
RANDM: Random Access Depth Map Compression Using
Range-Partitioning and Global Dictionary

Srihari Pratapa and Dinesh Manocha

PSNR: 15.12

SSIM: 0.865

PSNR: 15.09

SSIM: 0.859

Compression Ratio: 37X

RMS Error: 0.28

Piano: 2820 X 1920 32-bit

(A) Ground Truth (B) Compressed Depth
(C) Ground Truth
Reconstruction

(D) Compressed Depth
Reconstruction

Fig. 1: We show a visual comparison between the ground truth depth maps and depth map compressed using our algorithm
(RANDM). We do not see any artifacts or noticeable error We also highlight the error in visual reconstruction algorithms based on
the ground truth and depth map compressed using RANDM. (A) Actual ground truth depth data; (B) Depth data compressed using
RANDM; (C) Right-view reconstructed from ground truth; (D) Right-view reconstructed from the compressed depth map. The
random access capability of our approach is used for interactive rendering and VR applications.

Abstract— We present a novel random-access depth map compression algorithm (RANDM)for interactive rendering. Our compressed
representation provides random access to the depth values and enables realtime parallel decompression on commodity hardware. Our
method partitions the depth range captured in a given scene into equal-sized intervals and uses this partition to generate three separate
components that exhibit higher coherence. Each of these components is processed independently to generate the compressed
stream. Our decompression algorithm is simple and performs prefix-sum computations while also decoding the entropy compressed
blocks. We have evaluated the performance on large databases on depth maps and obtain a compression ratio of 20−100× with a
root-means-square (RMS) error of 0.05−2 in the disparity values of the depth map. The decompression algorithm is fast and takes
about 1 microsecond per block on a single thread on an Intel Xeon CPU. To the best of our knowledge, RANDM is the first depth map
compression algorithm that provides random access capability for interactive applications.

1 INTRODUCTION

Virtual reality (VR) and augmented reality (AR) technologies are in-
creasingly being used for immersive viewing experiences using head
mounted displays (HMD) and 3D projection display systems. Current
VR systems can display wide field-of-view content at high pixel densi-
ties, and this is combined with accurate tracking of the viewer’s head
position and orientation for interactive rendering. To increase the sense
of immersion and make the viewing experience natural, there has been
considerable work done on analyzing different factors corresponding to
motion parallax, depth cues, and binocular disparity [55] and perform
accurate rendering based on these factors.

Earlier work in VR mainly used synthetic content based on 3D
geometric models of virtual environments. Over the last decade, there
has been considerable work on capturing real-world scenes based on
new camera systems and computer vision techniques to generate VR or
AR experiences. These captured datasets are typically represented as
depth maps. A depth map is an image that contains information about
the distance between the surface of objects from a given viewpoint.
Moreover, this map is merged with the RGB source image to create a
“3D image”. Depth maps are used in light field rendering and image-
based rendering (IBR) [15, 16, 49] to provide depth cues for accurate

• University of North Carolina at Chapel Hill E-mail: psrihariv@cs.unc.edu.
• University of Maryland at College Park E-mail: dm@cs.umd.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

rendering. In 360° immersive videos, panoramic depth maps are used
to enable motion parallax. This results in translational shifts in the
viewer’s head to support 6-degrees-of-freedom (6-DoF) motion and
to provide higher realism in an HMD [20, 29, 59]. Many real-time
telepresence systems use depth sensors to capture a large sequence of
depth maps and transmit them with the color data to reconstruct the 3D
scene [39].

There is considerable work on capturing depth information us-
ing hardware sensors [24] or using computer vision techniques on
stereo [37] and monocular images [35]. These include techniques based
on time of flight (ToF) cameras [12], structural light cameras [19], or
the use of multiple camera views [26]. These methods are increasingly
being used in research and commercial systems to capture depth maps.
Recently, high-end consumer mobile phones have started to support
depth sensors to enable more extended/augmented reality (XR/VR)
applications 1.

Generally, a single depth map is captured or computed and associated
with each of the captured color images. In many IBR applications,
each captured view has a per-view depth map associated with it. For
360° immersive videos, a per-frame depth map is stored and used for
interactive rendering. Hence, the size of depth map data is directly
proportional to the color or RGB data in terms of size and resolution.
For a good-quality IBR, the amount of RGB data required is quite
high and can vary from hundreds of MB [5] to hundreds of GB [31,
33]. Recently, devices for capturing very high-resolution (e.g., 2K or
4K or higher) 360◦ videos for rendering in VR have become widely
available [1], and result in data sizes capture rates of 1.2 GB/s at

1https://bit.ly/2x0Pz4f

60 fps. To support VR or AR applications, we need techniques for
efficient compression, storage, transmission, and rendering of such high
resolution depth maps.

Real-time rendering and VR/AR applications impose additional
constraints on the design of compression schemes. These constraints
include low-complexity decoding and utilizing fast parallel hardware
on commodity processors. For interactive applications, only a
portion of the RGB pixels and the corresponding depth values are
typically required at run-time for further processing or rendering
a scene [16, 30, 52]. As a result, we need to be able to perform
selective decoding on a compressed depth map on the hardware, as
storing of large amounts of uncompressed depth data can result in
memory bandwidth bottlenecks [9]. Many of the current techniques
to compress depth maps are similar to JPEG or MPEG are designed
for high compression efficiency [25, 28]. They are not best suited
for interactive applications, as these methods need to decode the
entire depth map at run-time and store it in the memory. Instead,
most interactive rendering algorithms tend to use random access
compression schemes for selective decoding and to reduce the memory
bandwidth requirement [8]. Random access compression schemes
are widely used to compress textures [2, 21] and are supported in
current GPUs. The idea of random access for compressing has been
extended to other image-based representations [17], including videos
and lightfields [30, 53, 72]. However, there is no work on developing
random-access compression schemes for depth maps.

Main Results: We present a new and fast algorithm (RANDM)
for compressing and decoding depth maps based on random access
capabilities for interactive applications. The main idea behind our
approach is reducing the range of depth values in a scene to a much
smaller range and re-map all the depth values to the smaller range.
We partition the depth range of a given depth map into several equal-
sized intervals, and each depth pixel in the depth map is assigned to
a specific interval. Given the partitioning, we decompose the overall
depth map into three different parts. First, a new pixel-index image (PI)
is computed for storing the interval index for all the depth pixels in the
depth map. Second, we compute a global depth dictionary (GDD) to
store all normalized depth values for the entire depth map. We use this
representation to gather all the coherent depth values across the depth
map into the global depth dictionary. Third, a new dictionary-index
image (DI) is created to store the dictionary index (in GDD) for all the
corresponding normalized depth values in the depth map. We process
these three components, PI, DI, and GDD, independently and process
them using entropy encoding (arithmetic encoding) to compute the final
compressed stream. At runtime, we use additional buffers and arrange
the final compressed stream to facilitate random access and selective
decoding of depth pixels for interactive rendering.

The main contributions of our approach (RANDM) include:

1. First random-access lossy depth map compression scheme suit-
able for use in interactive applications;

2. New range-split global dictionary method for encoding depth
maps; our compression scheme is highly parallelizable for fast
real-time encoding of depth maps;

3. Low-complexity decoding scheme that is amenable for fast paral-
lel decoding on hardware and interactive rendering.

We have evaluated our method on a large set of depth maps from
Middlebury datasets [18, 56] and TUM RGBD datasets [65]. Our
method obtains a compression ratio of 20− 100× for a root-means-
square (RMS) error of 0.05− 2.5 in the disparity (inverse of depth)
values of the depth map. The decompression times for decoding a block
(block size: 8) of depth values are up to 1 microsecond using a single
thread on an Intel Xeon CPU. We have evaluated the reconstruction
error of pairs of stereo images using our compressed depth maps,
and our method provides similar reconstruction quality as the original
uncompressed depth maps.

2 PRIOR WORK AND BACKGROUND

In this section, we give an overview of prior techniques used to com-
press image-based representations and depth maps.

2.1 Compression of Image-Based Representations
Different image-based representations are used for interactive render-
ing. Shum et al. [17] present a taxonomy of rendering approaches based
on different image-based representations: textures, depth, videos, lumi-
graph, light fields, etc. We broadly classify the existing compression
schemes for image-based representations into two categories:

2.1.1 High-Efficiency Compression Schemes
High-efficiency compression schemes for image-based representations
are modifications or direct applications of the traditional image and
video compression approaches, including static image compression
methods (JPEG, PNG, etc.) and video compression schemes (MPEG-2,
H.264, H.265, etc.). Many compression schemes are designed for light
fields and lumigraph that extend techniques from standard image and
video compression schemes such as discrete-cosine transform, wavelet
transform, predictive block encoding, and motion-vector compensation.
One set of these methods orders light field images (LFI) in a sequence
and applies one or more of the mentioned techniques from video codes
for compression [7,34,50]. Other sets of methods select fixed reference
frames and predict the rest of the frames using predictive block coding
then apply domain transformation techniques to separate the data into
important and non-important parts [11, 22, 38]. All of these approaches
achieve very high compression ratios from 100× to 1000×. High-
efficiency compression schemes for encoding depth maps have been
developed, and are described below.

2.1.2 Random Access Compression Schemes
These techniques are designed to provide selective decoding for in-
teractive rendering. Delp and Mitchell [8] introduce a fixed rate per
block compression method for encoding grayscale images. Beers et
al. [2] present a random access compression scheme for textures and
list the main requirements for random access compression schemes to
be feasible for interactive applications: random access, low-complexity
decoding, and visual quality of decompressed data. In the last few
years, many random access compression schemes for encoding textures
has been developed [9, 21, 46, 48, 62, 63] and these schemes are widely
supported on commodity GPUs. Several other super-compression
schemes [10, 27, 64] have been introduced to provide additional com-
pression. Different random access compression schemes for encod-
ing video have been proposed for video rendering [13, 42, 52, 58, 67].
Some random access compression methods have been proposed for
lightfields based on vector-quantization (VQ) [30], hierarchical repre-
sentations [51, 53], motion-compensation [49, 72], etc.

2.2 Depth Map Compression
Several lossy schemes have been proposed to compress depth maps
that are based on standard image compression schemes (JPEG &
JPEG2000). In practice, depth maps have different properties than
standard images (color images), and, they are not directly used for
viewing. On the other hand, standard image compression schemes
are designed to optimize the maximum perceived visual quality, and a
direct application of those methods to depth maps may not be optimal.
We categorize the existing compression schemes, for depth maps into
two categories, lossy compression schemes, and lossless compression
schemes, and none of the existing approaches provide random access
capability.

2.2.1 Lossless Schemes
Mehrotra et al. [43] present a lossless entropy encoding scheme for
Kinect like depth sensors. They store the depth values using inverse
depth coding as integer values with a dynamic range of 16-bits. Run-
length encoding with Golomb-Rice code [40] is used to encode the
inverse depth values, after arranging the depth values in raster scan
order. Differential pulse-code modulation (DPCM) is used as the pre-
dictive method to exploit the spatial coherence between the neighboring

pixels in a raster scan. Wilson [69] present a lossless method similar
to Mehrotra et al. [43], where the Golomb-Rice encoding is replaced
with new variable-length encoding to code the depth values after raster
scanning and to apply DPCM to the neighboring pixel values. This
method achieves compression rates of around 1bb - 3bpp on 16-bit
depth maps, and overall provides ∼ 4−16× compression.

2.2.2 Lossy Schemes
There is considerable work on lossy schemes designed for a single
depth image or a video.

Static Depth Maps: Sarkis and Diepold [54] present an approach
based on compressive sensing to compress the depth image. To ensure
sparsity, this method uses regularization techniques and preserves the
properties of the depth maps, including depth discontinuities, using
total variations constraints. They achieve compression ratios of up to
10×. Krishnamurthy et al. [28] use a region of interest (ROI) coding
for depth maps based on JPEG2000 and achieve compression rates of
∼ 50×. Chai et al. [4] present mesh-based generation methods, where
a mesh is generated from the depth map. The computed mesh geometry
is encoded using a binary tree structure, and depth values from the
pixels are stored in the tree nodes, resulting in compression ratios of
∼ 30X .

Depth Map Videos: Kim and Ho [25] present a depth map com-
pression scheme for rendering 3D videos. Each depth map for a frame
of the video is hierarchically divided into one of four different regions,
based on the edges in the depth map. Next, the regions are merged
and the sequence of frames (video) is compressed using a video codec.
Liu et al. [36] describe a new trilinear filtering scheme that is used
as a replacement for the deblocking filter in H.264 to preserve the
depth discontinuities after motion compensation. Wildeboer et al. [68]
present a method where depth maps from a video sequence are down-
sampled and compressed using the H.264 scheme. During up-sampling,
a weight function similar to bilateral filtering that uses both color data
and pixel distance to preserve the depth is used. This method achieves
a compression ratio of around 100−500×.

2.2.3 Z-buffer Compression
A depth map referred to as Z-buffer is part of a standard graphics raster-
ization pipeline and is used to perform visibility tests [66]. A simple or
naive implementation of Z-buffer for visibility testing consumes large
amounts of memory bandwidth. Several methods have been proposed
to compress the Z-buffer [14]. The primary goal of these approaches
is to reduce the size of the Z-buffer while enabling real-time parallel
visibility tests during rasterization. Z-buffer compression methods have
to be lossless because any loss might lead to errors in the final raster-
ized image. These methods are mostly based on lossless tile-based,
fixed bit-rate compression schemes and can enable parallel random
access to the compressed Z-buffer. The compression rates achieved by
these methods are typically 2−4×. Although these approaches enable
random access, the compression rates are quite low due to fixed bit-rate
and application-specific constraints.

3 OUR METHOD: RANDM
In this section, we present our compression pipeline (Fig. 2) and de-
scribe our encoding method. Depth maps are sometimes represented
as disparity maps, indicating the binocular disparity in terms of pixel
shifts with respect to a reference camera position [41]. The disparity
maps are considered to be the inverse of depth maps [3, 61]. The input
to our method is a disparity map or a depth map of a given scene. If the
input is a disparity map, we convert it into the corresponding depth map
using the camera calibration parameters as the input. Depending on
the precision required by an application or method of capture, different
dynamic ranges (8-bit integer, 16-bit integer, 16-bit floating, or 32-bit
floating) are used to represent the depth values. For the rest of the paper,
we assume that each depth value is an integer, and the same approach
can be easily extended to other data types. Our approach is general
and can handle any dynamic range of depth values. The output of our
RANDM algorithm is a compressed stream that enables random access
and parallel decoding of the depth values from the compressed stream.

The main idea behind our approach is to remap a large range of depth
values to a much smaller range by decomposing the values into three
different components. Each of these components has integer values in a
fixed range that is much smaller than the actual range of depth values in
the input scene. For a fixed data size, a smaller range of bounded values
exhibits less entropy and leads to higher compression. The smaller
range for a given input is computed by partitioning the depth range into
equal-sized intervals that are smaller than the actual range. The number
of intervals is set using an encoding parameter. In order to compute the
remapping, we compute a new image pixel index image (PI) for storing
the interval information for all the depth pixels in the depth map. After
remapping the depth values to a smaller range, we compute a global
depth dictionary (GDD) to store only the unique depth values in the
smaller range removing duplicates. All the similar depth values present
across the entire depth map are gathered into one GDD to exploit the
coherence in a global manner. We quantize and convert the values in
GDD to integers. Next, we compute a dictionary index image (DI) to
index into the GDD to store the remapped smaller range values for
all the depth pixels in the depth map. The three components (PI, DI,
and GDD) computed have bounded ranges of integer values, which
reduces the overall entropy and makes them suitable for compression.
The GDD is further processed, and entropy encoded. Finally, the PI
and DI are divided into non-overlapping blocks, and the blocks are
entropy encoded. We use additional offset arrays to store the lengths
of compressed block stream to facilitate random access decoding for
interactive applications.

3.1 Notation and Terminology
The 2D input depth map is represented by Z and has resolution M×N.
Z(x,y) denotes the depth value at a depth pixel indexed by (x, y). Our
approach is formulated based on the following representations and
components.

Interval divisions: The depth range in the input Z is partitioned
into intervals of equal size. The intervals are ordered serially
(Interval0, Interval1, ... and so on) and marked with an interval
index (an integer value). The number of intervals is set as an encoding
parameter.

Interval size (IS): A single scalar value representing the size of the
resulting interval after partitioning the depth range into equal intervals.

Pixel Index Image (PI): A 2D image to store the interval index for
all the depth pixels in the input depth map Z. The resolution of PI
is M×N, which is the same as in the input depth map (Z). PI stores
the interval index, which is an integer value and the range of values is
constrained to the number of intervals.

Depth normalization: The depth values for all the depth pixels in
the depth map are normalized based on the interval index stored in PI.
After normalization, all the depth values in the depth map are reduced
to a much smaller range, IS.

Split Depth Map (SDM): An intermediary 2D image computed to
store the normalized depth values for all depth pixels. The resolution
of the SDM is same as the input resolution M×N.

Global Depth Dictionary (GDD): A global depth dictionary com-
puted to store all the unique normalized depth values from the SDM.
The GDD is represented as a hash map and implemented using a
linear array. The values stored in the GDD can be referred using an
index into the linear array.

Dictionary Index Image (DI): This is a 2D image that is used to
store the dictionary index of all the pixels in the SDM. DI stores a
dictionary index that is an integer value, and the range of values stored
is constrained to the size of GDD. The resolution of DI is the same as
the input resolution M×N.

Our method uses the following encoding parameters in our compression
scheme:

Depth Map Split &
Normalize

Pixel Index
 Image

Split Depth
Map

Dictionary
Computation &

Quantization
Global Depth Dictionary

Dictionary Index
Computation

Dictionary Index
 Image

Entropy
Encoding

Pixel Index
 Image

Compressed Stream

Stage - I Stage - II Stage - III

Fig. 2: Our compression pipeline: The red rectangles represent the data, the brown ovals the represent processing blocks, and the arrows indicate
flow and data transfer operations. Our compression pipeline consists of three stages: (Stage-I) The depth map is partitioned into several equal
sized intervals, and depth values in all the intervals are normalized to decrease the range of depth values to a smaller range. A pixel index image
(PI) is computed to store the interval index of the pixels in the depth map; (Stage-II) We compute the global depth dictionary (GDD) is to capture
the coherence in the depth map at a global scale; (Stage-III) The dictionary index image (DI) is computed for the depth map to store the index of
the normalized depth values in GDD. Finally, PI, GDD, and DI are processed and entropy encoded to compute the final compressed bitstream
along with offset arrays.

Split Depth
Map

Interval0

Zmin

Zmax

Interval1

Interval(n - 1)

Interval(n)

Intervalk

Normalize &
Combine

Fig. 3: We highlight the partitioning of the depth range into intervals
and computation of a normalized split depth map. Zmin and Zmax
indicate the minimum and maximum depth, respectively, for the input
depth map. Each depth pixel in the depth map belongs to a particular
interval depending on the depth value. We highlight a few depth values
in the depth map with boxes and also point to the specific intervals
(Intervali) that they belong to. The depth values in all the intervals are
normalized to reduce the range of the depth values in all splits to the
same range.

1. Number of intervals (NI): Number of intervals into which a given
depth range is partitioned;

2. Precision (Pr): The minimum error in precision allowed in the
depth values in some units (e.g., 0.1 , 0.01, 0.001, etc.). This is
only applicable for input depth maps with floating point precision.

3. Dictionary error (DE): The error allowed in the quantization of
the normalized depth values stored in the global depth dictionary
(GDD);

4. Block size (B) : PI and DI images are divided into smaller non-
overlapping rectangular blocks (of a given block size) for further
compression. These blocks are used for selective decoding at
runtime.

3.2 Division of Depth Range
From the input depth values, the minimum depth (Zmin) and the maxi-
mum depth (Zmax) captured in the scene are computed. The depth range
is partitioned into equal intervals, and the interval size (IS) is computed
based on the NI set as encoding parameters:

IS =
Zmax−Zmin

NI
. (1)

Each pixel in the depth map belongs to an interval depending on the
depth value (Z) of the pixel, and the corresponding interval index is
computed as:

PI(x,y) = interval index(x,y) = b
Z(x,y)−Zmin

IS
c. (2)

Z(x,y) denotes the depth value at pixel index (x,y) and interval index(x,y)
is the corresponding interval index (integer value) of the pixel at index
(x,y) in the depth map. The interval indices are computed for all the
pixels and are stored in the pixel index image (PI). Once the PI is
computed, we normalize the depth value of each pixel and compute a
new intermediary split depth map (SDM) as follows:

SDM(x,y) = Z(x,y)− (PI(x,y) ∗ IS)−Zmin; (3)

SDM(x,y) denotes the normalized depth value for a pixel at index (x,y)
for a given interval index in PI(x,y). The depth values computed in the
SDM are bound to lie in the range of [0, IS]. The values in the PI are
integers and are bound between the range of [0, NI−1]. Using intervals
and normalization, we compute two new 2D images with bounded range
of values, increasing the overall coherency and resulting in data that is
amenable to better compression. The original depth values of a pixel
can be recomputed without loss using the newly computed SDM and
PI images. Fig. 3 illustrates the splitting of the depth range.

3.3 Global Depth Dictionary

Once SDM is computed, a new linear global depth dictionary (GDD)
is computed by gathering all the unique normalized depth values stored
in SDM. GDD is stored as a hash map and implemented using a linear
array. We refer to the values held in the GDD as the normalized depth
values. Using the precision set as an encoding parameter we compute a
precision factor (p f). If the input depth values are within floating point
precision, the values in GDD are multiplied by the p f and rounded to
the nearest integers. We compute the precision factor (p f) from the
input precision (Pr) and convert the values of GDD into integers:

p f = 10|(log10(Pr))|, (4)
GDDk = bGDDk ∗ p f c ∀k ∈ [1,#(GDD)],

#(GDD) = size of GDD.

GDDk denotes the residual depth value at index k. After the GDD is
converted to an integer value, it is further quantized to reduce the size
based on a dictionary error set as the encoding parameter. The values
of the GDD are divided into disjoint subsets such that no two depth
values in the same subset have greater than input dictionary error (DE).

Sl = {GDDk1 ,GDDk2 , ...GDDkn}, (5)
∀(ku,kv) ∈ {k1,k2, ...kn 3 |GDDku −GDDkv |< DE}.

For each subset Sl computed from GDD, the mean of all the normalized
depth values from the subset Sl is computed. Next, we discard the old
GDD and compute a new GDD storing only the mean values computed
from all the sets (Sl).

GDDl =
∑vi∈Sl

vi

#(Sl)
, (6)

#(Sl) = size of subset & ∀l ∈ [1,M],

M = number of subsets.

Based on the value of ED set as an encoding parameter, the final size of
the GDD is reduced by a factor that introduces loss in the depth values
and is amenable to significant compression.

Algorithm 1 Compress depth map. We highlight the main steps of the
pipeline. It is simple and parallel friendly

Input:
Depth map or Disparity map: DM
Encoding parameters: enc

Output:
CompressedStream
function COMPRESSDM(DM,enc)

//Compute the split size based on depth range
SplitSize←ComputeSplitSize(DM,enc)
//Compute the pixel index iamge (PI) based on split size
PI←ComputeDivisionIndicies(DM,SplitSize)
//Compute the normalized split depth map (SDM)
SDM← NormalizeDepthValues(DM,SplitSize, PI)
/*Gather all the unique normalized depth values from
SDM into global depth dictionary (GDD)*/
GDD← GatherUniqueValues(SDM)
//Quantize the normalized depth values stored in GDD
GDD← QuantizeGDD(GDD, enc)
//Compute the dictionary index image (DI) from GDD
DI←ComputeDictionaryIndices(SDM, GDD)
//Differential pulse code modulation applied to GDD
GDDd pcm← DPCM(GDD)
//Entropy Encode DPCM GDD
GDDStream← EntropyEncode(GDDd pcm)
//Entropy Encode PI and DI
PIStream← EntropyEncode(PI)
DIStream← EntropyEncode(DI)
//Append the streams and return the final stream
CompressedStream← (GDDStream: PIStream: DIStream)

3.4 Dictionary Index Image
For each residual pixel value in the SDM, we compute a closest match-
ing (based on absolute error) normalized depth value from the GDD.
The dictionary index image (DI) is computed to store the index of the
closest matching normalized depth value from the GDD.

min
k
|SDM(x,y) ∗ p f −GDDi|∀i ∈ [1,M], (7)

DI(x,y) = k.

M is the size of the quantized GDD. The range of values stored in the
dictionary index image are bound within the range of [1,M], bounding
the range to facilitate better compression. Once the DI is computed,
the depth values of the image can be re-computed from the values of
GDD, PI, and DI:

k = DI(x,y) (8)

Z(x,y) = PI(x,y) ∗ IS+Zmin +(GDDk/p f)

Z(x,y) is the re-computed depth value at pixel index (x,y).

3.5 Entropy Encoding
The normalized depth values in the GDD are sorted in increasing
order before the DI is computed. We apply Differential-pulse code
modulation (DPCM) [47] to the GDD values, reducing the range of
the values and decreasing the entropy improving compression. We sort
GDD as it guarantees an increasing order of values, which results in
only a positive range of the values resulting after DPCM.

GDDd pcm = DPCM(GDD)

After DPCM, the GDDd pcm is entropy encoded using adaptive arith-
metic encoding [70].

The PI is divided into non-overlapping rectangular blocks and each
block is independently compressed using adaptive arithmetic encoding.
An array of block offset values is used to store the entropy compressed
length of all the compressed blocks. The block offsets are used to
facilitate random access to the compressed data. The DI is processed
and compressed similar to the PI and additional block offset array is
used to store the compressed block lengths. The block offset arrays
are further encoded using entropy encoding (arithmetic encoding) to
reduce the final size of the compressed stream.

Algorithm 2 Decompress depth map block. It is simple, fast and runs
at realtime rates on commodity hardware.

Input:
LFI compressed stream: CompDM
Block index: BlkIdx

Output:
Depth values: DepVals
// Load the stream into memory and separate
Initialization:
PIStream← ReadPIStream(CompDM)
DIStream← ReadDIStream(CompDM)
PIBlockoffsets← ReadPIBlockO f f sets(CompDM)
DIBlockoffsets← ReadDIBlockO f f sets(CompDM)

GDDStream← ReadGDDStream(CompDM)
GDDd pcm← EntropyDecode(GDDStream)
GDD← Pre f ixSum(GDDd pcm)

function DECOMPRESSDMBLOCK(BlkIdx)
// Get the start location of BlkIdx in bitstream
PIBlockOffset←PIBlockOffsets[BlkIdx]
DIBlockOffset←DIBlockOffsets[BlkIdx]
// Read the PI and DI block compressed streams
PIBlockStream← ReadBlocks(PIStream, PIBlockoffsets)
DIBlockStream← ReadBlocks(DIStream, DIBlockoffsets)
// Entropy decode PI and DI block streams
PIBlockVals← EntropyDecode(PIBlockStream)
DIBlockVals← EntropyDecode(DIBlockStream)
// Recompute the block of depth values
DepVals ← ReComputeDepthVals(PIBlockVals, DIBlockVals,
GDD)

3.6 Decompression
The input to our decompression scheme is the final compressed stream
from our encoding approach. In the initialization stage of decompres-
sion, the entropy encoded GDDd pcm is decompressed to retrieve the
GDDd pcm. A prefix-sum is performed on the GDDd pcm to construct

back the GDD. After that, the block offset values are computed by
decoding the corresponding entropy compressed blocks of PI and DI.

For a given pixel location, we compute the corresponding block
index for a given block size. Once the block index is computed, the start
location of the current block’s entropy compressed stream is located
using the block offset values. We gather the block entropy compressed
streams and decode them to retrieve the blocks of PI and DI values.
After that, we re-compute the depth value using Eq. 8. Using the
additional block offsets, only the required parts of the PI compressed
stream and DI compressed stream.

3.7 Performance Analysis
Algorithm-1 highlights the high-level steps of our compression scheme.
The steps to compute PI and SDM in the first stage are straight forward,
as shown in Eq. 2 and Eq. 3. In the second stage, once the GDD is
computed and sorted, the quantization step is performed in linear time
in the size of the GDD. In the third stage, the dictionary index for all
the depth pixels can be computed using binary search on the quantized
sorted GDD to generate the DI. After the GDDd pcm is entropy encoded,
the PI and DI are entropy compressed. The entropy encoding of PI
and DI can be parallelized at a block-level because all the blocks are
independently entropy encoded.

The pseudo-code of our decompression scheme is presented in
Algorithm-2. In the initialization stage, the entropy encoded block
offset arrays for the PI and DI images are decompressed and loaded
into the memory. Next, the entropy encoded GDDd pcm is decoded and
followed by a prefix-sum to compute GDD. To decode the required
block of pixels, we perform the following steps: 1. Read the corre-
sponding entropy compressed PI and DI block streams from memory
based on the offset values; 2. Perform entropy decoding to retrieve the
blocks of PI and DI; 3. Sum up the values from the three components
using Eq. 8. Our decompression scheme is simple because it primarily
requires only reading two small bit streams from memory and entropy
decoding both the streams to re-compute the final depth values. Each
step is parallel friendly.

3.8 Compression Analysis
We briefly examine the relationship between the primary encoding
parameters that control the compression ratio and compression quality.
The PI and DI are entropy encoded losslessly; therefore the compressed
sizes of the entropy encoded PI and DI mainly depend on the frequency
distribution of values in the corresponding blocks of PI and DI. The
larger the range of values to be stored in PI and DI, the higher the
resulting entropy; this leads to larger compressed sizes of PI and DI
components.

• Number of intervals (NI): The interval size (IS) is computed
based on the NI (Eq. 1), which affects the range of normalized
depth values (Eq. 3). The GDD is computed from the normalized
depth values in SDM. A variation in the values of SDM results
in a change in the final dictionary size (GDD). The size of the
GDD changes the distribution of values in DI, which affects the
compression rate. As NI increases, it causes a change in the
frequency distribution of values in PI (Eq. 2). This increases the
size of the entropy compressed PI. A decrease in the size of GDD
affects the frequency distribution of values in DI, decreasing
the size of the entropy compressed DI. The exact pattern of
variation in the final compression ratio with the NI depends on
the depth values in the depth map. The NI does not affect the
compression quality as there is no loss introduced in the first stage
of computation.

• Dictionary error (DE): The DE introduces the loss in our com-
pression approach. The increase in the DE introduces more quan-
tization errors in the depth pixels, and the overall compression
quality decreases. The size of GDD decreases as the DE increases
because more values will be quantized. A change in the size of
the GDD affects the frequency of the distribution of values in
DI. As the size of GDD is reduced the total number of different

values in DI decreases (Eq. 7), which decreases the entropy in the
blocks of DI and thereby increases the total compression ratio.

• Precision (Pr): The variation in the compression ratio and
compression quality with precision is simple and direct. As
the precision increases, the size of the final GDD for a fixed
dictionary error increases by a large factor; the compression qual-
ity also improves accordingly.

The minimum NI allowed in our approach is two. When NI is set to
one, there is only one interval and computation of PI is not required
(all pixels are in the same interval Interval0), and the interval size (IS)
would be a substantially large value. In this case, the normalization
step (Eq. 3) reduces to just subtracting the minimum depth value (Zmin).
Since no normalization is performed, the GDD only consists of large
depth values, and the resulting size of GDD would be very large. In
this case the quantization is directly applied to the depth values instead
of the normalized depth values increasing the final error by a significant
factor. Also, as the size of GDD increases, the range of values stored
in DI increases, and the size of the entropy compressed DI increases.
Even though there is no requirement to store PI when the NI is set to
one, the final compression ratio gains might not be high for a much
larger final error (i.e., low compression quality).

3.9 Interactive Rendering

During interactive rendering, a small portion of RGB-D pixels are re-
quested by the renderer [20] to generate a new view for a given camera
viewpoint. Given the location of the required depth pixels, we can
compute the corresponding block indices of the pixels based on the
block size. Only the required and corresponding entropy compressed
blocks stream are loaded into the memory using the block offset ar-
rays, and entropy decoded. Our method inherently supports parallel
decoding of all the requested blocks of pixels. Hardware support for
decoding entropy compressed streams are widely available [23, 44]
and may commodity GPUs also support hardware entropy decoding.
Therefore, our decompression scheme is hardware friendly as our meth-
ods primarily consist of only entropy decoding and simple operations
(Eq. 8) to re-compute the final depth value.

4 RESULTS

We have analyzed and evaluated our approach on Middlebury
datasets [18, 56] and TUM RGB-D [65] datasets. In addition
to the datasets, there are large number other depth datasets avail-
able [6,45,60,71] Middlebury datasets [18,56] are high-resolution (1K,
2K) depth maps computed using stereo matching algorithms. TUM
RGB-D datasets have depth maps captured using a Microsoft Kinect
camera. We present some interesting results from the Middlebury
datasets [56] in this section. The results on the other Middlebury
datasets [18, 57] and TUM datasets are presented in the suppl. material
(Sec-1).

In standard image compression, the errors introduced in compression
directly affect the rendered view quality. Hence, metrics like Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
are suitable for measuring the compression quality. In the case of depth
maps, the errors lead to distortions in the geometry that indirectly affect
the final rendered view. Therefore, different global statistical metrics
on the disparity values are used for estimating the error or similarity
between two depth maps [32, 56]. The statistical metrics are evaluated
on the disparity values of the depth map and are measured in terms of
pixels. We convert the depth maps into disparity maps to perform the
analysis. Let Z be the actual depth map and Z be the compressed depth
map with N total pixels. The statistical metrics widely used are:

Dataset (resolution : bit-depth) Compression
ratio

RMS
error

Adirnodack (2880×1988 : 32) 54 0.36
Jade Plant (2632×1988 : 32) 40 0.89

Cable (2796×1984 : 32) 55 0.64
Sword2 (2856×2000 : 32) 48 0.74
Piano (2820×1920 : 32) 37 0.28

Backpack (2940×2016 : 32) 40 0.45
Couch (2300×1992 : 32) 43 0.58

Playroom (2800×1908 : 32) 36 0.38
Sword1 (2912×2020 : 32) 22 0.69

Table 1: The compression ratio and RMS error in disparity are shown
for different Middlebury datasets [18, 56]. All the depth maps are
floating point with 32-bit dynamic range. Our RANDM algorithm
works well on these challenging depth map datasets.

Dataset Metric Block
Size: 4

Block
Size: 6

Block
Size: 8

Block
Size: 10

Adirnodack ratio 18 16 14 13.5
RMS 0.57 0.57 0.57 0.57

Jade Plant ratio 20 17 16 15.5
RMS 1.47 1.47 1.47 1.47

Piano ratio 16 14.5 14.5 13
RMS 0.44 0.44 0.44 0.44

Couch ratio 22 19 17 15.5
RMS 1.36 1.36 1.36 1.36

Table 2: The effect of varying block size on the compression ratio and
RMS error is highlighted. The block size has no effect on the RMS
error as the blocks of PI, and DI are compressed in a lossless manner.
The entropy of each block increases as the block size increases causing
a decrease in the effective compression ratio.

Fig. 4: The alterations in the RMS error and compression ratio with
variation in the number of intervals. Increasing the number of intervals
increases the entropy of the blocks in the PI and reduces the range
of normalized depth values, reducing the size of GDD and decreasing
entropy of the block in DI. The balance between the increase and
decrease in the sizes of PI and DI is reflected in the plots for different
datasets.

Threshold : Badσ = percentage of z(x,y) such that |z(x,y)− z(x,y)|> σ ,

Absolute Average Error : AvgErr =
1
N

Σx,y|z(x,y)− z(x,y)|,

Root Means Squre : RMS =

√
1
N

Σx,y|z(x,y)− z(x,y)|2,

Maximum Error : MaxErr = max(|z(x,y)− z(x,y)|).

Table 1 shows the compression ratios, and RMS error for different
depth maps in the Middlebury datasets. The compression ratio varies
between 30−60× and RMS error range is about 0.20−0.91, based on
the contents of the scene captured in the depth map. Additional metrics
for the datasets in Table 1 are presented in the Supplementary material
or the appendix (Sec-1).

We analyze the rate-distortion properties of our approach with re-
spect to variation in different encoding parameters. Table 2 shows

Dataset Metric No.
intervals: 5

No.
intervals: 1

Adirnodack ratio 11.8 16.84
RMS 0.49 7.062

Jade Plant ratio 8.94 19.2
RMS 1.51 14.91

Cable ratio 13 24.2
RMS 0.62 9.45

Sword2 ratio 12.6 22.9
RMS 0.4 6.95

Piano ratio 6.64 12.9
RMS 0.42 5.7

Backpack ratio 8.5 16.08
RMS 0.53 5.55

Couch ratio 7.8 15.17
RMS 1.4 28.81

Playroom ratio 6.84 13.12
RMS 0.68 11.025

Table 3: The compression ratio and compression quality when the
number of intervals is set to one is highlighted. Without splitting, a
large error is introduced in the GDD. The RMS error when the number
of intervals is set to one is significantly higher than when the number
of intervals is set to five.

how the compression ratio and RMS error varies with changes in the
block size. The blocks of PI and DI are encoded losslessly using arith-
metic coding and varying block size has no effect on the RMS error.
Increasing the block size affects the distribution of values in a given
block of PI and DI, increasing the entropy and reducing the effective
compression ratio.

We study the outcome of varying the number of intervals in Figure 4
with fixed block size and dictionary error. An increase in the number of
intervals affects the distribution of values in the blocks of PI, increasing
the entropy, which increases the size of the compressed PI stream. As
the number of intervals increases, the value of the split size decreases,
which effectively reduces the size of the GDD. A reduction in the size
of GDD reduces the entropy in the blocks of DI, resulting in a decrease
in the size of the DI stream. The trade-off between the increase in
the size of the PI stream and the decrease in the size of the DI stream
results in fluctuations (as shown in Figure 4) in the final compression
ratio and RMS error.

Figure 5 and Figure 6 show the results of varying dictionary error
for a fixed number of intervals. Introducing more error results in higher
compression rate and increased errors (RMS), as expected. An increase
in the dictionary error reduces the size of GDD, which increases the
quantization errors and affects the distribution of values in DI. As the
dictionary error increases, the size of the quantized GDD decreases, as
do the resulting normalized depth values in the quantized dictionary.
The entropy of the DI blocks might decrease as the values of DI are
computed based on the best matching value (in the quantized dictio-
nary), causing small local fluctuations in the compression ratio, and
RMS error is noticed. The variation in the RMS error with a change
in the compression ratio is plotted in Figure 7. The data in the plot
(Figure 7) is collected by varying the dictionary error and keeping the
number of intervals constant.

Table 3 highlights the case when the number of intervals is set to one.
We notice a very significant increase in the RMS error as estimated in
the compression analysis (Section - 3.7). Since there is no PI image
present, the compression ratio improves, but the RMS error is too high
to consider any gains.

Figure 9 shows a visual comparison between the ground truth depth
map and a depth map compressed using our approach. We reconstruct
the right-view of the stereo pair from the depth map and left-view.
The reconstruction quality is measured between the right-view and the
ground truth right-view in terms of PSNR and SSIM. We highlight

Fig. 5: The variation of compression ratio with increase in dictionary
error is plotted. For a fixed number of intervals, an increase in the
dictionary error reduces the final size of the quantized GDD decreasing
the entropy of DI block and increasing the resulting compression ratio.

Fig. 6: The variation of RMS error in disparity with increase in dic-
tionary error is highlighted. As the dictionary error increases, the
quantization errors increase, increasing the resulting RMS error in the
disparity.

the reconstruction error of the right-view computed from both uncom-
pressed depth maps and compressed depth maps. This highlights the
benefits of our approach for compressing and transmitting depth maps
for telepresence applications, and reconstructing them at the other end.
Our approach does not degrade the quality of reconstructions.

The existing schemes for compressing static depth maps achieve
compression ratios from 10× to 50×. Our approach provides compres-
sion ratios of 20−60× for an RMS error of 0.5−2 and provides good
visual reconstruction in comparison with the ground truth (Fig. 9). Our
method has an added benefit of random access decoding for interactive
applications.

The most critical regions of a depth map are the sharp discontinu-
ities in-depth (edges), and some of the static depth map compression
schemes are designed to preserve the edges [28]. Our method also
preserves the edges of the depth map. We provide a zoomed-in compar-
ison for different depth maps on the edges in the Figure 8. Although
other small quantization errors are visible in the zoomed-in compressed
areas, we notice that our method preserves the depth discontinuities
and edges.

In order to measure the decompression time, we have implemented
a CPU decoder to decode blocks of depth maps from the compressed
stream. The decompression time for decoding a block of size four is less
than 1 microseconds, and a block size of eight is up to 1 microsecond
using a single thread on an Intel Xeon CPU.

5 CONCLUSIONS, LIMITATIONS & FUTURE WORK

5.1 Conclusions
We present the first random access scheme (RANDM) that encodes
depth maps using range-partition and computes a global dictionary. Our

Fig. 7: The variation in RMS error with change in compression ratio
is highlighted. As the compression ratio increases, the error in the
disparities of the pixels increases, resulting in an overall increase in
RMS error.

Compressed Original

Compression Ratio: 53X
RMS Error: 0.4

(a)
Compressed Original

Compression Ratio: 22X
RMS Error: 0.69

(b)

Fig. 8: Small regions of size 128× 128 are selected and scaled to
2048× 2048 around edges of a few interesting regions. We show a
comparison of the scaled regions of the compressed depth map and
uncompressed depth map. Edges are critical information in depth maps
and we introduce no errors in the edges as highlighted.

method provides random access to blocks of depth pixels, supports fast
parallel decoding, and is amenable for hardware decoding. We evalu-
ated our approach on several depth maps of different dynamic ranges
collected from several datasets. Our method achieves compression
ratios similar to or better than the existing approaches. The average
time to decode a block of pixels from the compressed stream is up to 1
microseconds and it can be used for interactive rendering.

5.2 Limitations

One of the primary limitations of our approach is that there is no clear or
straightforward relationship between the encoding parameters and the
compression quality and ratio. For a given set of encoding parameters,
our method can result in low compression ratios and significant error
at the same time. Other times, our method can result in a small RMS

(A) Ground Truth (B) Compressed Depth
(C) Ground Truth
Reconstruction

(D) Compressed Depth
Reconstruction

PSNR: 14.55

SSIM: 0.845

PSNR: 14.53

SSIM: 0.843
Compression Ratio: 22X

RMS Error: 0.69

PSNR: 14.14

SSIM: 0.688

PSNR: 14.25

SSIM: 0.704

Compression Ratio: 46X

RMS Error: 1.21

PSNR: 15.12

SSIM: 0.865

PSNR: 15.09

SSIM: 0.859

Compression Ratio: 37X

RMS Error: 0.28

Sword1

Piano

Jade Plant

Sword2 Compression Ratio: 47X

RMS Error: 0.5

PSNR: 12.69

SSIM: 0.822

PSNR: 12.67

SSIM: 0.822

Fig. 9: We present a visual comparison between the ground truth depth map and a decompressed depth map compressed using our approach. We
reconstruct the right-view from the depth map and the left-view for given stereo image pairs. A comparison between the right-view reconstructed
from the uncompressed depth map and compressed depth map is highlighted. (A) Uncompressed ground truth depth maps. (B) The compressed
depth maps using our approach. The corresponding compression ratio and the RMS error from our method are mentioned in the figure. (C) The
right-view reconstructed from the uncompressed ground truth depth map. (D) The right-view reconstructed from the compressed depth map using
our method. The PSNR and SSIM metrics between the reconstructed view and the ground truth right-view (stereo pairs) are mentioned in the
figure.

error for a good compression ratio. However, the maximum error and
percentage of bad pixels can be quite high, leading to noticeable errors
in reconstruction or rendered images. Our method divides the depth
range into intervals of equal size. If the input depth map has a big
range but an uneven distribution of depth values in the depth map, the
compression rate may not be high.

5.3 Future Work

Our method partitions the depth range into equal-sized intervals. In-
stead of equal sized intervals, we might consider intervals of uneven
size depending on the exact distribution of depth values in the depth
map. We speculate that a smaller number of uneven intervals covering
all the depth pixels in the depth map might reduce the range of val-
ues in the three decomposed parts (PI, DI, GDD) leading to further

compression. Currently, our approach is only for encoding static depth
maps; in the future, we would like to extend the method for depth
map videos. Finally, we would like to integrate our approach with
a tele-presence system that performs realtime capture of depth maps,
followed by compression, transmission and rendering.

REFERENCES

[1] R. Anderson, D. Gallup, J. T. Barron, J. Kontkanen, N. Snavely, C. H. Este-
ban, S. Agarwal, and S. M. Seitz. Jump: Virtual reality video. SIGGRAPH
Asia, 2016.

[2] A. C. Beers, M. Agrawala, and N. Chaddha. Rendering from compressed
textures. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’96, pp. 373–378. ACM,
1996. doi: 10.1145/237170.237276

[3] R. C. Bolles, H. H. Baker, and D. H. Marimont. Epipolar-plane image
analysis: An approach to determining structure from motion. International
journal of computer vision, 1(1):7–55, 1987.

[4] B.-B. Chai, S. Sethuraman, H. S. Sawhney, and P. Hatrack. Depth map
compression for real-time view-based rendering. Pattern Recognition
Letters, 25(7):755 – 766, 2004. Video Computing. doi: 10.1016/j.patrec.
2004.01.002

[5] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum. Plenoptic sampling.
In Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, pp. 307–318. ACM Press/Addison-Wesley
Publishing Co., 2000.

[6] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,
S. Song, A. Zeng, and Y. Zhang. Matterport3d: Learning from rgb-d data
in indoor environments. International Conference on 3D Vision (3DV),
2017.

[7] J. Chen, J. Hou, and L.-P. Chau. Light field compression with disparity-
guided sparse coding based on structural key views. IEEE Transactions
on Image Processing, 27(1):314–324, 2018.

[8] E. Delp and O. Mitchell. Image compression using block truncation
coding. Communications, IEEE Transactions on, 27(9):1335–1342, sep
1979. doi: 10.1109/TCOM.1979.1094560

[9] S. Fenney. Texture compression using low-frequency signal modulation.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, HWWS ’03, pp. 84–91. Eurographics Association,
2003.

[10] R. Geldreich. Advanced dxtc texture compression library. https://
github.com/richgel999/crunch, 2012.

[11] B. Girod, C.-L. Chang, P. Ramanathan, and X. Zhu. Light field compres-
sion using disparity-compensated lifting. In Acoustics, Speech, and Signal
Processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE International
Conference on, vol. 4, pp. IV–760. IEEE, 2003.

[12] S. B. Gokturk, H. Yalcin, and C. Bamji. A time-of-flight depth sensor -
system description, issues and solutions. In 2004 Conference on Computer
Vision and Pattern Recognition Workshop, pp. 35–35, June 2004. doi: 10.
1109/CVPR.2004.291

[13] M. M. Hannuksela, Ye-Kui Wang, and M. Gabbouj. Isolated regions in
video coding. IEEE Transactions on Multimedia, 6(2):259–267, April
2004. doi: 10.1109/TMM.2003.822784

[14] J. Hasselgren and T. Akenine-Möller. Efficient depth buffer compression.
In Graphics Hardware, pp. 103–110, 2006.

[15] P. Hedman, J. Philip, T. Price, J.-M. Frahm, G. Drettakis, and G. Brostow.
Deep blending for free-viewpoint image-based rendering. ACM Trans.
Graph., 37(6):257:1–257:15, Dec. 2018. doi: 10.1145/3272127.3275084

[16] P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow. Scalable inside-out
image-based rendering. ACM Trans. Graph., 35(6):231:1–231:11, Nov.
2016. doi: 10.1145/2980179.2982420

[17] Heung-Yeung Shum, Sing Bing Kang, and Shing-Chow Chan. Survey of
image-based representations and compression techniques. IEEE Transac-
tions on Circuits and Systems for Video Technology, 13(11):1020–1037,
Nov 2003. doi: 10.1109/TCSVT.2003.817360

[18] H. Hirschmuller and D. Scharstein. Evaluation of cost functions for stereo
matching. In 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8, June 2007. doi: 10.1109/CVPR.2007.383248

[19] E. Horn and N. Kiryati. Toward optimal structured light patterns. Image
and Vision Computing, 17(2):87–97, 1999.

[20] J. Huang, Z. Chen, D. Ceylan, and H. Jin. 6-dof vr videos with a single
360-camera. In 2017 IEEE Virtual Reality (VR), pp. 37–44, March 2017.
doi: 10.1109/VR.2017.7892229

[21] K. I. Iourcha, K. S. Nayak, and Z. Hong. System and method for fixed-rate
block-based image compression with inferred pixel values. U. S. Patent
5956431, 1999.

[22] A. Jagmohan, A. Sehgal, and N. Ahuja. Compression of lightfield rendered
images using coset codes. In Signals, Systems and Computers, 2004.
Conference Record of the Thirty-Seventh Asilomar Conference on, vol. 1,
pp. 830–834. IEEE, 2003.

[23] Jian-Wen Chen, Cheng-Ru Chang, and Youn-Long Lin. A hardware accel-
erator for context-based adaptive binary arithmetic decoding in h.264/avc.
In 2005 IEEE International Symposium on Circuits and Systems, pp. 4525–
4528 Vol. 5, May 2005. doi: 10.1109/ISCAS.2005.1465638

[24] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and A. Bhowmik.
Intel realsense stereoscopic depth cameras. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.

[25] S. Kim and Y. Ho. Mesh-based depth coding for 3d video using hierarchi-
cal decomposition of depth maps. In 2007 IEEE International Conference
on Image Processing, vol. 5, pp. V – 117–V – 120, Sep. 2007. doi: 10.
1109/ICIP.2007.4379779

[26] T. Koch, L. Liebel, F. Fraundorfer, and M. Korner. Evaluation of cnn-based
single-image depth estimation methods. In The European Conference on
Computer Vision (ECCV) Workshops, September 2018.

[27] P. Krajcevski, S. Pratapa, and D. Manocha. Gst: Gpu-based supercom-
pressed textures. 2016.

[28] R. Krishnamurthy, Bing-Bing Chai, Hai Tao, and S. Sethuraman. Com-
pression and transmission of depth maps for image-based rendering. In
Proceedings 2001 International Conference on Image Processing (Cat.
No.01CH37205), vol. 3, pp. 828–831 vol.3, Oct 2001. doi: 10.1109/ICIP.
2001.958248

[29] P. K. Lai, S. Xie, J. Lang, and R. Laqarure. Real-time panoramic depth
maps from omni-directional stereo images for 6 dof videos in virtual reality.
In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR),
pp. 405–412, March 2019. doi: 10.1109/VR.2019.8798016

[30] M. Levoy and P. Hanrahan. Light field rendering. In Proceedings of
the 23rd Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’96, pp. 31–42. ACM, New York, NY, USA, 1996.
doi: 10.1145/237170.237199

[31] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, et al. The digital michelan-
gelo project: 3d scanning of large statues. In Proceedings of the 27th
annual conference on Computer graphics and interactive techniques, pp.
131–144. ACM Press/Addison-Wesley Publishing Co., 2000.

[32] J. Li, R. Klein, and A. Yao. A two-streamed network for estimating fine-
scaled depth maps from single rgb images. In The IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[33] Z. Lin and H.-Y. Shum. On the number of samples needed in light field
rendering with constant-depth assumption. In Computer Vision and Pattern
Recognition, 2000. Proceedings. IEEE Conference on, vol. 1, pp. 588–595.
IEEE, 2000.

[34] D. Liu, L. Wang, L. Li, Z. Xiong, F. Wu, and W. Zeng. Pseudo-sequence-
based light field image compression. In Multimedia & Expo Workshops
(ICMEW), 2016 IEEE International Conference on, pp. 1–4. IEEE, 2016.

[35] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields for depth
estimation from a single image. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

[36] S. Liu, P. Lai, D. Tian, C. Gomila, and C. W. Chen. Joint trilateral
filtering for depth map compression. In Visual Communications and
Image Processing 2010, vol. 7744, p. 77440F. International Society for
Optics and Photonics, 2010.

[37] W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learning for stereo
matching. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[38] M. Magnor and B. Girod. Data compression for light-field rendering. IEEE
Transactions on Circuits and Systems for Video Technology, 10(3):338–
343, 2000.

[39] A. Maimone and H. Fuchs. Encumbrance-free telepresence system with
real-time 3d capture and display using commodity depth cameras. In 2011
10th IEEE International Symposium on Mixed and Augmented Reality, pp.
137–146, Oct 2011. doi: 10.1109/ISMAR.2011.6092379

[40] H. S. Malvar. Adaptive run-length/golomb-rice encoding of quantized gen-
eralized gaussian sources with unknown statistics. In Data Compression
Conference (DCC’06), pp. 23–32, March 2006. doi: 10.1109/DCC.2006.
5

[41] D. Marr. Vision: A Computational Investigation into the Human Repre-

https://github.com/richgel999/crunch
https://github.com/richgel999/crunch

sentation and Processing of Visual Information. Henry Holt and Co., Inc.,
New York, NY, USA, 1982.

[42] A. Mavlankar and B. Girod. Spatial-random-access-enabled video coding
for interactive virtual pan/tilt/zoom functionality. IEEE Transactions on
Circuits and Systems for Video Technology, 21(5):577–588, May 2011.
doi: 10.1109/TCSVT.2011.2129170

[43] S. Mehrotra, Z. Zhang, Q. Cai, C. Zhang, and P. A. Chou. Low-complexity,
near-lossless coding of depth maps from kinect-like depth cameras. In
2011 IEEE 13th International Workshop on Multimedia Signal Processing,
pp. 1–6, Oct 2011. doi: 10.1109/MMSP.2011.6093803

[44] J. L. Mitchell and W. B. Pennebaker. Optimal hardware and software
arithmetic coding procedures for the q-coder. IBM Journal of Research
and Development, 32(6):727–736, Nov 1988. doi: 10.1147/rd.326.0727

[45] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation
and support inference from rgbd images. In ECCV, 2012.

[46] J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson. Adap-
tive scalable texture compression. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on High Performance Graphics,
HPG ’12, pp. 105–114. Eurographics Association, 2012.

[47] J. O’Neal. Differential pulse-code modulation (pcm) with entropy coding.
IEEE Transactions on Information Theory, 22(2):169–174, March 1976.
doi: 10.1109/TIT.1976.1055534

[48] A. R. B. OpenGL. ARB texture compression bptc. http://www.

opengl.org/registry/specs/ARB/texture_compression_bptc.

txt, 2010.
[49] R. S. Overbeck, D. Erickson, D. Evangelakos, and P. Debevec. Welcome

to light fields. In ACM SIGGRAPH 2018 Virtual, Augmented, and Mixed
Reality, SIGGRAPH ’18, pp. 32:1–32:1. ACM, New York, NY, USA,
2018. doi: 10.1145/3226552.3226557

[50] C. Perra and P. Assuncao. High efficiency coding of light field images
based on tiling and pseudo-temporal data arrangement. In Multimedia &
Expo Workshops (ICMEW), 2016 IEEE International Conference on, pp.
1–4. IEEE, 2016.

[51] I. Peter and W. Straßer. The wavelet stream: Interactive multi resolution
light field rendering. In Rendering Techniques 2001, pp. 127–138. Springer,
2001.

[52] S. Pratapa, P. Krajcevski, and D. Manocha. Mptc: Video rendering for
virtual screens using compressed textures. In Proceedings of the 21st ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’17,
pp. 14:1–14:9. ACM, New York, NY, USA, 2017. doi: 10.1145/3023368.
3023375

[53] S. Pratapa and D. Manocha. Rlfc: Random access light field compression
using key views and bounded integer sequence encoding. In Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, I3D ’19, pp. 9:1–9:10. ACM, New York, NY, USA, 2019. doi: 10.
1145/3306131.3317018

[54] M. Sarkis and K. Diepold. Depth map compression via compressed
sensing. In 2009 16th IEEE International Conference on Image Processing
(ICIP), pp. 737–740, Nov 2009. doi: 10.1109/ICIP.2009.5414286

[55] E. Sayyad, P. Sen, and T. Höllerer. Panotrace: Interactive 3d modeling
of surround-view panoramic images in virtual reality. In Proceedings of
the 23rd ACM Symposium on Virtual Reality Software and Technology,
VRST ’17, pp. 32:1–32:10. ACM, New York, NY, USA, 2017. doi: 10.
1145/3139131.3139158

[56] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić,
X. Wang, and P. Westling. High-resolution stereo datasets with subpixel-
accurate ground truth. In German conference on pattern recognition, pp.
31–42. Springer, 2014.

[57] D. Scharstein and C. Pal. Learning conditional random fields for stereo.
In 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–8, June 2007. doi: 10.1109/CVPR.2007.383191

[58] N. D. Seif Allah Elmesloul Nasri, Khaled Khelil. Enhanced view random
access ability for multiview video coding. Journal of Electronic Imaging,
25(2):1 – 13 – 13, 2016. doi: 10.1117/1.JEI.25.2.023027

[59] A. Serrano, I. Kim, Z. Chen, S. DiVerdi, D. Gutierrez, A. Hertzmann, and
B. Masia. Motion parallax for 360 rgbd video. IEEE Transactions on
Visualization and Computer Graphics, 25(5):1817–1827, May 2019. doi:
10.1109/TVCG.2019.2898757

[60] N. Silberman and R. Fergus. Indoor scene segmentation using a structured
light sensor. In Proceedings of the International Conference on Computer
Vision - Workshop on 3D Representation and Recognition, 2011.

[61] D. Sim and R. Park. Robust reweighted map motion estimation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(04):353–

365, apr 1998. doi: 10.1109/34.677261
[62] J. Ström and T. Akenine-Möller. iPACKMAN: high-quality, low-

complexity texture compression for mobile phones. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
HWWS ’05, pp. 63–70. ACM, 2005. doi: 10.1145/1071866.1071877

[63] J. Ström and M. Pettersson. ETC2: texture compression using invalid com-
binations. In Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, GH ’07, pp. 49–54. Eurographics As-
sociation, 2007.

[64] J. Strom and P. Wennersten. Lossless compression of already compressed
textures. In Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, pp. 177–182. ACM, 2011.

[65] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of rgb-d slam systems. In Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct. 2012.

[66] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A characterization
of ten hidden-surface algorithms. ACM Computing Surveys (CSUR),
6(1):1–55, 1974.

[67] G. Tischler. Refinement of near random access video coding with weighted
finite automata. In International Conference on Implementation and
Application of Automata, pp. 46–57. Springer, 2006.

[68] M. O. Wildeboer, T. Yendo, M. P. Tehrani, T. Fujii, and M. Tanimoto.
Color based depth up-sampling for depth compression. In 28th Picture
Coding Symposium, pp. 170–173, Dec 2010. doi: 10.1109/PCS.2010.
5702451

[69] A. D. Wilson. Fast lossless depth image compression. In Proceedings
of the 2017 ACM International Conference on Interactive Surfaces and
Spaces, ISS ’17, pp. 100–105. ACM, New York, NY, USA, 2017. doi: 10.
1145/3132272.3134144

[70] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540, 1987.

[71] J. Xiao, A. Owens, and A. Torralba. Sun3d: A database of big spaces
reconstructed using sfm and object labels. In The IEEE International
Conference on Computer Vision (ICCV), December 2013.

[72] C. Zhang and J. Li. Compression of lumigraph with multiple reference
frame (mrf) prediction and just-in-time rendering. In Data Compression
Conference, 2000. Proceedings. DCC 2000, pp. 253–262. IEEE, 2000.

http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt

	Introduction
	Prior Work and Background
	Compression of Image-Based Representations
	 High-Efficiency Compression Schemes
	Random Access Compression Schemes

	Depth Map Compression
	Lossless Schemes
	Lossy Schemes
	Z-buffer Compression

	Our Method: RANDM
	Notation and Terminology
	Division of Depth Range
	Global Depth Dictionary
	Dictionary Index Image
	Entropy Encoding
	Decompression
	Performance Analysis
	Compression Analysis
	Interactive Rendering

	Results
	Conclusions, Limitations & Future Work
	Conclusions
	Limitations
	Future Work

