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Abstract—We present a novel sensor-based learning navigation
algorithm to compute a collision-free trajectory for a robot
in dense and dynamic environments with moving obstacles or
targets. Our approach uses deep reinforcement learning-based
expert policy that is trained using a sim2real paradigm. In order
to increase the reliability and handle the failure cases of the
expert policy, we combine with a policy extraction technique
to transform the resulting policy into a decision tree format.
We use properties of decision trees to analyze and modify
the policy and improve performance of navigation algorithm
including smoothness, frequency of oscillation, frequency of
immobilization, and obstruction of target. Overall, we are able
to modify the policy to design an improved learning algorithm
without retraining. We highlight the benefits of our approach
in simulated environments and navigating a Clearpath Jackal
robot among moving pedestrians. (Videos at this url: https:
//gamma.umd.edu/researchdirections/xrl/navviper)

Learning methods are increasingly being used for robot
navigation. Methods including Deep Reinforcement Learning
(DRL) [1], learning from demonstration [2], imitation learning,
etc. are able to integrate well with sensor data and have been
used for navigation in real-world scenarios. They can work
well in dense environments with multiple dynamic obstacles.
However, when trying out a policy in a new environment
or with a different configuration of obstacles, it can fail in
simulation or in the real world, with failure modes including
collisions, oscillatory behaviors/non-smooth paths, or agent-
induced immobilization (“freezing”), among others [3]–[9].

The policies that result from a learning method like DRL are
typically opaque as to their inner workings, and cannot easily
be directly analyzed or modified without revising the method
and repeating the time-consuming training step. Furthermore,
it is hard to predict when errors would occur without running
the policy.This makes it difficult to have any confidence or
reliability in future performance, especially if the operating
environment differs from the training data.

There is considerable interest in developing explainabil-
ity and interpretability in deep learning and reinforcement
learning methods [10], [11]. The ultimate goal is to develop
methods and AI techniques such that the results of the solution
can be understood by humans. This is in contrast with the
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Fig. 1. Robot Navigation using XAI-N: The left image corresponds to
training scenarios used for training a DRL policy; right image is testing of
the tree policy demonstrated on a Clearpath Jackal robot. XAI-N generates an
interpretable tree policy that allows us to identify and fix failure modes of the
DRL policy without retraining. This results in improved navigation behavior,
including fewer oscillations or freezing problems in dynamic environments.

most widely used machine learning methods that tend to act
like a black box and even the designers cannot explain why
the underlying method arrived at a specific decision. Our main
goal is to design explainable algorithms for robot navigation,
where we can offer some insights about their performance in
different scenarios. In this context, we address the problem of
modifying the policy to improve the performance of learning-
based navigation methods.
Main Results: We introduce a novel scheme, XAI-N, which
integrates the concepts of expert policies, policy extraction,
and decision trees and utilizes them to make policy modi-
fications that improve navigation in dynamic environments.
Our approach first learns a navigation policy using DRL. We
then transform this neural net policy into a decision tree (DT)
policy using an imitation learning policy extraction method. A
decision tree is a flowchart like tree structure (a binary tree in
our case) that classifies (or maps) a space of numerical features
into subsections (leaves) corresponding to classes. We use a
tree where the features correspond to sensor inputs and other
aspects of a state space and the leaf classifications correspond
to discrete action choices, allowing us to use a tree as policy
for robot navigation. DTs are inherently interpretable, as every
output of a decision tree is tractable [12]. Once transformed
into a DT, we show the navigation policy’s structure can be
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analyzed, interpreted, and modified to design an improved
navigation algorithm.

We take advantage of the tree structure to detect and address
suboptimalities in the policy and improve the navigation across
several metrics: i) smoothness/oscillation frequency, ii) freez-
ing frequency, iii) total path length, iv) blocking/obstruction
occurrence, and v) reward per timestep (a scalar measure
combining multiple of the preceding metrics). In this manner,
we get the best of both worlds–the ability of the DRL to learn
complex tasks and handle sensor data, and the comprehensible
malleability of the decision tree. The novel contributions of our
paper include

1. XAI-N, robot navigation learning method that com-
bines traditional DRL learning with rule-based domain-
specific algorithms.

2. Take advantage of the extracted tree structure to improve
overall navigation scheme:

a Detect situations that could cause “freezing” and
modify policy to preclude such failure cases

b Observe when oscillation occurs and modify policy
to smooth the path, decreasing oscillation.

c Prevent robot obstructing a human it is following
We highlight the benefits of our approach in many simulated
scenarios and on a Clearpath Jackal robot navigating among
obstacles and pedestrians.

I. RELATED WORK

A. Learning for Navigation

The last decade has seen the rise of learning-based robot
navigation algorithms [13]–[16], which can directly handle the
real-world representations captured using commodity visual
sensors. This enhances the ability of a robot to adapt and
reach the goal even in new, unknown environments. Some of
the widely used methods are based on Deep Learning (DL) or
Reinforcement Learning (RL) [14], [17], [18]. Xie et al. [19]
trained a network to convert RGB images to depth images
and then used deep double-Q network(D3QN) algorithm to
navigate the robot avoiding collisions [20]. In order to perform
dynamic obstacles avoidance, Everett et al. [14] proposed
a strategy, GPU/CPU Asynchronous Advantage Actor-Critic
for collision avoidance with Deep RL(GA3C-CADRL), using
LSTM. Lötjens et al. [21] developed an uncertainty-aware
navigation method to avoid pedestrians. A common limitation
of all these learning methods is that the black-box properties
of neural networks make it hard to modify them, except by
attempting to retrain or develop an improved learning method.

B. Policy Extraction and Imitation Learning

Initiation Learning [22], [23] involves learning a policy
via copying an existing “expert” policy or deriving a policy
that best fits observed procedure (learning from demonstration
[2]). Policy Extraction (also called Policy Distillation) is the
process of taking an existing trained policy and transforming
it into a different format. This could be transforming a neural
network into a smaller neural network [24] or turning a

neural network into some other format such as a tree. [25]
VIPER [26] is an algorithm which learns an “expert” policy
using a neural net (such as PPO [27]) and then uses imitation
learning to fit a decision tree to replicate the expert policy.
VIPER has been used to generate decision tree policies
for proof-of-concept problems such as CartPole [28], Atari
Pong [26] and other simulations such as CARLA [29]. Our
approach also uses VIPER.

C. XAI and Analyzing or Utilizing Decision Trees

Motivated by the desire to understand the sometimes opaque
and inscrutabble nature of many advanced deep learning
methods, Explainble AI (XAI) is a growing area of explo-
ration [10], [11]. One class of XAI methods is that of globally
intrinsic [30] explanation methods, such as decision trees.
There is prior work on using a directly interpretable structure
such as a tree or graph [31]. Previous authors have used
decision trees in conjunction with RL. A deep neural network
can be distilled into a soft decision tree [32], or learned via
RL using Policy Tree [33]. However, neither of these methods
are interpretable. Some methods such as the Pyeatt Method
[34] and Conservative Q-Improvement [35] use an RL method
to learn a decision tree in an additive manner. Decision trees,
while hard to learn, are attractive as policies because they yield
benefits in terms of interpretation and verifiability. DT are also
well-suited for safety-critical applications because there are a
range of standard techniques (such as Z3 [36]) that can be
used to perform verification analysis on them [37].

There is work on modifying decision trees to better fit a
dataset, such a simplification [38] or pruning [39]. This could
result in loss of accuracy, and it is more about changing struc-
ture without impeding performance than it is about improving
performance. There is also work on adapting a DT from one
task to another. [40] Excluding a paper on classification [41],
and retraining a tree after modifying a dataset, we found no
prior work on tree modification for the purpose of addressing
a specific domain goal as we do.

II. PROBLEM SETUP AND OVERVIEW

A. Problem Setup

We model our navigation task as a Partially Observable
Markov Decision Process (POMDP), which is represented by
a tuple (Z, S,A, P,R, γ). Z is the real state space, S is the
observed state space, A is the action space, R is rewards, and
P is the state transition dynamics: S×A −→ S, and γ ∈ (0, 1]
is a discount factor. Our goal is to generate an optimal policy
π which maximizes the discounted reward function:

η(π) = Eπ

[
T−1∑
t=0

γtr(st, at)

]
. (1)

The goal of the task is to make a robot learn to efficiently
go to its goal position and at the same time avoid collisions
with obstacles. Obstacles can be static or dynamic. The robot
performs local navigation using only what is observed by the
sensors and knowledge of the most recently taken action. At
each step, a robot knows the goal position relative to itself (due
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Fig. 2. Our XAI-N Robot Navigation Algorithm with three stages: In stage
1, we train an expert policy π∗ with a learning method such as DRL. In stage
2, we perform policy extraction to decision tree policy π†. In stage 3, we
apply modifications (such as the oscillation fix and freezing fix) to correct
errors and improve the policy with regards to navigation metrics. This results
in an improved interpretable navigation policies as compared to DRL without
retraining.

to sensors). The episode ends when the goal state is reached
(to within a tolerance) or a collision occurs. We develop an
XAI method to address this type of robot navigation problem.

B. XAI Robot Navigation Algorithm Overview

A diagram of our XAI-N process is shown in Figure 2. In
the first stage, a robot navigation policy is learned as an “expert
policy”. This process is discussed briefly in Section III-A,
and the resulting policy is referred to as the “expert policy.”
Next, some appropriately chosen Policy Extraction [24], [25]
or Imitation Learning [22] process is used to transform the
expert policy into a decision tree format policy. A DT policy
π† uses a DT to perform the mapping of state s to action a.
This is described in detail in Section III-B and illustrated in
Figure 3. (Learning a DT directly on a complex environment
is often too time-consuming or difficult to be feasible. XAI-
N enables utilizing an optimal initial learning method whilst
taking advantage of tree structure after imitation.) Finally, the
third stage is the modification stage where the policy is aug-
mented. These augmentations, discussed in Section III-C, can
potentially improve the policy performance on several different

s ∈ S a state s is an array representing the state of the world and the robot in it
a ∈ A an action a is a single discrete action in the set of possible actions A
aF the “stop” action
aL a “rotate left” action
aR a “rotate right” action
aD a “forward” action
CF a set of column indices of polar columns in front of robot
AD the set of actions containing a component of forward movement
P state transition dynamics
r,R reward (for a single (s, a) pair or in general, respectively)
γ future discount factor

E
An environment (real or simulated). Receives an action a and provides the
perceived state of the world s, reward r, and boolean indication of
whether the goal has been reached (“done”).

π : (s→ a) a policy, mapping a state s to action a
π∗ an expert policy (neural net in our work, but can be anything)
π† a decision tree policy

F †(π) policy extraction conversion function, outputs π†

mA how much movement to allow in a “static” s during freezing detection

FO
takes a history of (s, a) pairs and outputs boolean indicating whether
oscillation has occurred or not

N a set of nodes with errors detected
OC(i),

where ni ∈ N set of states in state subspace of node i where oscillation occurs

OX(i)
where ni ∈ N set of states in state subspace of node i where oscillation does not occur

TABLE I
SYMBOLS AND NOTATION USED IN THE PAPER

x1x2

y1

x > x1

y > y1 x > x2

a1 a2 a3 a4

T

T T

F

FF

x

y

Fig. 3. This figure demonstrates how a decision tree can be used as a
policy for robot navigation. The rounded rectangles are branch and leaf nodes
corresponding to abstract states. Each abstract state is a subset of the robot’s
state space, and any given state s falls inside the bounds of exactly one leaf
node abstract state (as well as the abstract states of all parent nodes to that leaf
node). The root node has abstract space equivalent to the entire state space.
Yellow circles are actions (ai) (classes). In this example, a two-dimensional
state-space is shown below the tree as a rectangle. The space is divided up
by the tree. The colors demonstrate how the tree subdivides the state space
into abstract states. A single sj would correspond to a single point within the
bounds of the rectangle. Whichever leaf node / smallest divisible rectangle
this state falls into will guide which action class the tree policy outputs for
that state. This example uses arbitrarily chosen points of x1, x2, y1 on two
dimensions x and y. Features could include meaning such as distance from or
direction to a goal location, or the presence of obstacles, and the robot would
take different actions in each case. Our actual environmental setup involves
a policy with 213 state dimensions and 6 action classes (or 10 action classes
after the oscillation-fixing procedure in Section III-C2).

navigation metrics, in some cases beyond that achieved by the
expert policy.

III. APPROACH: XAI-N LEARNING METHOD

A. Initial Learning Methods

The first stage can use any method of policy generation.
For example, it could be created via any robot motion plan-
ning algorithm (eg. Sampling Based or Optimization-based
algorithm) [42] or using reinforcement learning [43]. The
important aspect of the first stage is that it can encompass
any existing method that results in a robot policy. We define
an expert policy π∗ : (s → a) as a function or object that
maps from a state si ∈ S to an action ai ∈ A,∀si ∈ S where
S is the set of all possible states and A is a set of possible
actions. Thus at every timestep t, the robot can observe state
st, query π∗ to determine action at to take, take that action,
receive a new observation st+1, and repeat.

To generate our expert policy, we use Deep Reinforcement
Learning, specifically Proximal Policy Optimization [27] in
a Curriculum Learning (CL) pipeline. [44] We follow the
procedure used in [45].

B. Extraction to Decision Tree

In the second stage, the expert policy is transformed from
its current format into a decision tree format, called the
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extracted policy π†. We chose a decision tree as opposed
to a regression algorithm because we want this stage to be
more interpretable and modifiable. The conversion process
F † converts π† = F †(π∗). Like π∗, π† maps from states to
actions, but whereas the expert policy can have any internal
structure (neural net, ensemble method, mixture of trees,
planning algorithm, arbitrary code, etc) so long as it performs
the s → a mapping, we constrain the decision tree to use
a particular format, shown in Figure 3. The features of the
decision tree correspond element-by-element to the features
of the state space, which is the term to describe S, or the
space of all possible states. A single state s can be represented
by an array of numbers. If the robot’s raw observation is in
a different format, such as a camera image, this input can
be flattened or preprocessed into such an array. S can be
described by two arrays each equal in length to an s-array,
and describing upper and lower bounds on the total state
space. A state subspace (or an abstract state) is a subset of
the state space, and can be similarly described by upper and
lower bounds that demarcate a smaller space inside S. The
elements of s represent features, and these features are the
features of the tree. Each branching node of the tree thus
splits on one feature of the state subspace, splitting it into
two further subspaces, as shown. Each leaf node’s class label
corresponds to an action (this can be a discrete action or an
action probability distribution).

There are a number of ways to perform policy extraction
(or policy distillation). We use the VIPER family of methods
because they result in a single tree policy and are applicable
regardless of the internal structure of the expert policy [26]. In
VIPER and its extensions, the expert policy π∗ is executed in
the environment E. Each timestep, a state st is observed and
an action at is chosen by π∗. We associate (st, at) together
as a “state-action pair.” The environment E after receiving
at provides updated state st+1, and the cycle repeats until
the goal is reached. This is called an “episode,” and multiple
episodes are run, producing trajectories, or sequences of state-
action pairs {(si, ai), (si+1, ai+1), ...}. These trajectories can
be combined into a dataset of state-action pairs. Multiple
datasets of state-action pairs are sampled from the total pairs
generated. These datasets are used in a supervised learning
manner to learn a decision tree policy π̂i using the CART
method [46], with the state forming the features and the
actions forming the labels. The resulting DT is a binary tree,
where branch nodes test a condition regarding the feature
space (which is the state space), and leaf nodes represent
discrete action classes. A diagram of this is shown in Figure 3.
Whichever policy performs the best (as determined by which
policy achieves the maximum average reward on a series of
trials) is regarded as the best decision tree policy π†. Reward
is a property of environment E and is constructed as a scalar
that serves as a combined measure of the degree to which a
robot is achieving certain navigation metrics. We use an E
where reward increases for reaching the goal or following a
target, and doing so smoothly and quickly (described more in
Section IV-A), such that π† most closely achieves the levels

achieved by π∗ on these navigation metrics.

C. Modification Methods

In the third stage, we introduce modifications to improve
the robot’s ability to reach the goal without colliding with
obstacles or freezing, to increase overall trajectory smoothness
by reducing oscillation, and to avoid obstructing a human.
Modifications targeting other navigation metrics could also be
developed using a similar approach to what we have developed
here. A neural net format policy would not be able to be
modified in the manner described in the following sections,
hence the appeal of the DT.

1) Fix Freezing: One of the standard issues with navigation
learning methods is “freezing.” The robot chooses to remain
immobile in the face of certain obstacles. Naturally, freezing
helps prevent crashing, but the robot is also no longer moving
towards the goal. In particular, when the given obstacles are
static, it is a failure mode from which it cannot escape.

We present a method to identify nodes in the tree that could
be contributing to the freezing issue, and then modify those
nodes to mitigate the danger of such an error occurring. The
procedure for identifying nodes is shown in Algorithm 1

Algorithm 1: Detect Freezing

1 Detect Freezing Nodes( π†, aF ,mA ):
2 N ← ∅;
3 for node n ∈ π† do
4 if n is a leaf node then
5 mC ← the number of cells in the occupancy

grid in which movement occurs;
6 if mC < mA and n[action] = aF then
7 Add n to N ;
8 end
9 end

10 end
11 Return N

where π† is the tree policy, aF represents an action or
grouping of actions corresponding to the “stop” action, and
mA is a tunable integer parameter indicating “in how many
cells in the occupancy grid should movement be allowed while
still declaring the obstacles stationary.” (See section IV-A
to explain the occupancy grid.) The algorithm checks each
leaf node of the tree. If the obstacles detected are stationary
within some tolerance indicated by mA and if the node’s
action is the Stop action, then the node is added to the list
of problematic potential-freezing nodes. The mA parameter
is included because in some situations we may not want to
be completely strict about everything being perfectly still.
Setting mA = 0 requires perfect stillness to consider a node
a freezing possibility and setting mA to the maximum means
the algorithm will return all nodes with the stop action aF
regardless of obstacle position and movement. If a node’s
subspace dimensions encompass both moving and non-moving
situations, the condition will be true for the purposes of this

2056

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 05,2022 at 17:31:15 UTC from IEEE Xplore.  Restrictions apply. 



algorithm in the case that the bounds of those dimensions
are unchanged for all timesteps (since even though movement
could occur sometimes, the case where an obstacle is still
is also included in this subspace). The algorithm intended to
alleviate this issue is found in Algorithm 2, where aR and aL
are actions corresponding to pure right and left rotation (no
linear velocity) respectively. This safely allows the robot to
find an observed state where it can extract itself from stasis.

Algorithm 2: Alleviate Freezing

1 Modify Freezing Nodes( π†,N , aR, aL ):
2 for node n ∈ N do
3 if majority of obstacles are on the right then
4 n[action]← aL;
5 else
6 n[action]← aR;
7 end
8 end
9 Return the updated π†

2) Fix Oscillation: Another observed issue with some of
the expert policies was oscillation. When seeking to cir-
cumvent certain obstacles, the robot would alternate between
turning too far away from and towards the obstacle, resulting
in aesthetically displeasing and inefficient behavior. We devel-
oped a fix that involves running the policy in simulation and
observing it to identify parts of the tree policy that contribute
to the oscillation, and modifying the tree by adding nodes or
modifying existing nodes to involve new actions with lower
linear and angular velocities. Detecting problematic nodes is
done using Algorithm 3, where E is an environment, FO is a
function that takes in a history of state-action pairs and outputs
a boolean indicating whether oscillation has occurred or not,
L is the length of that history, and ne is the total number
of episodes to observe. The modification procedure to correct
this error is shown in Algorithm 4. Nodes with subspaces that
correspond to instances of oscillation are split, with the child
leaf node corresponding to that subspace assigned a lower
magnitude velocity action, and the sibling leaf node assigned
the action of the original node.

In Algorithm 4, each OC(i) ∈ OC is a set of states in
state subspace of node i where oscillation occurs, and each
OX(i) ∈ OX is a set of states in state subspace of node i
where oscillation does not occur, and z is a boolean.

3) Fix Blocking/Obstruction: In the warehouse environ-
ment, where the robot locates and follows a human, we found
that the robot sometimes would place itself in the human’s
path, blocking the human. This is inefficient, and would
be annoying or dangerous in real life. Find the algorithm
used to detect potential nodes contributing to this situation
in Algorithm 5, where π† is the tree policy, aF represents
an action or grouping of actions corresponding to the “stop”
action, mA is a tunable parameter and AD is the set of actions
that imply no blocking is occurring (ie all the movement
actions with a forward component. The algorithm intended

Algorithm 3: Detect Oscillation

1 Detect Oscillation Nodes( π†, E,FO, ne, L ):
2 HL ← initialize an empty queue;
3 N ← ∅;
4 OC(i)← ∅ ∀ i ∈ { ids of nodes in π†};
5 OX(i)← ∅ ∀ i ∈ { ids of nodes in π†};
6 for ne episodes do
7 Reset environment E;
8 while E does not indicate episode done do
9 s← get current state from E;

10 a← π†(s);
11 Append (s, a) to HL, removing the oldest if

the length of the queue is > L;
12 if FO(HL) then
13 {ni, ni+1, ..., ni+L} ← leaf nodes in π†

corresponding to each s ∈ HL;
14 Add {ni, ni+1, ..., ni+L} to N ;
15 Add all s ∈ HL to

OC(di),OC(di+1), ...,OC(di+L), where
dd is the corresponding id of each node in
{ni, ni+1, ..., ni+L};

16 else
17 ni ← leaf node in π† corresponding to s;
18 Add s to OX(d), where d is the id of ni;
19 end
20 Execute action a in environment E;
21 end
22 end
23 Return N ,OC(i),OX(i);

Algorithm 4: Alleviate Oscillation

1 Alleviate Oscillation Nodes( π†,N ,OC ,OX , z ):
2 // Note that all n ∈ N are in π†

3 for ni ∈ N do
4 if OX(i) = ∅ or z then
5 // All states visited on this node are oscillation
6 ni[action] ← action with linear and angular

velocity of reduced magnitude;
7 else
8 X ← new leaf node with action ni[action];
9 C ← new leaf node with action with linear and

angular velocity of reduced magnitude
compared to ni[action];

10 ni is turned into a branch node with X and C
as children, splitting on the best split that best
separates the states in OC(i) to node C and
states in OS(i) to node X;

11 end
12 end
13 Return updated π†;
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Algorithm 5: Detect Blocking

1 Detect Blocking Nodes( π†,AD,mA ):
2 N ← ∅;
3 for node n ∈ π† do
4 if n is a leaf node then
5 mC ← the number of cells in the occupancy

grid in which movement occurs;
6 if mC < mA and n[action] /∈ AD then
7 Add n to N ;
8 end
9 end

10 end
11 Return N

to alleviate this issue is found in Algorithm 6, where aR and

Algorithm 6: Alleviate Blocking

1 Modify Blocking Nodes( π†,N , aL, aR, aD,CF , nr ):
2 for node n ∈ N do
3 clear in front ← a boolean true if the columns in

CF are clear for a distance of nr rows, starting
from the nearest row;

4 if clear in front then
5 n[action]← aD;
6 else
7 if majority of obstacles are on the right then
8 n[action]← aL;
9 else

10 n[action]← aR;
11 end
12 end
13 end
14 Return the updated π†

aL are the right and left rotation actions, aD is the “forward”
action, CF are indices of the columns of the polar grid directly
in front of the robot (encompassing a traversable expanse, such
that the robot could proceed forward into that region without
collision), and nr is how far ahead to look in number-of-rows
when checking whether those columns are occupied.

In this manner, the robot’s policy is changed so that in
situations where it might be stuck, it seeks open space and
moves there, presumably away from a near obstacle which
may or may not be a human.

IV. EVALUATION

A. Environments

We demonstrate our improvements on two environments.
1) Mobile Robot Navigation: The robot starts in a random

location and must navigate around obstacles to a random goal
location. Obstacles can be static or dynamic. We desire that the
policy should perform well in terms of avoiding the pedestrians
and obstacles. We created a simulation of this environment and

XAI-N
Stage

Policy
Type

Avg
Reward

per
timestep

%
crash

%
freeze

Oscill-
ation %

Avg
Osc.

length

Path
Length(m)

1 Expert (PPO) 0.226 0% 0% 100.% 8.07 9.94
2 M-VIPER -0.276 67% 0% 95% 1.73 8.18

3 M-VIPER +
Oscillation Fix (XAI-N) 0.241 4% 0% 6% 1.33 8.29

TABLE II
POLICY AT DIFFERENT STAGES OF OUR XAI-N ALGORITHM. AT THE

INTERMEDIATE STAGE 2 (FIGURE 2), AVERAGE REWARD PER TIMESTEP
DECREASES DUE TO CRASHING, THIS IS RESOLVED BY STAGE 3, WHERE

CRASHING DECREASES, AVERAGE REWARD PER TIMESTEP IS HIGHER
THAN PRECEDING STAGES INCLUDING STAGE 1 EXPERT POLICY, AND THE

100% OSCILLATION FROM STAGE 1 IS REDUCED TO 6%. OVERALL, WE
DESIGN AN IMPROVED LEARNING-BASED NAVIGATION ALGORITHM.

also test in a real-world setup, in both cases with a Clearpath
Jackal. We formulate the environment as an AI Gym [47],
a common RL interface for environments, and release it as
open-source code for others to use as well [48].

2) Game Character Locomotion and Animation: In this
environment, the agent is a character which spawns in a
complex multi-room environment with obstacles and other
characters with which to interact. There are three stages in
this game: i) learning to exit the room, ii) learning to exit the
room and finding another certain autonomous character, iii)
following this other character as they move.

3) Sensors and State Space: The sensor setup in both
cases involves lidar and a pozyx system (an ultra-wideband
based localization system) [49]. The state space contains
information about the goal location (relative to the robot) in
polar coordinates, the previous robot action, and the physical
surroundings of the robot as sensed by the lidar. The lidar
we use scans 512 ranges from − 2

3π to 2
3π radians (with 0

radians corresponding to straight ahead). We transform this
into a radial occupancy grid. In our implementation of this
benchmark we use a grid with 10 evenly spaced columns, and
rows start 10 cm from the center of the robot, with distances
of the 7 rows as (listed in order from nearest to farthest from
the robot) 0.2 m, 0.2 m, 0.2 m, 0.3 m, 1 m, 1 m, 1 m.
The state space contains the occupancy grid information from
the current time step and previous two timesteps. There are
thus 210 features describing obstacle position and movement,
2 features indicating relative goal position, and 1 feature
indicating the previous action chosen by the agent (for a total
of 213 features). The action space is a discrete action space:
1) Forward and Left, 2) Rotate Left, 3) Straight Forward, 4)
No movement, 5) Forward and Right, 6) Rotate Right. (We
also implemented an expanded action space that contains four
additional actions that correspond to actions 1, 2, 5, and 6 but
with smaller magnitude velocities.)

We design the reward function with three major parts, as
follows:

rti = (rg)
t
i + (rc)

t
i + (ro)

t
i. (2)

where (rg)
t
i rewards movement towards and reaching the goal

or person, (rc)
t
i penalizes collisions with or proximity to

obstacles, (ro)ti penalizes oscillations and rewards smoothness.
We used Gazebo 9.0 simulator with ROS Melodic on

Ubuntu 18.04 to create multiple scenarios with different types
and layouts of the obstacles.

2058

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 05,2022 at 17:31:15 UTC from IEEE Xplore.  Restrictions apply. 



B. Results

Find our detailed results in Table II, and you can also view
the accompanying video for a live demonstration. CrowdEnv
scenario 10 was used to test and produce the data. Scenario
10 was not a configuration of obstacles that any of the
policies saw during their training. “Path Length” is an average
of total path lengths, counting only those runs where the
robot successfully reached the goal. The expert policy π∗

(labeled “PPO” in reference to the DRL training method used)
demonstrates an average of over 8 meters of oscillation per
run, and oscillated during every run. The policy after the
conversion to decision tree π† is noted as Modified VIPER
(M-VIPER). Generally the fixed decision tree inherits the
optimality regarding path length of training based algorithm
and also improves the performance of navigation regarding
the specific issues of decreasing crash rate, freeze rate and
oscillations where they occur.

Reduced Oscillations: To demonstrate the oscillation fix,
we chose one of the extracted π† that still had a significant
amount of oscillation after extraction. Labeled as “M-VIPER”,
we see it has an oscillation 95% of the time, and an oscillation
length of 1.73. Firstly, something interesting to note is that
the extraction process itself reduced the length of oscillation
significantly. At this intermediate stage, the average reward per
timestep decreases since it crashes more than expert, due to
imperfect imitation. After performing our oscillation fix (with
ne = 20, L = 5, z =true) , we obtain the policy shown in
the “M-VIPER + Oscillation Fix” (i.e. after Stage 3 of our
XAI-N approach), The oscillation fix procedure identified 11
nodes in the DT that might be contributing to oscillation, and
applied the fix to them. The crashing issue is resolved. In
the policy, oscillation occurs in only 6% of runs, and has a
oscillation length reduced to an average cumulative of 1.33 m
in those rare instances where it does occur. Find an illustration
in Figure 4. This is a significant reduction in oscillation beyond
that achieved by the standalone DRL method, despite the
fact that the reward function for the DRL method included
a parameter to reward smoothness (decreasing oscillation).

Eliminate Freezing: We applied the freezing fix to a
different M-VIPER policy as shown in Table III. This policy

XAI-N Stage Policy Type % freezing
2 M-VIPER 28%
3 M- VIPER + Freezing Fix 0%

TABLE III
OUR METHOD DETECTED FREEZING AFTER IMITATION LEARNING IN A

STAGE 2 M-VIPER. WE RAN THE FREEZING FIX TO CORRECT THIS ISSUE.
OUR RESULTING LEARNING-ALGORITHM EXHIBITS NO FREEZING ISSUES.

XAI-N Stage Policy Type Avg % blocking
2 M-VIPER 0.7
3 M- VIPER + Blocking Fix 0.0

TABLE IV
OUR METHOD DETECTED POTENTIAL BLOCKING BEHAVIOR AFTER

IMITATION LEARNING IN THE WAREHOUSE ENVIRONMENT. WE RAN THE
BLOCKING FIX TO CORRECT THIS ISSUE AND OUR LEARNING ALGORITHM

EXHIBITS NO BLOCKING BEHAVIOR.

Fig. 4. At right, an obstacle the robot must circumnavigate. At left, the
robot’s path before the oscillation fix is applied (i.e, DRL expert policy). At
center, the robot’s path after oscillation fix is applied using policy extraction
and DTs.

would freeze 28% of the time. The freezing fix identified 30
nodes that may have contributed to the error, and modified
them accordingly (out of a total of 621 nodes, 311 of which
are leaf nodes). After applying the freezing fix, freezing was
eliminated using our XAI-N approach.

Eliminate Blocking: We applied the blocking fix to a
warehouse policy that exhibited blocking, as shown in Table
IV. The blocking fix identified 381 nodes to potentially modify
out of 1559 nodes total. 151 nodes were adjusted to move the
robot forward, and the other 230 were given rotation actions
to orient the robot in a manner where it could more safely
move out of the human’s way.

The blocking fix is an example of a case of trade-offs.
Although blocking was eliminated, it decreased the efficiency
of the path (increasing average trajectory length from 9.45
to 17.3). In the pure navigation environment, this would not
be desirable. The warehouse environment, however, simulates
a human-robot interaction scenario, and in this situation one
can imagine a preference for safety and comfortable robot
interaction, in comparison to “most-efficent” paths that might
nip at a humans’ heels or obstruct the human’s path. This
kind of domain-specific customization, based around a similar
sensor scheme for a robot and similar learning procedures,
demonstrates the usefulness of our paradigm.

V. CONCLUSION AND FUTURE WORK

We provide XAI-N, an improved learning algorithm for
sensor-based robot navigation. Starting with training an expert
policy (e.g trained by DRL), we extract a decision tree policy,
the interpretable properties of which we utilize to modify the
tree. This allows for improving smoothness of path, mitigating
the chance of obstructing a human, and reducing the problem
of freezing. We are able to modify the policy to address
these imperfections without retraining, combining the learning
power of deep learning with the control of domain-specific
algorithms. We demonstrated fixes across two environments,
a robot navigation among pedestrians and obstacles, and a
warehouse game with an agent following a person.

One limitation is that the maximum speed of the dynamic
obstacles should not be more than the maximum speed of
the robot itself. Future work could address this, could include
modification techniques for tackling additional navigation
issues beyond freezing, oscillation, and blocking, or could
combine XAI-N with other motion planning methods [50].
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