part of future work, we want
to overcome these limitations. It may also be possible to
combine classic navigation methods as a post-processing step
to the action computed by Equation 2. We also need to
account for the robot’s dynamics constraints and test them in
outdoor scenarios. We also need better perception techniques
to handle transparent surfaces.



REFERENCES

[1] J. van den Berg, Ming Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in 2008 IEEE Interna-
tional Conference on Robotics and Automation, May 2008, pp. 1928–
1935.

[2] J. P. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in ISRR, 2009.

[3] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. A. Beardsley, and
R. Siegwart, “Optimal reciprocal collision avoidance for multiple non-
holonomic robots,” in DARS, 2010.

[4] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[5] D. Fox, W. Burgard, S. Thrun, and A. B. Cremers, “A hybrid
collision avoidance method for mobile robots,” in Proceedings. 1998
IEEE International Conference on Robotics and Automation (Cat.
No.98CH36146), vol. 2, May 1998, pp. 1238–1243 vol.2.

[6] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in ICRA. IEEE, 2017, pp. 285–292.

[7] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
Optimally Decentralized Multi-Robot Collision Avoidance via Deep
Reinforcement Learning,” arXiv e-prints, p. arXiv:1709.10082, Sep
2017.

[8] Y. Kim, J. Jang, and S. Yun, “End-to-end deep learning for autonomous
navigation of mobile robot,” in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan 2018, pp. 1–6.

[9] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navi-
gation through raw depth inputs with generative adversarial imitation
learning,” in ICRA, May 2018, pp. 1111–1117.

[10] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in ICRA. IEEE, 2019, pp. 6015–6022.

[11] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 1527–1533.

[12] A. Bera and D. Manocha, “Reach - realtime crowd tracking using
a hybrid motion model,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), May 2015, pp. 740–747.

[13] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in IROS. IEEE, 2018, pp. 3052–3059.

[14] T. Fan, X. Cheng, J. Pan, P. Long, W. Liu, R. Yang, and D. Manocha,
“Getting robots unfrozen and unlost in dense pedestrian crowds,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 1178–1185, 2019.

[15] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in
dense, interacting crowds,” in 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Oct 2010, pp. 797–803.

[16] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation
in dense human crowds: Statistical models and experimental studies
of humanrobot cooperation,” The International Journal of Robotics
Research, vol. 34, no. 3, pp. 335–356, 2015. [Online]. Available:
https://doi.org/10.1177/0278364914557874

[17] R. Chandra, U. Bhattacharya, C. Roncal, A. Bera, and D. Manocha,
“Robusttp: End-to-end trajectory prediction for heterogeneous road-
agents in dense traffic with noisy sensor inputs,” arXiv preprint
arXiv:1907.08752, 2019.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv e-prints, p.
arXiv:1707.06347, Jul 2017.

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
ArXiv e-prints, Nov. 2013.

[20] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks,” ArXiv
e-prints, June 2015.

[22] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” ArXiv
e-prints, Mar. 2017.

[23] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler,
“Online multi-target tracking using recurrent neural networks,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[24] S.-H. Bae and K.-J. Yoon, “Confidence-based data association and
discriminative deep appearance learning for robust online multi-
object tracking,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 3, pp. 595–610, 2018.

[25] Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, and N. Yu, “Online multi-
object tracking using cnn-based single object tracker with spatial-
temporal attention mechanism,” 2017.

[26] K. Fang, Y. Xiang, and S. Savarese, “Recurrent autoregres-
sive networks for online multi-object tracking,” arXiv preprint
arXiv:1711.02741, 2017.

[27] N. Wojke, A. Bewley, and D. Paulus, “Simple Online and Realtime
Tracking with a Deep Association Metric,” ArXiv e-prints, Mar. 2017.

[28] S. Murray, “Real-time multiple object tracking-a study on the impor-
tance of speed,” arXiv preprint arXiv:1709.03572, 2017.

[29] A. Milan, S. Roth, and K. Schindler, “Continuous energy minimization
for multitarget tracking,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 1, pp. 58–72, 2013.

[30] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis track-
ing revisited,” in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 4696–4704.

[31] R. Henschel, L. Leal-Taixe, D. Cremers, and B. Rosenhahn, “Fusion of
head and full-body detectors for multi-object tracking,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2018, pp. 1428–1437.

[32] H. Sheng, L. Hao, J. Chen, Y. Zhang, and W. Ke, “Robust local
effective matching model for multi-target tracking,” in Pacific Rim
Conference on Multimedia. Springer, 2017, pp. 233–243.

[33] A. Bera and D. Manocha, “Realtime multilevel crowd tracking using
reciprocal velocity obstacles,” in Pattern Recognition (ICPR), 2014
22nd International Conference on. IEEE, 2014, pp. 4164–4169.

[34] A. Bera, N. Galoppo, D. Sharlet, A. Lake, and D. Manocha, “Adapt:
real-time adaptive pedestrian tracking for crowded scenes,” in Robotics
and Automation (ICRA), 2014 IEEE International Conference on.
IEEE, 2014, pp. 1801–1808.

[35] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll never
walk alone: Modeling social behavior for multi-target tracking,” in
2009 IEEE 12th International Conference on Computer Vision, Sept
2009, pp. 261–268.

[36] K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg, “Who are
you with and where are you going?” in Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011, pp.
1345–1352.

[37] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[38] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[39] S. Lefèvre, C. Laugier, and J. Ibañez-Guzmán, “Exploiting map
information for driver intention estimation at road intersections,” in
Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE, 2011, pp.
583–588.

[40] S. Danielsson, L. Petersson, and A. Eidehall, “Monte carlo based
threat assessment: Analysis and improvements,” in Intelligent Vehicles
Symposium, 2007 IEEE. IEEE, 2007, pp. 233–238.

[41] J. Firl, H. Stübing, S. A. Huss, and C. Stiller, “Predictive maneuver
evaluation for enhancement of car-to-x mobility data,” in Intelligent
Vehicles Symposium (IV), 2012 IEEE. IEEE, 2012, pp. 558–564.

[42] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[43] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[44] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
GAN: Socially Acceptable Trajectories with Generative Adversarial
Networks,” ArXiv e-prints, Mar. 2018.

[45] F.-C. Chou, T.-H. Lin, H. Cui, V. Radosavljevic, T. Nguyen, T.-K.
Huang, M. Niedoba, J. Schneider, and N. Djuric, “Predicting motion
of vulnerable road users using high-definition maps and efficient
convnets,” 2018.

[46] H. Yeh, S. Curtis, S. Patil, J. van den Berg, D. Manocha, and
M. Lin, “Composite agents,” in Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2008, pp.
39–47.

[47] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[48] S. J. Guy, J. Van Den Berg, W. Liu, R. Lau, M. C. Lin, and
D. Manocha, “A statistical similarity measure for aggregate crowd
dynamics,” ACM Transactions on Graphics (TOG), vol. 31, no. 6, pp.
1–11, 2012.

[49] S. Kim, S. J. Guy, W. Liu, D. Wilkie, R. W. Lau, M. C. Lin,
and D. Manocha, “Brvo: Predicting pedestrian trajectories using
velocity-space reasoning,” The International Journal of Robotics



Research, vol. 34, no. 2, pp. 201–217, 2015. [Online]. Available:
https://doi.org/10.1177/0278364914555543

[50] A. Bera, T. Randhavane, R. Prinja, and D. Manocha, “Sociosense:
Robot navigation amongst pedestrians with social and psychological
constraints,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep. 2017, pp. 7018–7025.

[51] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online
pomdp planning for autonomous driving in a crowd,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), May
2015, pp. 454–460.

[52] Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and D. Manocha,
“Porca: Modeling and planning for autonomous driving among many
pedestrians,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp.
3418–3425, Oct 2018.

[53] L. Xie, S. Wang, A. Markham, and N. Trigoni, “Towards Monocular
Vision based Obstacle Avoidance through Deep Reinforcement Learn-
ing,” arXiv e-prints, p. arXiv:1706.09829, Jun 2017.

[54] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From Perception to Decision: A Data-driven Approach to End-to-end
Motion Planning for Autonomous Ground Robots,” arXiv e-prints, p.
arXiv:1609.07910, Sep 2016.

[55] T. Fan, P. Long, W. Liu, and J. Pan, “Fully Distributed Multi-
Robot Collision Avoidance via Deep Reinforcement Learning for Safe
and Efficient Navigation in Complex Scenarios,” arXiv e-prints, p.
arXiv:1808.03841, Aug 2018.

[56] B. Ltjens, M. Everett, and J. P. How, “Safe reinforcement learning
with model uncertainty estimates,” in 2019 International Conference
on Robotics and Automation (ICRA), May 2019, pp. 8662–8668.

[57] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with function
approximation,” in Proceedings of the 12th International Conference
on Neural Information Processing Systems, ser. NIPS’99. Cambridge,
MA, USA: MIT Press, 1999, pp. 1057–1063. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3009657.3009806

[58] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel,
“Trust region policy optimization,” CoRR, vol. abs/1502.05477, 2015.
[Online]. Available: http://arxiv.org/abs/1502.05477


