
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019 1

3D Deformable Object Manipulation using Deep
Neural Networks

Zhe Hu1, Tao Han1, Peigen Sun2, Jia Pan2†, and Dinesh Manocha3

Abstract—Due to its high dimentionality, deformable object
manipulation is a challenging problem in robotics. In this paper,
we present a deep neural network based controller to servo-
control the position and shape of deformable objects with
unknown deformation properties. In particular, a multi-layer
neural network is used to map between the robotic end-effector’s
movement and the object’s deformation measurement using an
online learning strategy. In addition, we introduce a novel feature
to describe deformable objects’ deformation used in visual-
servoing. This feature is directly extracted from the 3D point
cloud rather from the 2D image as in previous work. In addition,
we perform simultaneous tracking and reconstruction for the de-
formable object to resolve the partial observation problem during
the deformable object manipulation. We validate the performance
of our algorithm and controller on a set of deformable object
manipulation tasks and demonstrate that our method can achieve
effective and accurate servo-control for general deformable
objects with a wide variety of goal settings. Experiment videos
are available at https://sites.google.com/view/mso-deep.

Index Terms—Deep Learning in Robotics and Automation;
Visual Servoing; Dual Arm Manipulation; RGB-D Perception;
Model Learning for Control

I. INTRODUCTION

COMPARED to manipulating rigid objects, deformable
object manipulation is a more challenging task in

robotics since it has an extremely high configuration space
dimensionality (only 6 dimensions in rigid object manipula-
tion). Though challenging, deformable object manipulation has
broad applications in our life [1]–[7].

Our previous work [8] used Gaussian process (GP) based
online learning to make manipulation policy adapt to the
changing deformation parameters. It has two major limitations.
First, GP has limited representation power and thus may not
well describe the deformation behavior of soft objects. Second,
the learned controller may fail when the soft object is occluded
by other obstacles or has self occlusions. Thus, we want
to address these limitations to make the deformable object
manipulation algorithm more robust and converge faster.

† denotes the corresponding author.
This work was partially supported by HKSAR Research Grants Coun-

cil (RGC) General Research Fund (GRF), HKU 17204115, 21203216,
NSFC/RGC Joint Research Scheme HKU103/16, and Innovation and Tech-
nology Fund (ITF) ITS/457/17FP.

1Zhe Hu and Tao han are with the Department of Biomedical Engineering,
the City University of Hong Kong, Hong Kong

2Peigen Sun and Jia Pan are with the Department of Computer Science,
the University of Hong Kong, Hong Kong jpan@cs.hku.hk

3Dinesh Manocha is with the Department of Computer Science, the
University of Maryland, College Park, MD 20742, USA

Digital Object Identifier (DOI): see top of this page.

RGB-D Camera

Gripper

Fig. 1: The robotic and vision system used in our experiment.

Main Results: In this paper, we present a novel deformable
object manipulation controller which can solve the two limi-
tations in [8] mentioned above. The contribution of this paper
is threefold:
• We encode the state of the deformable objects using

a novel fixed-length feature that is based on the Fast
Point Feature Histogram (FPFH) but extended with PCA.
According to our knowledge, this is the first time that a
similar feature is used for object manipulation.

• We present a novel data-driven controller based on Deep
Neural Networks (DNNs) which can accomplish a better
performance than previous works that used linear [5],
[9] or nonlinear controllers [8], thanks to the strong
representation power of neural networks.

• We design a robust occlusion recovery algorithm which
obtains a complete point cloud from the occluded raw
data using the real-time tracking and reconstruction tech-
nique and thus improves the controller’s robustness when
meeting occlusions.

II. RELATED WORK

Existing techniques about deformable object manipulation
can mainly be categorized into two types, the traditional meth-
ods and the learning-based approaches. Traditional solutions
need a (usually over-simplified) deformation model of the
target object for deriving an appropriate control policy for
manipulation. For instance, [10] characterized the deformation
pattern of shell-like objects using an extension of the shell the-
ory. [11] designed an energy function to formulate the bending
behavior of planar objects during the grasping operation. The
general finite element method (FEM) framework has also been
used to systematically describe the deformation behavior of
a 3D deformable object when being picked up by a robotic
gripper [12].

However, in many scenarios, the deformation model is
difficult to obtain due to the complexity of objects. Even if



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

Vision System

Manipulated 
Point

Manipulated 
Point

Manipulated Point

Feedback 
Point

Uninformative Point

Fig. 2: We model a soft object using three classes of points:
manipulated points, feedback points, and uninformative points.

we are able to model the deformation, tuning the deformation
model’s internal parameters is also difficult. As a result,
many recent learning-based methods are proposed to obtain
the deformation model or manipulation strategies directly
from data. For instance, [13] used reinforcement learning to
optimize a controller for haptics-based manipulation, where a
high-quality simulator enables the robot to investigate different
policies efficiently and thus is critical for the convergence of
the learning process. [14] formulated the deformable object
manipulation as a model selection problem and introduced
a utility metric to measure the performance of a specific
model according to the simulation results. These methods
focus on deriving a flexible high-level policy but usually
lack the capability to achieve accurate operation, which is
important for real-world applications. One promising solution
to accurate deformation object manipulation is based on the
visual servoing. [5], [9], [15] used an adaptive and model-free
linear controller to servo-control soft objects, where the ob-
ject’s deformation is described using a spring model [16]. [8]
presented a nonlinear servo-controller whose parameters are
adaptively adjusted during the manipulation process using the
Gaussian process based online learning. In this paper, we
follow the general framework of visual-servoing but combine
it with deep-learning to accomplish a nonlinear controller that
is accurate and robust.

III. OVERVIEW AND PROBLEM FORMULATION

Similar to [8], we discribe the deformable object as a
set of discrete points, including the feedback points pf , the
manipulated points pm and the uninformative points pu, as
shown in Figure 2. Also, we model the relation between
feedback points and manipulated points as

δpm = F (δpf ), (1)

where δpf = pf − pf
∗ and δpm = pm − pm

∗ are the
displacement relative to the equilibrium for feedback points
and manipulated points, respectively.

However, to get δpf , we have to perform tacking during
manipulation so as to get the correspondence of feedback
points between frames, which is unreliable when the number
of points is large. Thus, similar to [8], we extract a low-
dimension feature vector x based on feedback points pf and
thus we have x = Q(pf ) , where Q(·) is the feature extraction

function. We expand the function Q(·) at equilibrium state pf
∗

and get δx = Q′(pf
∗)δp

f
∗ . Thus we can rewrite the Equation 1

as
δpm = F (Q′(pf

∗)
−1δx) , Z(δx), (2)

where the function Z(·) is called the deformation function.
Finally, the goal of the deformable object manipulation is

to find a controller which can learn the deformation function
Z(·) and use this function to compute desired control velocity
through δpm = Z(η · ∆x), where ∆x = xd − x is the gap
between the desired state xd and the current state x, and η is
the feedback gain.

Note that the target states are not involved in the learning
process and they are just used to compute the required control.
Also, we assume the given target states are always accessible
within some tolerance. This assumption is reasonable since the
goal of our servoing algorithm presented here is to accomplish
a high accurate manipulation, which needs a relatively correct
target configuration in real applications.

IV. FEATURE EXTRACTION

In order to describe the deformable object’ state, we com-
pute a feature vector based on the original 3D point cloud
(x = C(pf )). We first extract a 135-dimension histogram
based on point cloud and then use PCA (Principle Component
Analysis) to reduce its dimension to 30.

A. Extended FPFH

The extended FPFH [17] is a histogram feature extended
based on FPFH [18] and PFH [19]. The Point Feature His-
tograms are informative pose-invariant local features which
represents the surface model’s property at point p. The his-
tograms are computed based on the combination of certain
geometrical relations (like pan, tilt and yaw angles) between
p’s nearest k neighbors. In detail, first, for each query point
p, we only consider p’s neighbors enclosed in the sphere with
radius r. Second, for every pair of points pi and pj (i 6= j)
in point p’s k-neighbors, we define a Darboux uvw frame
(u = ni, v = (pj − pi) × u,w = u × v) and compute three
feature angles:

α = v · nj ,
φ = (u · (pj − pi))/‖pj − pi‖,
θ = arctan(w · nj , u · nj),

(3)

where ni and nj represent the estimated normals at point
pi and pj respectively. Third, we divide these angles’ space
into several bins and create a histogram for the query point
p. However, the computational complexity of this histogram
is O(n · k2), where k is the number of neighbors for each
query point p. In order to reduce the computation time, [18]
presented a fast version of PFH called FPFH (Fast Point
Feature Histogram) that is computed in two steps. First, for
each query point p we compute the angles (in Equation 3)
between itself and its neighbors and call the feature Simplified
Point Feature Histogram (SPFH). Next, the final FPFH is



HU et al.: 3D DEFORMABLE OBJECT MANIPULATION USING DEEP NEURAL NETWORKS 3

p p1 2

p3 p4p

Neighbors inside the circle

Fig. 3: FPFH feature is computed using the SPFH features of the
query point p and its neighbors pk.

PP

    plt.bar(range(1,136),h)
    plt.show()

Fig. 4: The extended FPFH is obtained by computing the relation
angle between the centroid point and all other points. The red point
in Figure 4 represents the centroid point of the whole point cloud.

computed as a weighted sum of the SPFHs of p and its
neighbors pk:

FPFH(p) = SPFH(p) +
1

k

∑k

i=1

1

wk
· SPFH(pk), (4)

where the weight wk is the distance between query point p
and its neighbor point pk. A sketch diagram illustrating these
computation processes is shown in Figure 3.

However, FPFH is a histogram at a certain point rather
than the whole point cloud. Thus in order to describe the
entire deformable object, we finally choose to use an extended
version of FPFH which computes the relation angle between
the centroid point and all other points (see Equation 3),
which is shown in Figure 4. This final histogram contains 135
dimensions (45 for each angle), and it describes the whole
surface shape of the deformable object.

B. Extended FPFH with PCA

Due to the high dimension of extended FPFH, we need
more data to fit our controller model. In addition, from
experiments, we find that the values of some dimensions
change slightly. Thus, we use Principal Component Analysis
(PCA) to project the raw extended FPFH to a new space with
higher variance and lower dimensions. In particular, for the
raw extended FPFH h, we first compute the covariance matrix
Σ = 1

n

∑
i(hi − µ)(hi − µ)T , where hi represents the i-th

extended FPFH data in a given data set and µ = 1
n

∑
i hi.

Next, we perform the eigen decomposition of the covariance
matrix, which means that we find the eigen value λi and
eigen vector vi that satisfy Σvi = λivi. After we obtain
the eigen value λi and the eigen vector vi, we sort these
eigen values and choose K eigen vectors with top K eigen
values Φ = [v1, v2, · · · , vK ]. The final feature vector is then

30 16 8 8 6

time step t

time step t-1
minus

control velocity

Fig. 5: The architecture of our 5-layered network H . The number
inside the brackets indicates the neural unit number in each layer.

obtained by projecting raw feature into new space using Φ:
x = ΦT (h− µ). The parameter K in our experiment is fixed
to 30.

V. CONTROLLER DESIGN

Previous work [5], [8], [9] used a linear model or a GP-
based model to learn the deformation function H gradually.
However, these simple models have limited representation
power and thus may not be able to describe H accurately.
Here, we a Deep Neural Network (DNN) as the approximation
model to H , which can result in a controller that is more
accurate and robust due to the strong representation power of
DNNs. Actually, both linear model and GP are equivalent to
a single layer neural network (possibly with infinite width for
GP). Thus, our work extends previous works lengthways.

A. Network Architecture

In order to learn the deformation function, we build a 5-
layered neural network, which is shown in Figure 5. The
first layer of the network is an input layer which includes 30
neural units. The network input is feature velocity which is
the velocity of extended FPFH after PCA. In training time,
this velocity is obtained by subtraction between the FPFH
of the current and last time step. In test time, this velocity
is obtained by subtraction between the FPFH of the target
and current configuration. The second layer is a hidden layer
which includes 16 neural units. The third and fourth layers
both include 8 neural units. As for the activation function, we
test several functions like ReLU and linear. Finally, we choose
the linear function as the activation function according to the
regression result in the experiment. The last layer is an output
layer which includes 6 neural units covering the 6 dimensions
of control velocity in the dual-arm robot (ABB Yumi).

To train our neural network, we choose the Mean Square
Error (MSE) as loss function. The MSE loss function compute
the error between label and estimated value by

mse =
1

n

n∑
i=1

(Yi − Ŷi)2, (5)

where Yi and Ŷi represent the ground truth and estimated value
respectively. The optimizer we choose is called RMSProp
which is a method with adaptive learning rate.

We choose to represent H as a small fully-connected multi-
layer network rather than a recurrent network (RNN) because



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

Feature 
Extractor

DNN

Controller

Target 
Features  xd

Prediction: 
Control Velocity 
𝛿Pm 

Velocity of 
Manipulated Points 
𝛿Pt

m

 

Features xt

Deformation 
Function H

Feedback 
Points Pt

f

Subtractor

𝛿xt

Features xt-1

Vision 
System

Features xt

Robotic 
System

Occlusion 
Removing 
Algorithm

Raw Point Cloud

Fig. 6: Our method is an online learning process, which means that
the DNN is learned while manipulation.

to avoid overfitting RNN needs more training data which is
not feasible during online learning, and RNN has slow training
process which also makes it not suitable for the real-time
manipulation.

B. Online Learning Process

In order to improve the model’s accuracy and robustness,
we follow our previous work [8] which is an online learning
method. The online learning process is shown in Figure 6. In
detail, we collect data and train the DNN while manipulation.
The data is a pair of grippers’ and feature’s velocities, which
can be obtained from the robotic system and vision system
respectively. At the same time, the DNN is used to predict the
required control velocity given the target and current feature
values. The robotic system receives this control velocity and
performs manipulation, and then new data are generated.

This online learning process removes the requirement of
offline data collection and offline training. Besides, since the
data is collected while manipulation, the model will become
more and more accurate. In our experiment, we will show
that online learning provides a more precise and robust way
to perform deformable object manipulation compared to the
offline model.

VI. OCCLUSION REMOVING ALGORITHM

We extract our extended FPFH with PCA from the 3D
point cloud provided by an RGB-D camera like the Intel
Realsense. However, when some surface parts of the object
become invisible due to self-occlusion or occlusion from the
robot’s gripper, the raw point cloud captured by the camera
can not describe the full state of the object. As a result, the
feature vector extracted from such point cloud is incomplete
for shape servoing.

In this work, we present an occlusion removing algorithm
to overcome the problem mentioned above. Our occlusion

removing algorithm takes the RGB-D stream as input and
serves as the front-end for feature extraction (as shown in
Figure 6). One main advantage of the proposed algorithm is
that it can generate a complete point cloud to represent all
surface state of the object, including the currently observed
parts, and the previously observed but currently occluded parts.
The point cloud generated by the algorithm will further serve
as input for feature extraction, which makes our system more
robust to occlusion than previous work [5], [8].

To make the occlusion removing algorithm fulfill our re-
quirement of being model-free, we follow the idea of recent
work [20], and formulate the problem into two phases, namely
tracking and reconstruction. Based on that, we solve the
problem by invoking the two phases in an alternative manner.
More precisely, when a new RGB-D image arrives, we activate
the tracking phase at first. In this phase, we estimate the
deformation field from a reference point cloud to the live
point cloud encoded in the depth stream to capture the motion
of both the visible and occluded surface parts. We achieve
this by firstly performing a non-rigid alignment to match the
visible parts of the reference point cloud with the live point
cloud. Then we extend the estimated deformation field to the
occluded parts according to the as-rigid-as-possible (ARAP)
regularization term [21], [22].

Note in the above tracking phase, a reference point cloud
which containing the state of both the visible and occluded
surface parts is required for non-rigid alignment. However,
since we want our pipeline to stay in the budget of being
model-free, it is infeasible to introduce any prior surface model
for deformation tracking. In our algorithm, we handle this
problem in the reconstruction phase based on an incremental
image fusion step. To achieve this, we invoke the recon-
struction phase after the deformation field is estimated in the
tracking phase. According to the estimated deformation field,
we integrate the depth image into the reference point cloud to
gradually complete and refine its surface details based on the
new measurement. After the reference point cloud is updated,
we warp it into the configuration of the live point cloud based
on the estimated deformation and employ the warped cloud as
the reference model for deformation tracking when next new
image comes.

A. Tracking
To model the deformation field in the tracking phase,

we follow recent work [20] by representing it as a graph
model G. The basic idea of such graph-based representation
is to discretize the deformation field into a set of local rigid
transformations G = {Ti ∈ SE(3)}Ki=1, and assign them to
the graph nodes {gi}Ki=1 one-to-one. The graph nodes are
uniformly sampled from the reference point cloud to ensure
the local transformations’ distribution roughly conform to the
object’s shape. Given the graph model G, we can calculate the
deformation of each reference cloud point through interpola-
tion of the local transformations in its nearest graph nodes:

p̃ =W(p;G) =
∑

k∈S
ωkTkp, (6)

where p̃ and p are the deformed and original reference cloud
point respectively; S denotes the k-nearest neighbor nodes of



HU et al.: 3D DEFORMABLE OBJECT MANIPULATION USING DEEP NEURAL NETWORKS 5

the point p; ωk is the skinning weight which can be calculated
by ωk = 1

Z exp(−‖p−gk‖2/2σ2
k), where Z is a normalization

factor, σk is a predefined parameter.
Based on the graph model G, we formulate the deformation

tracking process as the following optimization problem, where
we aim at finding the optimal deformation field with smallest
energy: G∗ = argminG E(G) where

E(G) =λdata

∑
m
‖n>d (p̃m(G)− pd)‖22+ (7)

λreg

∑K

i=1

∑
j∈Ni

‖Tig
t
i −Tjg

t
i‖22.

Here E(G) is the energy function. In Equation 7, we use
the first term of E(G) to penalize the misalignment between
the visible parts of the deformed reference cloud and the
live cloud. Here p̃(G) = W(p;G), and {pd,nd} denote the
corresponding point and normal of p̃ in the live cloud. The
second term of Equation 7 is the so called ARAP regulariza-
tion term, which penalize inconsistent local transformations
between nearest graph nodes. Note this term is also essential
for inferring the local deformations of the occluded surface
part. We use the parameter setting λdata = 1 and λreg = 30 in
all our experiments, which provides the best performance.

B. Reconstruction

In order to update the reference point cloud incrementally
based on newly observed depth measurement, we activate the
reconstruction phase once the deformation field is estimated
in the tracking phase. In detail, we follow [23]’s work to
employ the Truncated Signed Distance Function (TSDF) for
depth image fusion. To achieve this, the algorithm maintains
a TSDF volume V : {D(x),Ω(x)} to explicitly describe
the state of reference point cloud in the volume voxel x,
where D(x) ⊆ [−1,+1] encodes the truncated signed distance
value for each voxel x, and Ω(x) ⊆ [0, 1] is the associated
weight. When an new depth image arrives, we first compute
the corresponding new TSDF component d(x) of each voxel
x based on the estimated deformation field:

d(x) = max

(
min

(
I(u)− bx̃cz

τ
, 1

)
,−1

)
, (8)

where I(·) represents the live depth image. x̃ represents the
voxel deformed from x using Equation 6 and bx̃cz represents
the position of point x̃ along Z-axis. u represents the projective
pixel of voxel x̃ in image I . τ is the truncated threshold of
TSDF value. After that, we integrate the new TSDF component
d(x) into the reference volume V as

D(x)← D(x)Ω(x) + d(x)ω(x)

Ω(x) + ω(x)
,

Ω(x)← min (Ω(x) + ω(x),Ωmax) ,

where ω(x) is the weight we assign to the new components
and Ωmax is the upper threshold of the weight.

From the updated volume V, we extracted an new reference
point cloud based on the marching cubes algorithm [24].
Because we integrate the geometry captured by multiple depth
images into the TSDF volume V, the extracted point cloud has
the advantage of being occlusion-robust.

VII. EXPERIMENTS AND RESULTS

We test our algorithm on a dual-arm robot called ABB Yumi
which has 7 degrees of freedom in each arm. Our vision
system includes an RGB-D camera called Intel Realsense
which can provide color and depth images with 30 FPS. The
entire system setup is shown in Figure 1.

Fig. 7: Results of our occlusion removing algorithm. Row 1 is color
images received from the RGB-D camera; Row 2 is raw point clouds
generated from RGB-D images; and Row 3 is point clouds generated
from our algorithm.

In our experiment, we first test our occlusion removing
algorithm and then validate our controller in a set of ma-
nipulation tasks and then we compare our controller with
several controllers proposed in previous work and discuss the
comparison result.

Color Sequence

Depth Sequence
with

Synthetic Occlusions

Our
Reconstruction

Results

Frames

Frames

A
lig

nm
en

t E
rr

or

Fig. 8: Top: reconstruction results of a deforming blanket with
synthetic occlusions whose masks are highlighted as red regions
in the depth sequence. Bottom: the alignment errors between the
generated shape models of our method and the raw depth sequence
without synthetic occlusions. Our method provides reliable shape
estimation during occlusion. Please refer to videos for more details.

A. Performance of occlusion removing

To show the performance of our method, we compare
the occlusion removing algorithm to the raw point cloud
in this experiment, with result shown in Figure 7. We can
see that these raw point clouds directly received from the
RGB-D camera are occluded due to the grippers or objects’
deformation. Compared to the raw point cloud, our occlusion



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

removing algorithm provides a relatively complete point cloud
and removes the occlusion parts in the raw point cloud.

As a qualitative evaluation of our occlusion removing al-
gorithm, we further conduct a blanket deforming task with
synthetic occlusion masks ( Figure 8). We generate the masks
by ignoring in the original depth sequence the depth values
greater than a preset threshold and then the corresponding sur-
face parts will become invisible to our algorithm. We evaluate
the accuracy of our method, especially for the estimate of the
occluded surface parts, by measuring the non-rigid alignment
error between the reconstructed shape model and the original
depth data without synthetic occlusions, and the results are
shown in the bottom part of Figure 8.

Fig. 9: The Mean Absolute Error (MAE) comparison between linear
and ReLU activation function.

B. Performance of DNN controller

We test our DNN controller in a set of manipulation
tasks including rolled towel bending, peg-in-hole, plastic sheet
bending, towel folding, and sponge manipulation. We set a
target configuration for each task. As shown in Figure 10, our
controller accomplished all these tasks. We run our algorithm
10 times starting from a random configuration for each task
and the average success rate of these manipulation tasks is
about 90%. In particular, the success rate for task 1 is nearly
100% but is only 70% for task 2. Other tasks only fail once
during the test. The failure cases in task 2 are the inaccurate
fabric assembly due to small holes and random noises from
the 3D camera.

To show the performance of our controller quantitatively, we
collect an offline data set containing data pairs of the velocity
of feature and grippers. We train our controller using 75% data
and test the trained controller using the remaining 25% data.
We choose the linear function rather than the popular ReLU
as the activation function in our DNN, because we found that
the linear activation can provide lower Mean Absolute Error
(MAE) than ReLU, as shown in Figure 9.

To compare the performance of our DNN with that of
the linear model [5], [9], we check the regression results
of both models when predicting the two dimensional control
velocity (along x and z axis) of the end-effector. As shown

Model Mean Absolute Error (m/s) Standard Deviation (m/s)
Task 1-DNN 0.0092 0.0078
Task 1-LM 0.0090 0.0079
Task 2-DNN 0.0096 0.0082
Task 2-LM 0.0095 0.0083
Task 3-DNN 0.0059 0.0050
Task 3-LM 0.026 0.024
Task 4-DNN 0.0061 0.0049
Task 4-LM 0.027 0.021
Task 5-DNN 0.0058 0.0051
Task 5-LM 0.025 0.024

TABLE I: Comparison of the Mean Absolute Error and the Standard
Deviation between the DNN model and the linear model (LM).

in Figure 11, both models can fit the ground truth sufficiently
good, but the DNN model is more accurate. We also compare
the MAE of our DNN controller with that of the linear model
in Table I, and again, DNN controller provides a better result.

We further compare our DNN model with the GP model
in [8] on task 3. Figure 12 shows the recorded errors between
current and target feature values when using controllers based
on 3- and 5-layer DNN models and the GP model for manip-
ulation. The 5-Layer DNN controller converges faster than the
GP model with a per-iteration running time similar to the GP
model.

We also investigate how many data points are necessary for
high-quality performance. In task 3, we initialize the DNN
model with 100 frames of random movements and then show
in Figure 13 the feature error afterwards by running the DNN
controller. We can observe that the error quickly decreses given
new data frames.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present a novel controller for deformable
object manipulation which is a challenging problem in robotic
manipulation. Our controller is based on Deep Neural Net-
work (DNN) and trained from data while manipulation. This
online learning process improves the model’s robustness and
accuracy. In addition, we introduce a novel feature to describe
the states of 3D deformable objects while manipulation. This
dimension-fixed feature is suitable for our method to train a
controller. Furthermore, in order to deal with the occlusion
problem occurred in manipulation tasks, we propose an occlu-
sion removing algorithm. Finally, we test our controller and
algorithm in a set of deformable object manipulation tasks.

In our future work, we investigate to train our DNN
controller using Reinforcement Learning (RL) algorithm to
achieve some complicated manipulation tasks like cloth fold-
ing and robot-assisted surgery.

REFERENCES

[1] W. Wang, D. Berenson, and D. Balkcom, “An online method for tight-
tolerance insertion tasks for string and rope,” in ICRA, 2015, pp. 2488–
2495.

[2] S. Miller, J. van den Berg, M. Fritz, T. Darrell, K. Goldberg, and
P. Abbeel, “A geometric approach to robotic laundry folding,” IJRR,
vol. 31, no. 2, pp. 249–267, 2011.

[3] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel,
“Bringing clothing into desired configurations with limited perception,”
in ICRA, 2011, pp. 3893–3900.

[4] D. Kruse, R. J. Radke, and J. T. Wen, “Collaborative human-robot
manipulation of highly deformable materials,” in ICRA, 2015, pp. 3782–
3787.



HU et al.: 3D DEFORMABLE OBJECT MANIPULATION USING DEEP NEURAL NETWORKS 7

(a) (b) (c) (d) (e)

Fig. 10: The set of tasks used to evaluate the performance of our approach: (a) task 1 - rolled towel bending, (b) task 2 - peg-in-hole for
fabric, (c) task 3 - plastic sheet bending, (d) task 4 - towel folding, and (e) task 5 - sponge manipulation. The first row shows the initial
state of each object before the manipulation and the second row shows the goal states of the object after the successful manipulation.

Fig. 11: Regression results of our DNN model (row 1) and linear
model (row 2) for predicting the two dimensional control velocity
(left and right for vx and vz respectively).

Fig. 12: Comparison between DNN and GP model in task 3. The
error means the difference between target and current feature values
in each time step while manipulation.

[5] D. Navarro-Alarcon and Y.-H. Liu, “Fourier-based shape servoing: a
new feedback method to actively deform soft objects into desired 2-d
image contours,” TRO, vol. 34, no. 1, pp. 272–279, 2018.

[6] S. Patil and R. Alterovitz, “Toward automated tissue retraction in robot-
assisted surgery,” in ICRA, 2010, pp. 2088–2094.

[7] J. Schulman, J. Ho, C. Lee, and P. Abbeel, “Generalization in robotic
manipulation through the use of non-rigid registration,” in ISRR, 2013.

[8] Z. Hu, P. Sun, and J. Pan, “Three-dimensional deformable object
manipulation using fast online gaussian process regression,” RAL, vol. 3,
no. 2, pp. 979–986, 2018.

[9] D. Navarro-Alarcon, H. M. Yip, Z. Wang, Y. H. Liu, F. Zhong, T. Zhang,
and P. Li, “Automatic 3-d manipulation of soft objects by robotic arms
with an adaptive deformation model,” TRO, vol. 32, no. 2, pp. 429–441,
2016.

[10] J. Tian and Y.-B. Jia, “Modeling deformations of general parametric
shells grasped by a robot hand,” TRO, vol. 26, no. 5, pp. 837–852,
2010.

[11] Y.-B. Jia, F. Guo, and H. Lin, “Grasping deformable planar ob-

Fig. 13: Relation between the DNN model performance and the
number of data frames.

jects: Squeeze, stick/slip analysis, and energy-based optimalities,” IJRR,
vol. 33, no. 6, pp. 866–897, 2014.

[12] H. Lin, F. Guo, F. Wang, and Y.-B. Jia, “Picking up a soft 3d object by
“feeling” the grip,” IJRR, vol. 34, no. 11, pp. 1361–1384, 2015.

[13] A. Clegg, W. Yu, Z. Erickson, C. K. Liu, and G. Turk, “Learning to
navigate cloth using haptics,” in IROS, 2017, pp. 2799 – 2805.

[14] D. McConachie and D. Berenson, “Bandit-based model selection for
deformable object manipulation,” arXiv:1703.10254, 2017.

[15] D. Navarro-Alarcon, Y. H. Liu, J. G. Romero, and P. Li, “Model-
free visually servoed deformation control of elastic objects by robot
manipulators,” TRO, vol. 29, no. 6, pp. 1457–1468, 2013.

[16] S. Hirai and T. Wada, “Indirect simultaneous positioning of deformable
objects with multi-pinching fingers based on an uncertain model,”
Robotica, vol. 18, no. 1, pp. 3–11, 2000.

[17] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in IROS, 2010, pp.
2155–2162.

[18] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3d registration,” in ICRA, 2009, pp. 1848–1853.

[19] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, “Learning
informative point classes for the acquisition of object model maps,” in
ICARCV, 2008, pp. 643–650.

[20] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time,” in CVPR, 2015,
pp. 343–352.

[21] R. W. Sumner, J. Schmid, and M. Pauly, “Embedded deformation for
shape manipulation,” TOG, vol. 26, no. 3, p. 80, 2007.

[22] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,” in
SGP, vol. 4, 2007, pp. 109–116.

[23] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfu-
sion: Real-time dense surface mapping and tracking,” in ISMAR, 2011,
pp. 127–136.

[24] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” in SIGGRAPH, vol. 21, no. 4, 1987,
pp. 163–169.


