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Reinforcement Learning-based Visual Navigation
with Information-Theoretic Regularization

Qiaoyun Wu1, Kai Xu2, Jun Wang1, Mingliang Xu3, Xiaoxi Gong1, and Dinesh Manocha4

Abstract—To enhance the cross-target and cross-scene gener-
alization of target-driven visual navigation based on deep rein-
forcement learning (RL), we introduce an information-theoretic
regularization term into the RL objective. The regularization
maximizes the mutual information between navigation actions
and visual observation transforms of an agent, thus promoting
more informed navigation decisions. This way, the agent mod-
els the action-observation dynamics by learning a variational
generative model. Based on the model, the agent generates
(imagines) the next observation from its current observation
and navigation target. This way, the agent learns to understand
the causality between navigation actions and the changes in its
observations, which allows the agent to predict the next action
for navigation by comparing the current and the imagined next
observations. Cross-target and cross-scene evaluations on the
AI2-THOR framework show that our method attains at least 10%
improvement of average success rate over some state-of-the-art
models. We further evaluate our model in two real-world settings:
navigation in unseen indoor scenes from a discrete Active Vision
Dataset (AVD) and continuous real-world environments with a
TurtleBot. We demonstrate that our navigation model is able to
successfully achieve navigation tasks in these scenarios1.

Index Terms—Visual-Based Navigation, Reinforcement Learn-
ing, Model Learning for Robot Control.

I. INTRODUCTION

V ISUAL navigation is one of the basic components nec-
essary for an autonomous agent to perform a variety

of tasks in complex environments. This component can be
characterized as the ability of an agent to understand its
surrounding environments and navigate efficiently and safely
to a designated target solely based on input from on-board
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visual sensors [1], [2]. This encompasses two key points. First,
the agent should be able to analyze and infer the aspects most
relevant to the target from the current observation to guide the
decision. Second, the agent should understand the correlation
and causality between navigation actions and the changes in
its observation of the surroundings.

Recently, there has been an increased interest in mapless
visual navigation approaches where the agent neither relies on
the prior knowledge of the environment, nor performs online
mapping. Instead, it predicts navigation actions directly from
observational pixels thanks to end-to-end deep learning, e.g.,
Imitation Learning (IL) [3] and Deep Reinforcement Learn-
ing [4], [5]. Despite significant progress in visual navigation,
the generalization to novel targets and unseen scenes is still
a fundamental challenge. In this work, we focus on visual
navigation, driven by targets represented by an image, with
both cross-scene and cross-target generalization.

To achieve visual navigation, we propose enhancing a Deep
Reinforcement Learning approach (e.g. A3C [1]) with an
information-theoretic regularization. We introduce the regu-
larization into the RL objective to guide the agent in a more
informative search for its navigation actions. In particular,
the regularization maximizes the mutual information between
the action and the next visual observation given the current
visual observation of the agent. This way, the agent models
the action-observation dynamics and learns to understand the
causality between navigation actions and the changes in its
observations, thus making more informed decisions.

The maximization is, however, intractable due to the un-
known next visual observation at each time step. Inspired by
our previous work [6], which presents a variational Bayesian
model (NeoNav) for supervised navigation learning2, we intro-
duce a variational auto-encoder (VAE) model, which generates
(imagines) the next observation based on the current observa-
tion and the target view. We regularize the latent space of
the VAE through the action-observation dynamics. The agent
then learns to predict the next action based on the current and
the imagined observations. Consequently, the agent essentially
builds a connection between the current observation and the
target to infer the most relevant part for navigation and makes
decisions based on the causality between navigation actions
and observational changes.

There are several works on introducing information-
theoretic regularization to RL [7], [8]. Most of them strive to
maximize the entropy of the policy to encourage exploration
or to make the policy more stochastic for better robustness. A

2https://github.com/wqynew/NeoNav
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specifically related work is [9], which devises a similar mutual
information maximization as an internal reward for learning
an intrinsically motivated agent. In contrast to their work,
we use mutual information maximization as a regularization
of the objective and learn a generative model of the action-
observation dynamics. To our knowledge, our method is the
first to use information-theoretic regularization to guide the
learning of generalizable visual navigation.

In summary, our contributions are as follows: (1) We
present a novel method of incorporating supervision into an
RL framework (A3C) by introducing an information-theoretic
regularization for improving the sample efficiency in target-
driven visual navigation policy learning. (2) We propose a
visual navigation model that builds the causality between robot
actions and visual transformations, and the connection between
visual observations and navigation targets. This significantly
improves robot navigation performance in unseen environ-
ments with novel targets. We conduct extensive evaluations on
datasets from both synthetic and real-world scenes, including
AI2-THOR [1] and AVD [10]. Our model outperforms some
state-of-the-art methods significantly (e.g., at least 10% higher
success rate for both cross-target and cross-scene evaluation
on AI2-THOR). Furthermore, we show that our model, trained
on the discrete household dataset (e.g., AVD) and deployed on
a Turtlebot, can transfer to realistic public scenes and exhibit
robustness towards the target type and the scene layout.

II. RELATED WORKS

Autonomous navigation in an unknown environment is one
of the core problems in mobile robotics and it has been ex-
tensively studied. In this section, we provide a brief overview
of some relevant works.

Reinforcement Learning. Recently, a growing number of
methods have been reported for RL-based navigation [11],
[12], [13], [14]. Gupta et al. [15] present an end-to-end archi-
tecture to jointly train mapping and planning for navigation in
novel scenes with the perfect odometry available assumption.
Savinov et al. [16] propose the use of topological graphs
for navigation tasks and require several minutes of footage
before navigating in an unseen scene. Wei et al. [17] integrate
semantic and functional priors to improve navigation perfor-
mance and can generalize to unseen scenes and objects. Xie
et al. [18] propose using a few snapshots of the environment
combined with directional guidance to help execute navigation
tasks. Hirose et al. [19] introduce a learning agent that can
follow a demonstrated path. The path consists of raw image
sequences when navigating in a new environment, which
largely discounts the practicality.

Combined Learning Methods. Methods combining the
advantages of IL and RL have become popular [20]. These
works provide suitable expert demonstrations to mitigate the
low RL sample efficiency problem. Ho et al. [21] exploit
a generative adversarial model to fit distributions of states
and actions defining expert behavior. They learn a policy
from supplied data and hence avoid the costly expense of
RL. [22], [23] share the same idea of learning from multiple
teachers. Li et al. [22] discard bad maneuvers by using a

reward-based online evaluation of the teachers during training.
Muller et al. [23] use a DNN to fuse multiple controllers
and learn an optimized controller. Target-driven navigation in
static environments is different from the problems above due
to the easy acquisition of the optimal expert (the shortest path).
Hence, there is no need to consider the bad demonstrations.
We learn to maximize an expected long-term return provided
by environments. On the other hand, we add an intermediate
process to the navigation policy (the generation of the future
observation) and predict an action based on the difference
between the current and the future observations. This makes
a more effective and generalizable navigation model.

Information Gain-based Approaches. Information gain-
based strategies have been applied to a variety of robotics
problems involving planning and control. They have been used
to study optimal sensor placement and motion coordination
for a target-tracking task [24], derive an information-theoretic
metric as a new visual feature for visual servoing [25],
optimize an information-theoretic objective to improve the in-
formativeness of both local motion primitives and global plans
for mapping [26], facilitate RL to compute good trajectories
for scene exploration [7], and generate intrinsic reward to learn
an exploration policy [27]. There are differences in the way
mutual information is used in these applications. However,
information gain-based strategies have not been applied to
target-driven visual navigation, the goal of which is to navigate
from a random location in a scene to a specified target.

Dynamics Model Learning. There is extensive literature
on learning a dynamics model and using this model to train
a policy. Most notable among these is the work from [28],
which proposes that the Imagination-Augmented Agent learns
approximate environment models before outputting the action
policy. Ha et al. [29] incorporate a generative recurrent model
into reinforcement learning to predict the future given the past
in an unsupervised manner. However, the goal information
is hard-coded in these neural networks and the experimental
environments are generally simple and fully observed, leading
to poor generalization to complex, high-dimensional tasks with
unseen targets in partially observed scenes. Pathak et al. [30]
learn an inverse dynamics model based on the demonstrated
trajectory way-points from an expert and demonstrate naviga-
tion in previously unseen office environments with a TurtleBot.
We learn a dynamics model by maximizing the mutual infor-
mation between the action and the adjacent observation pair,
which can achieve better navigation generalization.

III. TARGET-DRIVEN VISUAL NAVIGATION

In this section, we begin by outlining the target-driven
visual navigation task. We then present our network, which
combines an information-theoretic regularization with deep
reinforcement learning for this task.

A. Navigation Task Setup

We focus on learning a policy for navigating an agent from
its current location to a target in an unknown scene using only
visual observations. Our problem is: given a target image g,
at each time step t, the agent receives as input an observation
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xt of an environment to predict an action at that will navigate
the robot to the viewpoint where g is taken.

Datasets. We conduct our experiments on the AI2-THOR,
AVD, and some real-world scenarios. AI2-THOR consists of
120 synthetic scenes in four categories: kitchen, living room,
bedroom, and bathroom. Each category includes 30 scenes,
20 of which are used for training, 5 for validating, and 5
for testing, in accordance with [2]. AVD contains 14 different
households, 8 of which are used for training, 3 for validating,
and 3 for testing, as in [10]. We further transfer the learned
policies from AVD to some real-world public scenes based on
a robotic platform (e.g., TurtleBot); these scenes have never
been encountered before.

Observations. In contrast to [1], which stacks four history
frames as current inputs at each time step, we utilize four
views (RGB images by default) with evenly distributed az-
imuth angles at each location for current observation xt. The
resolution of each view is 300 ∗ 300.

Targets. The navigation target is specified by an RGB
image, which contains a goal object. Please refer to [31] for the
training and testing goal objects. Our model learns to analyze
the relationship between the current observation and the target
image, and hence we can show generalization to novel targets
and scenes that the agent has not previously encountered.

Actions. Each scene in our dataset is discretized into
a grid-world navigation graph. The agent acts on these
graphs and its action space is determined by the connec-
tivity structures of these graphs as a discrete set: A =
{move forward;move back;move left;move right; rotate ccw;
rotate cw; stop}, as defined in [10]. The discrete graph makes
it easy to acquire a shortest action path for a target-driven
navigation task (e.g., using A-star algorithm). In this work,
we will show how to incorporate the shortest paths during
training to learn a navigation controller.

Rewards. Our purpose during policy training is to minimize
the length of the trajectory to the navigation targets. Therefore,
reaching the target is assigned a high reward value 10.0 and
we penalize each step with a small negative reward −0.01. To
avoid collision, we design a penalty of −0.2 when obstacles
are hit during run-time. In addition, we consider the geodesic
distance to the goal at each time step, Geo(xt; g), as in [5],
and reformulate the reward as:

rt =


− 0.01 if t = 0

+ 10.0 elif succeed
− 0.2 elif collide
Geo(xt−1, g)−Geo(xt, g)− 0.01 otherwise.

(1)

Success measure. In our setting, the agent runs up to 100
steps, unless a stop action is issued or a task is successful. The
task is considered successful if the agent predicts a stop action,
the goal object is in the field of the current front-view, and
the distance between the current location and the target view
location is within a threshold (e.g., 0.5m for the AI2-THOR
simulator and 1.0m for two real-world settings).

B. Information-Theoretic Regularization

We formulate the target-driven visual navigation using a
deep reinforcement learning framework (TD-A3C). At each

time step t, the network takes a current observation xt and
a navigation target g as inputs and finally outputs an action
distribution π(xt, g) and a scalar v(xt, g). We choose action
at from the policy π(xt, g), and v(xt, g) is the value of the
current policy. This network can be updated by minimizing a
traditional RL navigation loss as in [1]. Figure 1(a) shows the
interaction between the agent and an environment. However,
achieving strong results with one single policy network for all
training scenes is difficult, since the agent is very sensitive to
the RL reward function and requires extensive training time.
In addition, [1] does not consider generalization to previously
unseen environments.

Sensory-input: 𝑥௧

Environment
E

Action: 𝑎௧

Reward: 𝑟௧

Policy
𝜋ሺ𝑥௧, 𝑔ሻ

Value
𝑣ሺ𝑥௧, 𝑔ሻ

TD error

𝑥௧ାଵ

Target: 𝑔

W

Previous action: 𝑎௧ିଵ
Sensory-input: 𝑥௧

Environment
E

Action: 𝑎௧

Reward: 𝑟௧

Policy
𝜋ሺ𝑥௧, 𝑔ሻ

Value
𝑣ሺ𝑥௧, 𝑔ሻ

Target: 𝑔

𝑥௧ାଵ
௚௧ and 𝑎௧

௚௧
W

𝑥௧ାଵ
(a) (b)

Fig. 1. Target-driven navigation flow diagram showing how agents interact
with the environment. (a) Traditional RL agent (in the orange square). (b)
Our agent (in the blue square). Layer parameters in a gray square are shared
by a policy network and a value network. The blue represents the difference
between the two flow diagrams. We propose using an information-theoretic
regularization to facilitate the traditional RL learning, which requires more
information from the environment, e.g., xgt

t+1 and agtt .

In order to address the shortcoming above, we revisit
Shannon’s mutual information (MI) measure to further reduce
the uncertainty in navigation action decisions when a visual
observation is given. Let xt denote the current observation,
xt+1 denote the next observation, and at be the relative
action between the two observations. We observe that an agent
always abides by a task-independent information-theoretic
regularization: there should be high mutual information be-
tween the action at and the next observation xt+1 given the
current observation xt. The mutual information I(xt+1, at|xt)
is defined as:
I(at, xt+1|xt) = H(at|xt)−H(at|xt+1, xt)

=

∫∫
p(at, xt+1|xt) log p(at|xt, xt+1)datdxt+1 +H(at)

≥
∫∫

p(xt+1|xt, at)p(at|xt) log p(at|xt, xt+1)datdxt+1

=

∫∫∫
p(xt+1|z)p(z|xt, at)p(at) log p(at|xt, xt+1)datdxt+1dz

= Ext+1∼p(xt+1|z)[Ez∼p(z|xt,at)[Eat∼p(at)[log p(at|xt, xt+1)]]]
(2)

In this setting, we suggest that the action at of an agent is
unrelated to its current visual observation xt, but in connection
with xt only if the next observation xt+1 or a navigation
goal g is given. Thus, we have p(at|xt) identically equal
to p(at), i.e. H(at|xt) is identically equal to H(at). This
is different from traditional learning-based visual navigation
methods, which tackle individual tasks in isolation, where the
goal information is hard-coded in the neural networks and
corresponding state descriptions [32]. Thus, p(at|xt) 6= p(at)
and these present poor generalization to unexplored targets. In
addition, our action space is the deterministic discrete set A,
i.e. at ∈ A. Hence, we assume at ∼ Cat(1/C), where Cat(·)
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is a categorical distribution and C is the cardinality of A.
H(at) ≥ 0 is a constant. This regularization provides a well-
grounded action-observation dynamic model p(xt+1|xt, at)
and describes the causality between navigation actions and
observational changes p(at|xt, xt+1). An agent that seeks to
maximize this value will gain a compelling understanding of
the dynamics and the causality. This intuition leads us to
incorporate the regularization into our navigation learning.

We propose adapting the task-independent regularization
above by incorporating some supervision to help learn a strong
target-driven visual navigation model, a special case of the
lower bound in Equation 2. The supervision is from the
shortest paths of target-driven navigation tasks. Specifically,
at each time step, given the current observation and the target,
the optimal next observation xgtt+1 and relative action agtt are
provided as ground truth, see Figure 1(b).

To maximize the lower bound, we first assume the next
observation xt+1 and the ground truth action agtt are given
and thus the lower bound is converted to a predictive control
term as E1 = Eagtt ∼p(a

gt
t )[log p(at|xt, xt+1)]. Subsequently,

we generate the next observation xt+1 by a generative module
z ∼ p(z|xt, at), xt+1 ∼ p(xt+1|z), which is most related to
the navigation task. Hence, we use the ground truth action agtt
to guide the generation: z ∼ p(z|xt, agtt ), xt+1 ∼ p(xt+1|z).
The ground truth xgtt+1 is used to help update the generation
module though a reconstruction term E2 = ||xgtt+1−xt+1||2. In
addition, considering that agtt is unknown a priori during real
navigation and is inherently determined by the navigation tar-
get g, we design the distribution q(z|xt, g) to approximate the
distribution p(z|xt, agtt ), which formulates a Kullback-Leibler
(KL) divergence term as E3 = KL[q(z|xt, g)||p(z|agtt , xt)].
z ∼ p(z|xt, agtt ), xt+1 ∼ p(xt+1|z) and z ∼ q(z|xt, g)
constitute our variational auto-encoder module. Overall, we
obtain a variational objective function as:

J (xt, g) = αE1 − βE2 − γE3 (3)

The hyper-parameter (α, β, γ) tunes the relative importance of
the three terms: predictive control, reconstruction, and KL.

C. Regularized Navigation Model

The key idea in reinforcement learning for navigation is
finding a policy π(xt, g) that can maximize expected future
return. Within our regularized navigation framework, along
with the environment reward, our agent puts a great deal
of weight on the ability to understand the action-observation
dynamics and the causality between actions and observational
changes. This changes the RL problem to:

π∗ = argmax
π

E[

∞∑
t=0

τ trt + J (xt, g)] (4)

where rt is a reactive reward provided by the environment at
each time step and τ ∈ (0, 1] is a discount factor. Correspond-
ing to the objective, the actor-critic structure in our regularized
A3C framework is developed as Figure 2.

Policy Network. The inputs to the policy network are the
multi-view images xt and the target image g at each time step
t. The network first learns to reason about some important
information from the current observation based on the target,

which is then used to generate the next expected observation.
This process is supervised by the action-observation dynamics
p(xt+1|xt, agtt ) and the ground truth next observation xgtt+1.
Information from the generated observation and the current
observation is fused to form a joint representation, which
is passed through the predictive control layer to predict the
navigation action.

θ=0∘ view

Predicted action :𝑎௧

Ground-truth 
action: 𝑎௧

௚௧

𝜇

𝛴

z

prior 𝜇

prior 𝛴

Previous action:𝑎௧ିଵ

KL divergence loss

Reconstruction loss

Ground-truth action: 𝑎௧
௚௧

Predictive control loss

CNN 
module

CNN 
module

WThe target: 𝑔

CNN 
module

Predicted value : 𝑣௧

Environment reward: 𝑟௧

Ground truth next 
Observation: 𝑥௧ାଵ

௚௧

W

θ=90∘ view
θ=180∘ view
θ=270∘ view

Value loss

𝑥௧

Fig. 2. Model overview. Our model integrates an information-theoretic
regularization into an RL framework to constrain the intermediate process
of the navigation policy. During training, our network is supervised by the
environment reward rt, the shortest path of the task in the form of the ground
truth action agtt , and the ground truth next observation xgt

t+1. The parameters
are updated by four loss terms: the reconstruction, the KL, the predictive
control and the value. The first three terms in blue are introduced by the
information-theoretic regularization. At test time, the parameters are fixed and
our network takes the current observation and the target as inputs to generate
the future state. Then it predicts the action based on the future and the current
states. Layer parameters in the green squares are shared.

In addition, we investigate two techniques to improve the
training performance. First, we find that when the previous
action at−1 is provided, the agent is less likely to move or
rotate back and forth in a scene. This is reasonable since the
ground truth action has no chance to contradict the previous
action (e.g., move forward vs. move backward). Second, we
apply a CNN module f to derive a state representation from
an image and hence get the current state f(xt), the ground
truth next state f(xgtt+1), and the goal state f(g). Please refer
to [31] for the structure. We do not directly generate the
next observation xt+1. We generate the state representation,
denoted as st+1 ∼ p(st+1|z) and use this to compute the
reconstruction loss and predict the navigation action. To avoid
confusion, we will still use the description of generating the
next observation given below. This simplification reduces the
network parameters and the computational cost. As a result,
our navigation policy is updated by:

Lp =αEagtt ∼p(agtt )[− log p(at|f(xt), st+1, at−1)]

+ β||st+1 − f(xgtt+1)||2
+ γKL[q(z|f(xt), f(g))||p(z|agtt , f(xt))]

(5)

Value Network. We learn a value function from the penulti-
mate connected layer of our policy π(xt, g), which represents
the value of the current policy at the current navigation task,
denoted as v(xt, g). This is associated with a value loss Lv =
Ext,rt [(Rt − v(xt, g))2], where Rt is the discounted accumu-
lative reward defined by Rt =

∑T−t
i=0 τ

irt+i + v(xT+1, g).
Unlike previous work in [1] which directly uses the value
v(xt, g) (embodied as a TD error) to help update the naviga-
tion policy, see Figure 1(a), our value term Lv merely affects
the shared layers of the policy in Figure 1(b). Hence, our value
network functions as an auxiliary task, and we will show that
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this cooperation consistently outperforms the baseline without
it in Section IV-B.

Therefore, the overall loss function is L = Lp + ωLv ,
where the hyper-parameter is empirically set as (α = 1.0,
β = 0.01,γ = 0.0001, ω = 0.5) throughout our experiments.
Please refer to [31] for more details.

At test time, three modules z ∼ q(z|xt, g), xt+1 ∼
p(xt+1|z), and at ∼ p(at|xt, xt+1, at−1) constitute our con-
troller for the agent to predict the next action given the
current observation, the target view, and the previous action.
The controller can navigate robots in unseen scenes, the
environment maps (graphs) of which are not known.

IV. IMPLEMENTATION AND PERFORMANCE

Our objective is to improve the cross-target and cross-scene
generalization of target-driven navigation. In this section, we
evaluate our model compared to baselines based on standard
deep RL models and/or traditional imitation learning. We also
provide ablation results to gain insight into how performance
is affected by changing the structures.

A. Baselines and Ablations

We compare our method with the following visual naviga-
tion models: (1) TD-A3C is the target-driven visual navigation
model from [1] and is trained using standard reinforcement
learning. This was originally designed for scene-specific navi-
gation and it is difficult to achieve strong results with one sin-
gle policy network for all training scenes. We assist the policy
learning by using the reward function and previous action as
ours. (2) TD-A3C(BC) is a variation of the TD-A3C. It is
trained using behavioral cloning (BC). Both the CNN module
and the input are the same as ours. The main difference from
our method is how the supervision is exploited. (3) Gated-
LSTM-A3C(BC) is an LSTM-based variant of A3C model
adapted from [4], which is trained with BC and provided with
the previous action. The goal is specified as an image, and the
model is also provided with the same multi-view images as
in ours. (4) GSP is a goal-conditioned skill policy in [30],
which generates the next observation as an auxiliary task
rather than using the generation for navigation control. We
reimplement the work3 and train it on our datasets. (5) SAVN
proposes a self-adaptive visual navigation model [2], which
shows strong results on novel scene adaption on AI2-THOR.
It does not, however, support adaptation to novel targets. (6)
TD-Semantic is a navigation model from [10]. The method
predicts the cost of an action, which is supervised by shortest
paths of navigation tasks. (7) NeoNav is our previous work [6].
(8) Ours-NoVal is a variant of our method, which does not
consider the value of our navigation policy. (9) Ours-FroView
is a variant of our method and takes the current front-view
to generate the future observation. (10) Ours-NoGen is a
variation of our model that predicts xt+1 directly from the
current observation xt and the target g without a stochastic
latent space. (11) Ours-VallinaGen is a variant of ours, in
which the latent space z ∼ q(z|xt, g) is constrained by the
standard normal distribution prior p(z).

3https://github.com/pathak22/zeroshot-imitation

We train and evaluate these models on the datasets described
in Section III-A. Except for TD-A3C and SAVN, all alter-
natives are trained with supervision from shortest paths of
navigation tasks, although they use different methods, e.g.,
behavioral cloning as TD-A3C(BC), setting waypoints from
experts as GSP, predicting navigation action cost as TD-
Semantic, generating next expected observation as NeoNav,
etc. We incorporate supervision into RL frameworks for
mapless visual navigation, since RL for high-dimensional
observations empirically suffers from sample inefficiency [11].
We evaluate these models on two metrics, success rate (SR)
and success weighted by (normalized inverse) path length
(SPL), as defined in [17]. More details are provided in [31].

TABLE I
AVERAGE NAVIGATION PERFORMANCE (SR AND SPL IN %)

COMPARISONS ON UNSEEN SCENES FROM AI2-THOR.
Evaluations Models All L ≥ 5

SR SPL SR SPL
Random 1.2 0.7 0.6 0.3

TD-A3C [1] 20.0 4.0 12.9 2.6
TD-A3C [1](BC) 23.0 7.9 13.4 3.7

Unseen, Gated-LSTM-A3C [4](BC) 29.1 10.5 19.2 5.1
scenes GSP [30] 34.4 12.5 27.9 8.3
Known NeoNav [6] 30.2 11.9 23.6 10.1
targets Ours 45.7 25.8 41.9 24.8

P=17.7% Ours-NoVal 34.9 18.1 27.3 14.5
Ours-FroView 32.3 10.3 29.8 9.4
Ours-NoGen 41.2 23.8 38.5 22.2

Ours-VallinaGen 37.5 17.7 34.0 15.9
Random 2.0 1.0 0.6 0.4

TD-A3C [1] 10.1 1.9 6.3 1.1
TD-A3C [1](BC) 12.3 2.4 7.5 1.6

Unseen Gated-LSTM-A3C [4](BC) 30.0 11.4 26.7 8.6
scenes, GSP [30] 27.5 8.3 23.4 6.7
Novel NeoNav [6] 27.4 13.1 22.1 9.3
targets Ours 37.7 20.5 35.4 19.7

P=16.0% Ours-NoVal 31.6 10.3 28.9 9.4
Ours-FroView 24.6 7.8 23.0 6.9
Ours-NoGen 35.7 19.1 31.6 17.4

Ours-VallinaGen 31.4 13.9 29.4 12.7

B. Results on the AI2-THOR
Generalization. We analyze the cross-target and cross-

scene generalization ability of these models on AI2-THOR.
The evaluation is divided into two different levels on
our testing set, {Unseen scenes, Known targets} and
{Unseen scenes, Novel targets}. Each level of evaluation
contains 1000 different navigation tasks. [5] proposes using
the ratio of the shortest path distance to the Euclidean distance
between the start and goal positions to benchmark navigation
task difficulty. In each evaluation, we compute the percentage
P of the tasks that have a ratio within the range of [1, 1.1]
and evaluate the performance on all tasks and on tasks where
the optimal path length L is at least 5.

Table I summarizes the results. First, we observe a higher
generalization performance for the model with supervision
by comparing the results from TD-A3C and TD-A3C(BC).
We believe that it is more challenging for RL networks
to discover the optimal outputs in the higher-order control
tasks. Subsequently, considering the navigation performance
difference between TD-A3C(BC) and ours, we see that the
idea of generating the future before acting and acting based
on the visual difference, works better than directly learning a
mapping from raw images to a navigation action. We also com-
pare ours with Gated-LSTM-A3C(BC), which uses an LSTM-
based memory and has access to shortest paths during training
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as in our method. Our model can consistently outperform the
LSTM-based baseline. The model, GSP, also trained with an
inverse dynamics model, acquires relatively better navigation
performance compared to TD-A3C(BC) and Gated-LSTM-
A3C(BC). However, our model gets better results compared
with the baseline, which indicates the proposed information-
theoretic regularization brings us better generalization for
unseen scenes and novel objects. In addition, our method
shows at least 10.3% improvement in average SR and 7.4%
improvement in average SPL over NeoNav for both cross-
target and cross-scene evaluation. The results demonstrate that
our regularized navigation model possesses more advantages
in target-driven visual navigation.

To further compare ours with SAVN [2], we adapt our
navigation model to be driven by a target object class, which
is given as a Glove embedding, as in SAVN. The experiment is
conducted on AI2-THOR with the same training/testing split,
evaluation navigation tasks, and success criterion as [2]. Our
model outperforms SAVN with navigation performance (SR
and SPL in %) increased by 3.9/7.1 for all navigation trajecto-
ries (45.8/23.8 vs. 41.9/16.7) and 13.8/8.2 for trajectories of
at least length 5 (43.1/22.4 vs. 29.3/14.2). Our information-
theoretic regularization supports both more effective and more
efficient navigation.

Starting Geodesic Distance Starting Geodesic Distance

SR SP
L

Fig. 3. We report SR and SPL performance as a function of starting geodesic
distance from the target.

Ablation. The ablation on different inputs (Front-view vs.
Multi-view) demonstrates that it is easier to generate the next
observation when the current information is rich. We also
conduct the ablation with four history frames as current inputs,
which is difficult to converge during training. We consider
that there is no direct connection between the random history
and the next observation, which is most related to the current
observation and the target. Hence, it is reasonable to generate
the next observation from the current multi-view observation
rather than from the history frames.

It is difficult for a navigation agent to learn to issue a stop
action at a correct location, since there is only one situation
with stop action but many cases with other actions during
a navigation task, leading to training data imbalance. We
first show the cross-target and cross-scene navigation results
in a simpler case where the stop signal is provided by the
environment rather than being predicted by an agent. The
navigation performances (SR and SPL in %) of our model
and Ours-NoVal are: 41.6/27.2 and 38.7/19.4, respectively.
As expected, both models demonstrate higher performances
than the performances in Table I (37.7/20.5 and 31.6/10.3,
respectively). Additionally, we see the performance gap of our

model is much smaller than Ours-NoVal, meaning we handle
the data imbalance better. We consider that the value prediction
is critical in learning to issue a stop action. The different stages
in navigation tasks can be distinguished by their discounted
accumulative reward in RL, and the stage close to the target
with a large accumulative reward updates the policy more,
which eases the data imbalance.

Based on the ablation on the generation process, we con-
clude that learning a stochastic latent space is often more
generalizable than learning a deterministic one (Ours vs. Ours-
NoGen), since the former explicitly models the uncertainty
over visual images. However, when the latent space is over-
regularized by the standard normal distribution prior, the
situation is worse (Ours-VallinaGen vs. Ours).

Geodesic distance. We further analyze the navigation per-
formance as a function of the geodesic distance between the
start and the target locations in Figure 3. This is based on
the 1000 tasks from the {Unseen scenes, Known targets}
evaluation. As can be seen, the geodesic distance is highly
correlated with the difficulty of navigation tasks and the
performance of all methods degrades as the distance between
the start and the target increases. Our model outperforms all
alternatives in most cases.
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Fig. 4. Average reward curves (left) on AVD during training with a zoomed-
in view (right). Our model outperforms these alternative navigation methods
in terms of learning speed and the final average reward.

C. Results on the AVD

To evaluate the generalization ability in the real world, we
train and evaluate our model and some alternatives based on
the training and testing splits on AVD.

Navigation driven by target images. We first present the
navigation results driven by target images. Figure 4 shows the
average returns during training from TD-A3C, TD-A3C(BC),
Gated-LSTM-A3C(BC), GSP, and our model. We train five
different instances of each algorithm with different random
seeds, with each performing one evaluation every 200 navi-
gation episodes. We plot the average return curves with error
bands representing the standard deviation. The results show
that navigation models with supervision (e.g., TD-A3C(BC),
Gated-LSTM-A3C(BC), GSP) learn considerably faster than
a pure RL-based navigation model (e.g., TD-A3C). Our pro-
posed model outperforms these baselines both in terms of
sample efficiency and the final performance. In Table II, we
also report the average values of success rate and SPL with
standard deviations of 1000 navigation tasks (P = 15.0%)
randomly sampled from unseen scenes in AVD. We observe
that all five learning models demonstrate average performance
decreases compared to the results on AI2-THOR in Table I,
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since both the training scenes and the target views in AVD
are limited and the real-world scenes are more complex in
structure than synthetic scenes. In addition, our model has
relatively larger variance than TD-A3C(BC) and GSP while
retaining a better navigation performance than other listed
baselines. We consider that our intermediate generative pro-
cess increases the stochasticity of navigation control, but the
proposed information-theoretic regularization generally brings
more useful information for navigation tasks, which is critical
for policy learning from the perceptible environment.

We visualize navigation tasks from our model in [31].
These tasks are all characterized by unknown scenes and long
distances between the start points and the targets. Our agent
can navigate to the targets successfully in the first three tasks.
In the last three tasks, our model fails and the problems include
thrashing around in space without making progress, getting
stuck in the corridor, and navigating around tight spaces (e.g,
the small bathroom where the third task starts).

TABLE II
AVERAGE NAVIGATION PERFORMANCE (SR, SPL AND CR IN %)
COMPARISONS ON UNSEEN SCENES FROM AVD AND REALISTIC

SCENARIOS (RS).
AVD RS

Model SR SPL SR CR
Random 2.8(0.9) 1.8(0.4) 2.0 62.0

TD-A3C [1] 9.3(2.4) 2.9(1.1) 2.0 58.0
TD-A3C [1](BC) 15.9(1.9) 6.1(0.9) 8.0 56.0

Gated-LSTM-A3C [4](BC) 13.3(2.7) 5.8(1.6) 10.0 46.0
GSP [30] 19.3(1.1) 5.5(0.6) 24.0 48.0

Ours 23.1(2.1) 13.5(1.0) 28.0 40.0

Navigation driven by target labels. We also adap-
t our method to compare it with TD-Semantic [10], in
which the navigation goal is defined in the form of a
one-hot vector over a prescribed set of semantic labels,
{Couch, Table, Refrigerator, Microwave, TV}. The exper-
iment is conducted on AVD with the same training/testing
split, evaluation tasks, and success criterion as [10]. While
sharing the same idea of improving the training by using
the supervision from shortest paths of navigation tasks, our
method outperforms TD-Semantic by 22% for RGB input
(53% vs. 31%), and 28% for depth input (59% vs. 31%)
for average success rate on the AVD testing set. Our method
(with depth input) shows a 5.4% improvement in average
success rate compared to TD-Semantic with semantic input
(59.0% vs. 53.6%), which is provided by some state-of-
the-art detectors and segmentors. The best performances of
two methods over various target labels are presented in [31].
We suggest that our information-theoretic regularization helps
learn a controller that can analyze the relationship between
visual observation and the target and extract some important
information to guide navigation. This process is not affected
by the target format, e.g., a semantic label or a view image.

D. Results on the Real World

Moving to the real-world scenarios further shows the gen-
eralization capabilities of the proposed navigation models
and the robustness against indoor layouts, robot types and
sensor types. The models are trained based purely on the
discrete dataset (e.g., AVD), and the real-world environments
are continuous and unknown to the agents.

Robotic setup. We demonstrate the proposed model using
a TurtleBot. The configuration of the TurtleBot is shown in
Figure 5(a), which consists of a differential wheeled moving
base Kobuki and four RGB Monocular cameras equipped at
the top of the robot. The proposed system takes as input data
from four real-time camera sensors and a target image at each
time step, to predict the optimal navigation action. The action
command is converted to the wheel velocity and passed to the
robot. For example, the move right action in A is converted to
rotate right at 45◦/s for 2s, move forward at 0.25m/s for 2s,
and rotate left at 45◦/s for 2s. These commands are published
with a frequency of 5Hz. It is complex due to the movement
direction restrictions of the TurtleBot.

Transfer to the real world. Experiments were conducted
on a floor (approx. 400m2) of an academic building. We
evaluate the robot with 50 randomly sampled navigation tasks
in the scene. A navigation task is regarded as a success only if
the robot stops near the target (e.g., 1m) within 100 steps, and
we consider it a failure if the robot collides with an obstacle
or does not reach the goal within the step limit. Although
the model is trained on the discrete household dataset, it can
transfer to the realistic public scenarios and exhibit robustness
towards random starting points, varying step lengths, changes
in illumination, target types, scene layouts, etc. A quantitative
analysis of these navigation tasks is provided in Table II
(the right-most column), where the average success rates and
collision rates (CR, the rate of collision cases to all navigation
cases) are listed. We observe that the existence of the proposed
information-theoretic regularization enables better transfer to
new environments. However, all models present consistently
high collision rates during navigation, since realistic evalua-
tion, characterized by continuous space and robotic movement
deviation, is very challenging. Extension to depth input or
simultaneous mapping [33] would make the method applicable
in more general scenarios. Figure 5 qualitatively compares our
method with the GSP baseline. The baseline generally gets
stuck behind the obstacle (e.g. the wall) and tries hard to move
forward, while our method finds the way towards the door and
issues the stop action close to the target.

V. CONCLUSION

We propose integrating an information-theoretic regular-
ization into a deep reinforcement learning framework for
the target-driven task of visual navigation. The regularization
maximizes the mutual information between navigation actions
and visual observations, which essentially models the action-
observation dynamics and the causality between navigation
actions and observational changes. By adapting the regular-
ization for target-driven navigation, our agent further learns to
build the correlation between the observation and the target.
The experiments on the simulation and the real-world dataset
show that our model outperforms some baselines by a large
margin in both the cross-scene and the cross-target navigation
generalization. Experiments using the TurtleBot robot demon-
strate the transfer capability of the proposed navigation model,
which is easy to deploy on-robot.

In this work, training requires supervision from expert
trajectories, which are generated based on the topology graphs
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of training scenes. For future work, we will investigate how
real-world human demonstrations can be leveraged and how
the model can be extended to dynamic environments [34].
In addition, extending some state-of-the-art model-free and
model-based deep RL algorithms to the target-driven visual
navigation problem for exploring better navigation generaliza-
tion is also a great topic for future work.
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Fig. 5. Qualitative examples. (a) The robotics system setup and the navigation
task. (b) The trajectory based on GSP. (c) The trajectory based on our model.
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